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Partial Stabilization of a Class of Nonlinear
Systems Via Center Manifold Theory
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Abstract—This paper addresses the problem of the partial state
feedback stabilization of a class of nonlinear systems. In order to
stabilization this class systems, the especial place of this paper is
to reverse designing the state feedback control law from the method
of judging system stability with the center manifold theory. First of
all, the center manifold theory is applied to discuss the stabilization
sufficient condition and design the stabilizing state control laws for a
class of nonlinear. Secondly, the problem of partial stabilization for a
class of plane nonlinear system is discuss using the lyapunov second
method and the center manifold theory. Thirdly, we investigate spe-
cially the problem of the stabilization for a class of homogenous plane
nonlinear systems, a class of nonlinear with dual-zero eigenvalues and
a class of nonlinear with zero-center using the method of lyapunov
function with homogenous derivative, specifically. At the end of this
paper, some examples and simulation results are given show that the
approach of this paper to this class of nonlinear system is effective
and convenient.

Keywords—Partial stabilization, Nonlinear critical systems, Center
manifold theory, Lyapunov function, System reduction.

[. INTRODUCTION

TABILIZATION is one of the basic tasks in control
design. The asymptotic stability and stabilization of non-
linear systems have received significant attention [1]-[15].

The center manifold theory emerged in the sixties of the last
century, Use of the center manifold method to stabilize control
systems was proposed in [8] and else where, and soon became
a powerful tool for the investigation of the stability of dynamic
systems [9], [10]. Later it was used for the stabilization of
nonlinear control systems [11], [12]. Then it was developed
into a systematic design method.

Afterwards, the center manifold approach has been devel-
oped to solve the problem [1], [7], [11]-[13]. In [11], [12],
some special nonlinear controls are designed to stabilize some
particular control systems. The method used there is basically
a case-by-case study.

Based on this generalized normal form, the center mani-
fold approach developed for standard normal form has been
extended to a much larger class of systems. A description of
this was given in [14].

A systematic design technique was developed to provide
a set of sufficient conditions for designing controls which
stabilize the dynamics on the designed center manifold, and
then stabilize the overall system [15]. Stabilization of a
class of non-minimum phase nonlinear systems which have
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zero dynamics with an eigenvalue zero of multiplicity 2 is
considered [16]. The problem of the stabilization of affine
nonlinear control systems via the design of a center manifold
is considered [17]. The stabilization and stabilizability of non-
linear system in critical cases is studies [18] using the center
manifold reduction, for the system whose linearization possess
either a simple zero eigenvalue or a pair of simple, pure
imaginary eigenvalues. The problem of stabilization of a class
of nonlinear systems, which are possibly of non-minimum
phase, is considers [19]. A cascade scheme for passivity-based
stabilization of a wide class of nonlinear systems is proposed
[20].

In some recent achievements of scientific researches. The
finite-time stability problem for quadratic systems is studied
in [21], and two sufficient conditions for finite-time stability
analysis and finite-time stabilization via static state feedback
are given. A weak concept of sampled-data feedback stabiliza-
tion for the case of autonomous systems is presented and its
Lyapunov characterization is established, and sufficient con-
ditions are derived for the existence of a time-varying sampled-
data feedback exhibiting global stabilization for certain class
of nonlinear systems [22]. The problem of robust stabilization
is considered for a class of nonlinear interconnected systems,
which consist of linear subsystems coupled by nonlinear inter-
connections that are unknown and quadratically bounded, in
[23]. The stabilization problem of a class of non-linear systems
using contraction principle is studied and the contraction-
based systematic design of control function is presented in
[24]. A switching adaptive controller which tunes the dynamic
gain depending on the nonlinearity structure is proposed, the
stabilization or regulation of nonlinear systems with either
triangular or feedforward nonlinearity is extended in [25]. Un-
der some moderate assumptions, smooth decentralised state-
feedback controllers are designed for a class of large-scale
high-order stochastic non-linear systems which are neither
necessarily feedback linearizable nor affine in the control input
[26]. The problem of adaptive backstepping control for a class
of single-input and single-output (SISO) non-linear time-delay
systems in triangular structure is studied in [27]. The new
H, controller design schemes are provided for a class of
discrete-time systems with uncertain non-linear perturbations
[28]. The stabilization problem of non-linear systems with
multi-uncontrollable modes on the imaginary axes is studied
and the relation between the centre manifold and the feedback
law is given in [29]. The output feedback stabilization of a
class of nonlinear systems with nonlinearity of the unmeasured
state variables is studied [30]. The problem of adaptive robust
stabilization is considered for a class of nonlinear systems with
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uncertainties which consist of uncertain system parameters and
multiple external disturbances [31].

Based on these pioneer works, the main purpose of this
paper is to provide a new design technique of state feedback
control, and the designed state feedback control ensures that
the dynamics on the designed center manifold of the closed-
loop system is asymptotically stable, which is then extended
to a general and large of nonlinear systems. To obtain the
desirable properties and the state feedback control, we combin-
ing the center manifold method with the Lyapunov method as
before. However, the especial place of this paper is to reverse
designing the state feedback control law from the method of
judging system stability with the center manifold theory.

This paper is organized as follows: In the second section,
we recall some basic mathematical analysis with respect to the
linearization approach of nonlinear systems and eigenvalues
of the linearized systems model [10], [18], which will be
employed in the remainder of this paper, commodiously. In
the third section, the center manifold theory and several useful
definitions and lemmas are briefly introduced.

In the fourth section. First of all, the center manifold theo-
rem is applied to discuss the stabilization sufficient condition
and design the stabilizing control laws for a general and
large class of nonlinear control systems, which are presented.
Secondly, the problem of partial stabilization for a class of
plane nonlinear system is discuss using the lyapunov second
method and the center manifold theory. Thirdly, this pre-
existing approach is exhibited and investigated specially with
the problem of the stabilization for three types of special
nonlinear control systems which a class of homogenous plane
nonlinear systems, a class of nonlinear with dual-zero eigen-
values and a class of nonlinear with zero-center using the
method of lyapunov function with homogenous derivative,
specifically. The class of homogenous plane nonlinear systems
is studied using the method of polynomial reduction, the
class of nonlinear with dual-zero eigenvalues and the class of
nonlinear with zero-center are researched using the method of
polynomial reduction, characteristics of their approximate sys-
tem and the LFHD approach (that is, the Lyapunov Function
with Homogenous Derivative along solution curves approach
in [15]). The class of nonlinear with dual-zero eigenvalues
is assumed to possess a pair of simple zero eigenvalues for
primitive systems and the class of nonlinear with zero-center
is assumed in the linearized model of primitive system with
zero eigenvalues.

Finally. Some illustrative examples and simulations results
are presented in the fifth section, which are results show that
the approach of this paper which is proposed to the class
of nonlinear system is effective and convenient. In the sixth
section deals with some concluding and some open questions
are presented in the seventh section.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this section, we begin by recalling some well-known
linearization approach from nonlinear system control and
analysis to accomplish main work of this paper, commodiously
and easily [10], [18].

In general, the linearization approach is a very popular and
powerful method used to study the local stability as well as the
local stabilization of smooth nonlinear autonomous systems.

Consider the general nonlinear autonomous system

T = f(x). 1)

Where f : D — R"™ is continuously differentiable, D is a
neighborhood of the origin = 0. Suppose that the origin is
an equilibrium point of the system (1), that is, 2(0) = 0. By the
Lyapunov indirect method, it is known that if the linearization
of f(z) at the origin, that is, the matrix

_ Of(@)
A= Oz =0 -

has all eigenvalues with strictly negative real parts, then the
origin is asymptotical stable. If it has at least one eigenvalue
has positive real part then the origin is unstable [4], [9], [21].
If the matrix A has some eigenvalues with zero real parts with
the rest of the eigenvalues having negative real parts, then the
linearization fails to determine the stability properties of the
origin. This class of systems is the so-called critical systems,
whose stability cannot be determined by using the approach of
system linearization. The purpose of this paper is to discuss the
stabilization of a class of nonlinear control system via center
manifold reduction based on this class of critical systems.

Suppose now that f(z) is twice continuously differentiable.
The system (1) can be represented as below by the Taylor
expansion

0f(x)

&= Az +[f(2) - —5-

le=0 2] = Az + g(z).

where g(z) = f(z) — ag—f) |s=0 x is also twice continuously
differentiable and satisfies

Jg(z)
ox

g(0) =0, la=0= 0.

Suppose that A has k eigenvalues with zero real parts and
m stable eigenvalues. Thus, it is easily to obtain a similarity
transformation 7' that transforms A into a decoupled form,
that is,

_ A 0
1 _ 11
rar [ A 0]

where Re[A(A11)] = 0 and Agg is Hurwitz. Clearly, Ap; is
k x k and Ass is m x m. The change of variables

1)

where € R*, ¢ € R™.
Thus, matrix 7" transforms the system (1) into the form

{ 7]: A1177+F(777f)’
&= Ant+G(n,8).

Where A;; and Aoy are constant matrices, and the function
F and G are sufficiently smooth and inherit properties of g.

2
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In particular, they are twice continuously differentiable and
satisfies

F(0,0) =0,
2B | =(0.0)»
ZE |nmy=(00) 3)
G(0,0) =0,
ZZ%? :(n7n):(0¢0)7
3 (n,m)=(0,0)

That is , their values and first derivatives vanishing at the
origin.

III. PREPARE KNOWLEDGE

In this section, we giving some definitions and lemmas,
which be found in [8]-[11], [16], [18], [32]-[35], are the key
to the proof of main theorems of this paper, and will be useful
in handling under investigation and proof of this paper.

Definition 1: [36] A manifold M of dimension k, or k-
manifold, is a topological space with the following properties

(i) M is Hausdorff,

(i) M is locally Euclidean of dimension n,

(iii) M has a countable basic of open sets.

Remark 1. [10] For our purpose here. A k-dimensional
manifold in R*(1 < k < n) is sufficient to think of a k-
dimensional manifold as the solution of the equation

h(z) =0.

where f : R® — R™* is sufficiently smooth (that is,
sufficiently many times continuously differentiable).

Definition 2: [10] A manifold {¢(§) = 0} is said to be an
invariant manifold for the system (1) if

h(z(0)) = 0 = h(£(t) = 0,¥¢ € [0,41) € R.

where [0,¢;) is any time interval over which the solution z(¢)
is defined.

Definition 3: [10] If £ = h(n) is an invariant manifold for
the system (2) and h is smooth, then it is called a center
manifold if
Oh(n)

n

Lemma 1: [10], [18] If F' and G are twice continuously
differentiable and satisfy equations (3), all eigenvalues of Aq;
have zero real parts, and all eigenvalues of Ass have negative
real parts, then there exist a constant § > 0 and a continuously
differentiable function h(n), defined for all || n ||< d, such that
& = h(n) is a center manifold for the system (2).

Lemma 2: [10], [18], [32]-[35] If Re[A(As22)] < O and
Re[A(A11)] = 0, then there exists a constant > 0 and a
locally invariant manifold for the system (2) given by the
graph of a C? function & = h(n), n < J, where the function
h satisfies

Oh(n)
n

oh
where h(0) =0 and %.

h(0) =0, ly—o= 0.

[Avin + F(n, h(n))] = Azah(n) + G(n, h(n)).

Moreover, the stability of the origin for system (2) coincides
with the stability of the origin for the reduced system model
(2), with £ replaced by h(n).

Furthermore, the system dynamics in the center manifold
can be described as the following reduced system

n = Aun+ F(n,h(n)) (€]

Lemma 3: [8]-[11], [16], [18] Under assumptions of
Lemma 1, if the origin n = 0 of the reduced system (4) is
asymptotically stable then the origin of the full system (2) is
asymptotically stable.

In the next section, we will frequently use these definitions
and lemmas, and getting main results of this paper.

IV. MAIN RESULTS

We always hope that the state of the system can achieve
stability under the action of a control law and such that it can
avoid interference in the study process of nonlinear systems.
So we making systems asymptotical stabilization which have
much strong applicability. Due to the problem has certain
practical application background in engineering field, so the
studies of this paper has certain practical significance.

We study first the stabilization of a class of general nonlin-
ear systems, and giving following results.

A. Stabilization of a Class of General Nonlinear Systems

Consider the general nonlinear control system based on the
analysis of the Second Section

{ &= F(x,y),

y=u+G(z,y). )

where, x € R"™,y € R™, the function F' and G are sufficiently
smooth and satisfied condition

F(0,0) =0,

Re{/\[% lz.m)=0.0)]} =0,
Re{)\[%ij’y) l(,)=0,0)]} =0, (©6)
G(0,0) = 0,

Re{/\[% lz)=0.0]} =0,
Re{)\[%ﬁw lz)=0.0)]} = 0.

Theorem 1: If there is a vector field y = h(x), and h €

Cr(r > 2), h(0) = 0, 01;(;) |z=0= 0, such that the zero

solution of subsystem of system (5)

z = F(x,h(x)). (7

is asymptotically stable, that is, F'(z,h(x)) < 0.
Then, there is a state feedback control law

Oh(x)
YT Tor
such that the system (5) is partial asymptotically stabilization

in origin, where v € C"~!, B is a m x m constant matrix,
whose real of eigenvalues are negative.

F(z,y) — Bh(z) + By. (8)
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Proof. After substitution the state feedback control law (8)
into the system (5), we can obtain the controlled closed-loop
system as followes

i= F(z,y),
j= By+ % F(x,y) ©)
—Bh(z) + G(z,y).

Marking, n(z,y) = 242 F(z,y)
n(0,0) =0, 2L | 0.0)=0

Combining Definitions 1-3 with Lemma 1, we can known,
the y = h(x) is the centre manifold of for the system (5).

And the zero solution of the subsystem (7) respect to the
system (5) is asymptotically stable.

So, according to this and Lemma 2-3 ,we can know the
system (5) is asymptotically stable in origin.

That is, the state feedback control law (8) such that the
system (5) partial asymptotically stabilization in origin.

The Theorem is complete proof!

Remark 2. Without loss of generality, let B = —1 in a state
feedback control law (8). Specifically, we can obtain that the
state feedback control law is

_ Oh(z)
Y

Bh(z) + G(z,y), then

F(x,y)+ h(z) —y. (10)

B. Stabilization of a Class of Plane Nonlinear Systems
Consider the following general plane nonlinear control
system
&= F(z,y)
. ) 11
{ v =u+G(z,y). b

where x € R, y € R, u € RY(t > 1), the function F' and G
are sufficiently smooth, and satisfied condition

F(0,0) =0,
7;;%?” 2,)=(0,0)= 0
5 l@y=0,0=0
G0 0)=0. a2
ZZ(“’) |(@9)=(0,0=0
9G4 4)=(0,0)= 0

Theorem 2: 1f there is a vector field y = h(z), h € C"(r >
2), h(0) = 0, % |z=0= 0 and a positive constant § such
that F'(z,h(z)) < 0at 0 < 2 < ¢ and F(z,h(z)) > 0 at
0>x>—6.

Then, there is a state feedback control law

_ o)

- Ox
such that the system (11) is partial asymptotically stabilization
in origin, where v € C"~!, B is a t X t constant matrix, whose
real of eigenvalues are negative.

Proof. After substitution y = h(z) into the subsystem of
the system (11) we see that

F(z,y) + Bh(z) — By. (13)

& = F(x,h(zx)). (14)
We can construct a Lyapunov function
1
V(z) = 52*. (15)

The all-derivatives of the Lyapunov function (15) along the
track of subsystem (14) is

V(x) laey= zF(x, h(z)) <0,Vz € (—0,+0) — {0}

According to the Lyapunov second method, we easy known
the subsystem (14) is asymptotically stable in origin.

According to the Theorem I, we can known the system
(11) is partial asymptotically stabilization by the state feedback
control law (13) in origin.

The Theorem is complete proof!

C. Stabilization of Class of Homogenous Plane Nonlinear
Systems

Consider the following general homogenous plane nonlinear
system
&= F(r,y)
. e 16
{ y=u+G(z,y). (16)

where z € R, y € R, v € R, the function F' and G are
sufficiently smooth, and satisfied condition

F(0,0) =0,
% lz.)=0.0)= 0,
gy l@y=00="0, a7
G(0,0) =0,
32%2 Z) |(z.9)=(0,0)= 0,
|(2,5)=(0,0)= 0

The times of lowest order nonzero item of F' is m(m > 2),
so F' can be expressed as

F(z,y) = apz™ + ar ™y 4 agx™ 2y 4 -

Fm_12y™ "+ amy™ + O(|| (z,9) |™).

The times of lowest order nonzero item of G is n(n > 2),
so G can be expressed as

G(z,y) = boa™ + bra™ ty + boa" 2y 4 -+

b1y + bpy™ 4+ O(|| (2, 9) |™).

Suppose that the a; is the first nonzero number of F'(z,y)
in ag,a1,a9,...,0ny.
Then the system (16) can be written for

. i 1
= ajxz" Yy +.. +ap_1zy™

+amy™ + O(| (z,y) ™),
U= u+box™ + by + by 22+
+on—12y" " + bpy™ + O(|| (z,9) ")

(18)

Theorem 3: If there is a vector field y = h(z) = aP, m
and p are odds which are more than one, a;<o, such that
Ol (,9) I™) ly=n(xy= O (z,y) | +=17).

Then, there is a state feedback control law

_ dh()
T odw

such that the system (16) is partial asymptotically stabilization
in orgin, where u € C" 1, b is a positive constant.

Proof. We can obtain the subsystem respect to the system
(16) as follows

eF(z,y) =

F(z,y) + bh(z) — by. 19)

z(a;z™ Iyl + . 4 apmorzy™ L

20
Famy™ + O(| (2,9) ™). 0
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After substitution y = h(z) = 2P into the subsystem (20)
we see that the subsystem (20) can be written for

oF(z,h(z)) = pajam+E-Ditl
+O(|| () ||+ =D,

And we have, m and p are odds which are more than one,
and aj<g, so m+ (p —1)j + 1 is a even and pa;<o.
Thus, there must be

xF(z,h(z)) < 0,Vz € (—6,9) — {0}.

where ¢ is a very small positive.

According to the Theorem 2, we can known the system
(16) is partial asymptotically stabilization by the state feedback
control law (19) in origin.

The Theorem is complete proof!

Theorem 4: If there is a vector field y = h(z) = zP, m and
p are evens that are more than zero, j is a odd, aj<o, such
that O(H (.%‘,y) Hm) |y:h(.t): O(H (l‘,y) ||m+(p71)j)’

Then, there is a state feedback control law

U= %(;)F(x, y) + bh(z) — by. (1)
such that the system (16) is partial asymptotically stabilization
in origin, where u € C™™1, b is a positive constant.

Proof. The proof of the theorem 4 is similar with the theorem
3. We can obtain the subsystem respect to the system (16) as
follows

zF(z,y) = z(a;2™ 7y + ...+ apm_rzy™ !

22
Famy™ + O(| (2,9) ™). @2)

Substitution y = h(z) = «? into the subsystem (22), thus,
the subsystem (22) can be written for

oF(z,h(z)) = pajam+E-Ditl
+O(| (2) @175,

Because m and p are evens which are more than zero, j is
a odd, aj<o, so m+ (p—1)j+1is a even and pa;o. There
must is a neighborhood which contains the origin such that

xF(z,h(z)) <0,Vz € (—4,9) — {0}.

where § is a very small positive.

According to the Theorem 2, we can known the system
(16) is partial asymptotically stabilization by the state feedback
control law (21) in origin.

The Theorem is complete proof!

From now on, we study the stability of the dynamics
response on center manifold through its approximated systems,
and giving following results.

D. Stabilization of a Class of Nonlinear Systems with Dual-
zero Eigenvalues

Consider the following nonlinear system

[@1}:{0 a} {x1}+{f1(x1,xz,y)]
o 0 0]] 2 fa(z1,22,y) (23)
y=u+G(z,y).

where 1 € R, z2 € R, y € R, u € R, the function F(z,y) =
{ fi(z1, z2,y)

f2 (.Tl y L2, y)
well. And them are satisfied condition

€ C* , G(z,y) is sufficiently smooth, as

F(07 0) =0,

% |(2,9)=(0,0)= 0,

=i l@ay=0,0=0, 4)
G(0,0) = 0,

OGN | =0.0)= 0,

Jdx
dG(z,1
L | y=(0.0)= 0,

Suppose that the equation fa(x1,z2,y) can be written for
fa(z1, 22, y) = fo(wr,22) + fa(w1, 22, 9)y-

Let y = h(z) = h(x1,22), and h € C?(r > 2), h(0) = 0,
oz I(z1,22)=(0,0) :

Substitution y = h(z) into the fo(x1,x2,y). And suppose
that the times of lowest order nonzero item of fy(z1,x2,y) is
k, and k is a odd, thus, the fo(x1,z2,y) can be expressed as

fo(@1, 2, (1, 22)) =  apxh +ayzitag + ...

+arwy + O(|| (w1, 22) ).

And after substitution y = h(z) into the system (23) we see
that the system (23) can be written for

1= axo+ fi(r1, 2, h(z1, x2)),

ig = aox’f + a1$]f711’2 + ...+ (lkl'g (25)
+O(H (T17T2) Hk)v

y= u+Gy).

The approximate system of the system (23) is

T1 = axa,
k ,
iy =3 aih as, (26)
=0
y=u+G(z,y).

Theorem 5: For the approximate system (26) of the system
(23), if there are A\; > 0, Ay > 0 such that \ya+X2a¢ = 0, and
azi = 0(i = 1,2, , 51), a; <06 = 1,3,5,--- ,k —2),
ag < 0.

Then, there is a state feedback control law

_ M aza + fi(z1,z2,y)

ox f2($17$27y) +bh(x1,ac2)—by. @7

such that the system (23) is partial asymptotically stabilization
in origin, where « € C"~!, b is a positive constant, y =
h(a1,22), and h € C2(r > 2), h(0) =0, 222 | _ = 0.
Proof. According to the LFHD approach in [15], without
loss of generality, we can construct a Lyapunov function

A A
Vi) = +1 1x’f+1 + ?ng (28)

The all-derivatives of Lyapunov function (28) along the
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track of approximate system (26) is

V(x) les) = Aazhzy 4+ Xowa(agaf
tay ¥ ey - 4 agak)
= (/\1& + /\2ao)$lf_1l'2
+o(arah a3 + azah3ad
+--+ akxk“)

= /\g(alxlf 23 4 azxt 3zl
NI akxkﬂ)
< 0.

Let V() l26y= 0, we have 25 = 0. After substitution
xo = 0 into the the approximate system (26) we see that
V(x) |l(26)= 0 if and only if (x1,z2) = (0,0).

According to the Lyapunov second method and Theorem 1,
we easy known that the approximate system (26) is partial
asymptotically stable by the state feedback control law (27) in
origin.

According to the theorem of the third section of in [15],
we can known that the system (23) is partial asymptotically
stabilization by the state feedback control law (27) in origin.

The Theorem is complete proof!

E. Stabilization of a Class of Nonlinear Systems with Non-
center

Consider the following general non-center nonlinear control

system
{ &1 ] _ { fi(z1, 22, y) }
& fa(21,22,9) (29)
¥y =u+G(z,y).

where 1 € R, z2 € R, y € R, u € R, the function F(z,y) =

f1($17$27y) . .
€ C* , G(z,y) is sufficiently smooth, as
[ fZ(xlamQay) . (I y) y
well. And them are satisfied condition
F(0,0) =0,
OF (z,
ra:»x y; l@.)=0,0=0,
Y z,y)= = Oa
iy l@w=00) 30)
G(0,0) =0,
OG(z,1
dG%m o) ‘(Iyy):(O,O): 0,
L @y)=0.0= 0,

Suppose that the times of lowest order nonzero item of
fi(z1,22,y) is k;, and k; is a odd, where i = 1,2, thus,
the f;(x1,z2,y) can be expressed as

fl(x17$27y) = ch ki 2 +y(¢1(zlax2ay))
+0(|| ((z1,22,9)) [FH1).
and
fa(w1, 22, y) = Z diwi @5 ™ + y(da (@1, 72,7))

+0(H (w1, 22,9)) [I*=*1).

where ¢;(x1,x2,y) is a k; — 1 order times polynomial.

Let y = h(x) = h(xy1,2), and h € C%(r > 2), h(0) =
0, ahm |z=0= 0. After substitution y = h(x1,x2) into the
fi(xl, x2,y) we see that the f;(x1,x2,y) can be written for

ch k1 — z
+0(H ((1’1»@)) [[¥4).

Ji(we, 22, h(w1, 20)) =

and

Z d; 1’195’2“2 i
+O(H ((z1,22)) [|*).

Ja(w1, 22, h(w1, 20)) =

Thus, the system (29) can be written for

Z ciey' ~'zh + O(|| (21, 22,9)) 1),

i f (€29)
E dizies? ™ + O(|| ((z1, 22,9)) ),
j=u+t G(w Y)-
The approximate system of the system (29) is
Z e kl z
Z d; 'Elxkzﬂ (32)
g=ut G(x Y)-

Theorem 6: For the approximate system (32) of the system
(29), if there are m > 0 and 2m > maxz{k1, k1} such that

k1 ) ko .
—eo > 3 (e | 255 + 2 (i | ),
1= =

= , . , (33)
—do > Y (ei | gz) + 2. (1 di | ).

Then, there is a state feedback control law

— 8h(’[) f1($1,1'27y)
- ox { Fola1, 2, y) :| + bh(xy1,z2) — by. (34)

such that the system (29) is partial asymptotically stabilization
in origin, where « € C"~!, b is a positive constant, y =
h(z1,22), and h € C%(r > 2), h(0) = —0=0.

Proof. According to the LFHD approach in [15], without
loss of generality, we can construct a Lyapunov function

_ 1 2m—ki+1
V(Z) - 2m— k1+1I1 (35)
+ 1 m2m kg-‘rl
2m—ko+1

The all-derivatives of the Lyapunov function (35) along the
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track of the approximate system (32) is

2m—ky ki—i, i
Ty Z Gy T
1:0

+ 2m—ko delxkg 7

V(Z) |(32) =

= cox?™ + Z e me ’x%
1= 1
+dgx3™ + Z dixi it
=1

cox%m

+Z‘CZ|(2m22m+2 27n)

2m

+d0$ (36)
+; ‘ di | (2m 2mJr 2m— 1T%m)

2m

IN

k1 .

= [ch(lq 2nt)
+Z(|d | 55 )]
+[do + Z('Cz‘ | 5=)

+Z(|d ‘27n i }l2m
< 0.

Add V (z) (32)= 0 (that is, all five equals signs in equation
(36) are established. ) if and only if (z1,z2) = (0,0).

According to the Lyapunov second method and Theorem 1,
we easy known the system (32) is asymptotically stable by the
state feedback control law (34) in origin.

According to the theorem 4.1 in [15], we can known the
system (29) is partial asymptotically stabilization by the state
feedback control law (34) in origin.

The Theorem is complete proof!

V. SYSTEM SIMULATION

In this section, in order to show that the approach of this
paper to this sore of control system is effective and convenient,
we give some illustrative examples and simulation results for
each Theorem.

Example 1: Considering the following fourth order system
for Theorem 1

-fl = —lelf - y;

;.LIQ = T2 — Y3, 37
U1 = w1 + xiady, G7
Yo = Uz + xlmg’yz.

Solution. we can easy know that the function F' and G are
sufficiently smooth and satisfied condition (6) in this system
37).

2
Without loss of generality. Let y = h(x) = {

% }, and
he C3(r>2), h(0) =0, 22 | _ =0,

After substitution into the subsystem respect to the system
(37) we see that

S, 3 4
xrl = —r] — Ty,
i’Q = —T2 *Z()%.

Add Vz € D — {0}, there must be
i = —a% — 2t <0,
i’2:—$2—$% < 0.
where D is a neighborhood which contains the origin.
So we easy to check that the system (37) satisfies the

conditions of Theorem 1.
Thus, there is a state feedback control law

2z 0 -3 —y?
u = 2
0 2z, —T3 — Y5

2

-2 0 Ty
o =2 3 (38)
-2 0 Y1
+ 0 —2 Y2
such that the system (37) is partial asymptotically stabilization
in origin.
That is,

—2x% — 23193 + 222 — 293

YT 2222 — 20y2 + 222 — 242

Simulation. Without loss of generality. Let the initial value
of simulation

xl(()) = 08,
z2(0) = —0.6,
n (O) =0 97
yg(()) = —0.45.
and the input control signal
|0, for t <0,
= 1, for ¢t > 0.

The sample time is 0.1s, and the simulation time are 100s
seconds.

The simulation structure diagram of the system (37) is show
in Fig. 1.

Input contral signal

Integratard

Fig. 1: Simulation structure diagram of the system (37).

The dynamic response of the system (37) without the state
feedback control law (38) is show in Fig. 2.

The dynamic response of the system (37) with the state
feedback control law (38) is show in Fig. 3.

225



International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:5, No:3, 2011

Fig. 2: Dynamic response of the system (37) without the state
feedback control law (38).

=T

B T e

Fig. 3: Dynamic response of the system (37) with the state
feedback control law (38).

From the Figure 2, we can know that the opened-loop
system respect to the system (37) is unstable, and from the
Fig. 3, we can know that the controlled closed-loop system of
the system (37) is asymptotically stable. That is, the approach
presented in this paper to this sort of systems is effective.

Example 2: Considering the following second order system
for Theorem 2

{ IR S (39)
Yy =u-+xy° +xy.

Solution. we can easy know that the function F' and G are
sufficiently smooth and satisfied condition (12) in the system
(39).

Without loss of generality. Let y = h(x) = 2°. h € C?(r >
2), h(0) =0, L |,_o=0.

After substitution into the subsystem respect to the system
(39) we see that

i = —32® + 22(2*)* + (2°).
Add Vz € D — {0}, there must be
=323 + 2%(2®)? + (2%)® < 0,Y0 < z < 6.

and
—32% + 2%(2%)? + (2%)3 > 0,0 > 2 > —4.

where § is a very small positive.

So we easy to check that the system (39) satisfies the
conditions of Theorem 2.

Then, there is a state feedback control law

u=3z%(=323 — 2%y? + y3) + 22 — 2. (40)
such that the system (49) is partial asymptotically stabilization
in origin.

Simulation. Without loss of generality. Let the initial value

of simulation
z(0) = 0.8,
y(0) =0.2.

and the input control signal

. 0, for t <0,
“Z1 04, fort>0.

The sample time is 0.1s, and the simulation time are 20s
seconds.

The simulation structure diagram of the system (39) is show
in Fig. 4.

h
=
T

Input centrol signal

¥
c
T

IntegratorZ

Fig. 4: Simulation structure diagrams of system (39), system
(41) and system (43).

The dynamic response of the system (39) without the state
feedback control law (40) is show in Fig. 5.

| S | [ | S S | I

Fig. 5: Dynamic response of the system (39) without the state
feedback control law (40).

The dynamic response of the system (39) with the state
feedback control law (40) is show in Fig. 6.

From the Figure 5, we can know that the opened-loop
system respect to the system (39) is unstable, and from the
Fig. 6, we can know that the controlled closed-loop system of
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Fig. 6: Dynamic response of the system (39) with the state
feedback control law (40).

the system (39) is asymptotically stable. That is, the approach
presented in this paper to this sort of systems is effective.

Example 3: Considering the following second order system
for Theorem 3

L 9.2 o2
{xf 3z4y + xy”, @1

y=1u+2zy.

Solution. we can easy know that the function F' and G are
sufficiently smooth and satisfied condition (17) in the system
(41).

Without loss of generality. Let y = h(z) = 23.h € C?(r >
2). h(0) = 0, TG |o—o=0.

Addm=2+1=3,p=3,a; =—-3<0.

So it’s easy to check that the system (41) satisfies the
conditions of Theorem 3.

Then, there is a state feedback control law

u = 3z%(=32%y + zy?) + 2° — v. 42)

such that the system (41) is partial asymptotically stabilization
in origin.
Simulation. Without loss of generality. Let the initial value

of simulation
{ 2(0) = —0.4,
y(0) = 0.

and the input control signal

u = 0,
=\ o1,

The sample time is 0.01s, and the simulation time are 100s
seconds.

The simulation structure diagram of the system (41) is show
in Fig. 4.

The dynamic response of the system (41) without the state
feedback control law (42) is show in Fig. 7.

The dynamic response of the system (41) with the state
feedback control law (42) is show in Fig. 8.

From the Figure 7, we can know that the opened-loop
system respect to the system (41) is unstable, and from the
Fig. 8, we can know that the controlled closed-loop system of

for t <0,
for ¢t > 0.

Fig. 7: Dynamic response of the system (41) without the state
feedback control law (42).

Fig. 8: Dynamic response of the system (41) with the state
feedback control law (42).

the system (41) is asymptotically stable. That is, the approach
presented in this paper to this sort of systems is effective.

Example 4: Considering the following second order system
for Theorem 4

.3 2,2
{m— oy + x7Y”, 43)

g =u+ 22> + xy?.

Solution. we can easy know that the function F' and G are
sufficiently smooth and satisfied condition (17) in the system
(43).

Without loss of generality. Let y = h(z) = 2%, h € C?(r >
2), h(0) = 0, el = o.

Addm=3+1=4,p=2,a; =—-1<0.

So it’s easy to check that the system (43) satisfies the
conditions of Theorem 4.

Then, there is a state feedback control law

u = 2x(—2y + 22y?) + 22 —y. 44)
such that the system (43) is partial asymptotically stabilization
in origin.

Simulation. Without loss of generality. Let the initial value

of simulation
z(0) = -1,
y(0) = —0.1.
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and the input control signal Solution. we can easy know that the function F' and G are
0, for ¢ < 0, sufficiently smooth and satisfied condition (24) in this system

“TL01,  fort>0 @7.
o = Let y = h(z) = 22 + 2%, and h € C?(r > 2), h(0) = 0,

The sample time is 0.1s, and the simulation time are 100s %f) |o=0= 0. After substitution y = x? + 22 into the system

seconds. (45) we see that
The simulation structure diagram of the system (43) is show
in Fig. 4. 1= 2wy + z120(2? + 23) + 2123 (23 + 22)2,
The dynamic response of the system (43) without the state iy = —223 — 22xg — 23 + 22(a? + 23)
feedback control law (44) is show in Fig. 9. +a129(2? + 22) + (22 + 22)° (46)

U= u-+4xizs + 20279 + 223
—22230y — 27173y + 27990,

Thus, the approximate system of the system (45) is

i’l = 21‘2,
iy = —22% — 223y — 23, 7
= u+dadey + 2230 + 223

—22239y — 23123y + 2700,

From the approximate system (47), we can known a =
2,(10 = *2, SO )\1G+AQCLO =0 at Al = )\2 = 1, and as :O,
a1 =-1<0,a3=-1<0,ar=a3=—-1<0.

It’s easy to check that the system (45) satisfies the conditions
of Theorem 5.

Then, there is a state feedback control law

Fig. 9: Dynamic response of the system (43) without the state

feedback control law (44). u = [2,751 23;1]
2x9 + 2122y + mlxgyz 48
The dynamic response of the system (43) with the state | 2ty +zwoy + ¢y — 228 — 22ny — 23 “8)
feedback control law (44) is show in Fig. 10. —y + 2% + 23
such that the system (54) is partial asymptotically stabilization
a in origin.
Simulation. Without loss of generality. Let the initial value
)zk | of simulation
of ] 21(0) = 0.5,
x2(0) = 0.5,
B PR R 1 y(0) = —0.5.
il ,»"‘ 1 and the input control signal
Ty 1 - { 0, for t < 0,
oft 1 1 0.3, for ¢t > 0.
af g The sample time is 0.1s, and the simulation time is 100s
. ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ = seconds.
S The simulation structure diagram of the system (45) is show
in Fig. 11.

Fig. 10: Dynamic response of the system (43) with the state
feedback control law (44).

ax{2p+1{=(1).x(2).y)

From the Figure 9, we can know that the opened-loop
system respect to the system (43) is unstable, and from the
Fig. 10, we can know that the controlled closed-loop system of
the system (43) is asymptotically stable. That is, the approach
presented in this paper to this sort of systems is effective.

Example 5: Considering the following third order system
for Theorem 5

Ty = 29+ 320y + 217392, Fig. 11: Simulation structure diagram of the system (45).

Ty = 72%"% 71:%3:2 7$§’+x%y+x1x2y+y5, 45

y= u+dairy + 223x9 + 203 @) The dynamic response of the system (45) without the state
*21‘%1‘21} — 2:61.10%3/ + 2z21°. feedback control law (46) is show in Fig. 12.

Input centrol signal

L C LT —1
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Fig. 12: Dynamic response of the system (45) without the state
feedback control law (46).

The dynamic response of the system (45) with the state
feedback control law (46) is show in Fig. 13.

Fig. 13: Dynamic response of the system (39) with the state
feedback control law (40).

From the Figure 12, we can know that the opened-loop
system respect to the system (45) is unstable, and from the
Fig. 13, we can know that the controlled closed-loop system of
the system (45) is asymptotically stable. That is, the approach
presented in this paper to this sort of systems is effective.

Example 6: Considering the following third order system
for Theorem 6

i = —102% + 23zs + 3123 + 23y + yt,
iy = —1023 + 27123 + 22322 + 2313, (49)
U =u+z129 + 2323,

Solution. we can easy know that the function F' and G are
sufficiently smooth and satisfied condition (30) in this system
(49).

Without loss of generality. Let y = h(z) = 22, and h €
C2(r>2), h(0) =0, 22| _=o.

After substitution y = 27 into the the system (49) we see

that

i1 = —1023 + 2229 + 3173 + 22(22) + (22)4,
dg = —1023 + 22123 + 22322 + 23 (22)3, (50)
¥ =u+ z179 + 2323

Thus, the approximate system of system (57) is

i = —1023 + 224,
iy = —1025 + 27175 + 22323, (51)
y=u+z172 + x%x%

From the approximate system (47), we can know ¢y = —10,
C1 :1,02:0,03:0andd0: *10,d1 :2,d2:0,d3:3,
dy=0,ds =0.

It’s easy to check that the system (49) satisfies the conditions
of Theorem 6 at m = 5.

Then, there is a state feedback control law

u= [2x1 O]
—1023 + 23xy + 2123 + 2y + y*
—1023 + 22124 + 22323 + x3y3
—y+ai

(52)

such that the system (49) is partial asymptotically stabilization
in origin.

Simulation. Without loss of generality. Let the initial value
of simulation

J‘l(O) = 70.4,
x2(0) = 0.5,
y(0) = —0.5.
and the input control signal
w— 0, for t <0,
~ 1 0.05, for t > 0.

The sample time is 0.1s, and the simulation time are 100s
seconds.
The simulation structure diagram of the system (49) is show

in Fig. 14.

1) x(2hy)

=
Ed

201120y

Integratara

dx2/dt

Input centrol sifn Integratort

dyidt  |niegratorz

Fig. 14: Simulation structure diagram of the system (49).

The dynamic response of the system (49) without the state
feedback control law (50) is show in Fig. 15.

The dynamic response of the system (49) with the state
feedback control law (50) is show in Fig. 16.

From the Figure 15, we can know that the opened-loop
system respect to the system (49) is unstable, and from the
Fig. 16, we can know that the controlled closed-loop system of
the system (49) is asymptotically stable. That is, the approach
presented in this paper to this sort of systems is effective.

VI. CONCLUSION

This paper considered the problem of the stabilization of a
class of nonlinear control systems via center manifold theory.
The basic technique has been developed in [15] for affine
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Fig. 15: Dynamic response of the system (49) without the state
feedback control law (50)

T T

stabilization for cascade systems required that its subsystems
must be stable in previous many references [37]-[40]. How-
ever, the approach of this paper does not requires any such
constraints from proof process of this paper, just requirements
the subsystem of the cascade system is stable under after
substitution y = h(z) into its.

We can see that the approach in this paper is significantly
expanded compared to pre-existing technique for some non-
linear systems, and the stabilization problem of systems is
become more generalized.

At the end of this paper, some examples and simulation
results are presented to demonstrate the design procedure and
given show that the approach of this paper to this class of
nonlinear system is effective and convenient.

VII. OPEN QUESTION

In this paper, there are still many problems remain to be
dissolved.

Question 1. There are two kinds of circumstances which
still has not been discussed for Theorems 3-4.

(i) a; >0,

(ii) aj < 0, m and j are evens.

So we must present the generally method of stabilization in
the future.

Question 2. The dynamic response is slow in Fig. 10 for
the Example 4, we must reduce system damping such that its
rapid response. So we must present the generally method of
stabilization in the future.

Question 3. The dynamic response is concussive in Fig.

Fig. 16: Dynamic response of the system (49) with the state 13 for the Example 5 before stable, we must increase system

feedback control law (50)

nonlinear systems with non-minimum phase zero dynamics
and in [17] for systems in the affine nonlinear control systems.
The especial place of this paper is to reverse designing the
state feedback control law from the method of judging system
stability with the center manifold theory.

Meanwhile, it was also proved that the design technique
of the stabilizer via the center manifold approach, developed
in [15], [17], can also be used for a general and large
class of nonlinear control systems. First of all, the center
manifold theory is applied to discuss the stabilization sufficient
condition and design the stabilizing control laws for a class of
nonlinear. Secondly, the problem of partial stabilization for a
class of plane nonlinear system is discuss using the lyapunov
second method and the center manifold theory. Thirdly, we
investigate specially the problem of the stabilization for a
class of homogenous plane nonlinear systems, a class of
nonlinear with dual-zero eigenvalues and a class of nonlinear
with zero-center using the method of lyapunov function with
homogenous derivative, specifically, that is, we proposed a
new design technique to design the whole approximate center
manifold of the approximate system to meet the accuracy
requirement of the dynamics on the center manifold.

Furthermore, the approach of this paper can also be ex-
tended to the stabilization of cascade systems. The problem of

damping such that its reposeful response, meanwhile, we have
to ensure that its rapid response. So we must present the
generally method of stabilization for this sort of system in
the future.

Question 4. From main results of this paper, we can know
that we should choose y = h(z). In order to as possible that
system stabilization, we must choose proper y = h(z). If we
can not find proper y = h(z), then we may be mistaken that
the system can’t stabilization. However, the generally method
of selection y = h(x) is not presented in this paper. So we
must present the generally method of selection y = h(z) in
the future.

So it still needs to be further research based on analysis of
this paper.
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