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Partial Derivatives and Optimization Problem on
Time Scales

Francisco Miranda

Abstract—The optimization problem using time scales is studied.
Time scale is a model of time. The language of time scales seems to
be an ideal tool to unify the continuous-time and the discrete-time
theories. In this work we present necessary conditions for a solution
of an optimization problem on time scales. To obtain that result we
use properties and results of the partial diamond-alpha derivatives for
continuous-multivariable functions. These results are also presented
here.

Keywords—Lagrange multipliers, mathematical programming, op-
timization problem, time scales.

I. INTRODUCTION

THE calculus on time scales has been initiated by Aulbach
and Hilger in order to create a theory that can unify and

extend discrete and continuous analysis [1], [2]. One of the
main concepts of this theory that is very important to our work
is the diamond-alpha derivative, which is a generalization of
ordinary (time) derivative. If the time scale is the real set, we
get ordinary derivative. Many results of calculus on time scales
have been developed, particularly in partial differentiation
(see, e.g., [3]–[6]), where were studied properties of partial
delta and nabla derivatives and their applications. However,
there is no much information about partial diamond-alpha
derivatives and the few works that exist are limited to two
variables (see [7]). Our work gives us properties and results of
partial diamond-alpha derivatives for continuous-multivariable
functions with applications in the optimization problem on
time scales. The time scale systems are a powerful tool
in engineering and economics applications where both of
the discrete-time and continuous-time systems are used. The
unification of the discrete and continuous theories provides
a new perspective and easiness for modeling and solving
optimization problems on a general domain. There are very
studies related with the problems of the calculus of variations
on time scales, that is, functional optimization problems (see,
e.g, [8]–[14]). However, to the best of our knowledge, the
function optimization problems for continuous-multivariable
functions have not been seriously treated. In [15] the authors
presented results for the linear and the quadratic programming
using convex optimization. In the present work we obtain
necessary conditions for a solution of an optimization problem
on time scales for a general continuous-multivariable function.
This is a generalization of the classical Lagrange multipliers
method for continuous-time case. In addition it is also an
important result to be applied in optimal control problems on
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times scales, because with that result we can obtain necessary
conditions to optimal solution for a control system.

This paper is organized as follows. In Section II we
introduce the properties and results about partial diamond-
alpha derivatives for n-variable functions. The generalized
optimization problem and other important results on time
scales are given in Section III. In the same section to illustrate
the possibility of the developed techniques we consider an
example. In Section IV we present the conclusions and the
future work that we propose to do.

Throughout this paper we denote by N, Z, R, and R
+
0 the

set of positive integers, the set of integers, the set of real
numbers, and the set of nonnegative real numbers, respectively.
By R

n we denote the usual n-dimensional space of vectors
x = (x1, x2, . . . , xn), where xi ∈ R, i = 1, n. The inner
product of two vectors x and y in R

n is expressed by 〈x, y〉 =
x1y1 + x2y2 + . . . + xnyn. We denote by the symbol ∅ the
empty set. The boundary of a set A ⊂ R

n is defined as ∂A =
{x ∈ R

n : U(x) ∩ A �= ∅ ∧ U(x) ∩ Ac �= ∅}, where U(x) is
any neighborhood of the point x and Ac is the complementary
set of A.

II. PARTIAL DERIVATIVES ON TIME SCALES

This section is devoted to the extension of the differen-
tiability of continuous-multivariable functions to time scales
using the diamond-alpha notion. Let n ∈ N be fixed. Denote
by Ti, i = 1, n, a time scale, that is, a nonempty closed subset
of the real numbers R. Let us set

Λn = T1 × T2 × . . .× Tn

= {t = (t1, t2, . . . , tn) : ti ∈ Ti, i = 1, n}.
We call Λn an n-dimensional time scale and it is a subset of
the usual n-dimensional space R

n. The set Λn is a complete
metric space with the metric d defined by

d(t, s) =

(
n∑

i=1

|ti − si|2
)1/2

for t, s ∈ Λn.

Therefore, for a given number δ > 0, the δ-neighborhood
Uδ(t

0) of a given point t0 = (t01, t
0
2, . . . , t

0
n) ∈ Λn is the set

of all points t ∈ Λn such that d(t0, t) < δ. For functions
f : Λn → R we have the concepts of the limit, continuity,
and properties of continuous functions on general complete
metric spaces. Following standard one-dimensional concepts,
we can define jump operators for each time scale Ti, i = 1, n.
For t0i ∈ Ti, the i-th forward jump operator σi : Ti → Ti is
defined by

σi(t
0
i ) =

{
inf{ti ∈ Ti : ti > t0i } if t0i �= maxTi,
maxTi if t0i = maxTi.
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The i-th backward jump operator ρi : Ti → Ti is defined by

ρi(t
0
i ) =

{
sup{ti ∈ Ti : ti < t0i } if t0i �= minTi,
minTi if t0i = minTi.

A point t0 ∈ Λn is called i-right-dense, i-right-scattered, i-
left-dense and i-left-scattered if σi

(
t0i
)
= t0i , σi

(
t0i
)
> t0i ,

ρi
(
t0i
)
= t0i and ρi

(
t0i
)
< t0i , respectively. The corresponding

i-th forward graininess and i-th backward graininess functions
μi, ηi : Ti → R, respectively, are defined by μi(t

0
i ) = σi(t

0
i )−

t0i and ηi(t
0
i ) = t0i − ρi(t

0
i ).

In order to define partial derivatives properly, we introduce
the following. If Ti has a i-left-scattered maximum, then we
define (Ti)

κ = Ti \ maxTi, otherwise (Ti)
κ = Ti. If Ti

has a i-right-scattered minimum, then we define (Ti)κ = Ti \
minTi, otherwise (Ti)κ = Ti. We also introduce

(Λi
n)

κ = T1 × T2 × . . .× Ti−1 × (Ti)
κ × Ti+1 × . . .× Tn,

(Λi
n)κ = T1 × T2 × . . .× Ti−1 × (Ti)κ × Ti+1 × . . .× Tn,

(Λi
n)

κ
κ = (Λi

n)
κ ∩ (Λi

n)κ

= T1 × T2 × . . .× Ti−1 × (Ti)
κ
κ × Ti+1 × . . .× Tn,

(Λn)
κ = (T1)

κ × (T2)
κ × . . .× (Tn)

κ,

(Λn)κ = (T1)κ × (T2)κ × . . .× (Tn)κ,

(Λn)
κ
κ = (Λn)

κ ∩ (Λn)κ = (T1)
κ
κ × (T2)

κ
κ × . . .× (Tn)

κ
κ.

For a function f defined on Λn, to provide a shorthand notation
we set

fσi(t) = f(t1, t2, . . . , ti−1, σi(ti), ti+1, . . . , tn),

fρi(t) = f(t1, t2, . . . , ti−1, ρi(ti), ti+1, . . . , tn),

and
fs
i (t) = f(t1, t2, . . . , ti−1, s, ti+1, . . . , tn).

Definition 1 (cf. [3]): Let f : Λn → R be a function and let
t0 ∈ (Λi

n)
κ. Then define fΔi(t0) to be the number (provided

it exists) with the property that given any ε > 0, there exists
a neighborhood Uδ(t

0
i ) = (t0i − δ, t0i + δ)∩Ti for δ > 0 such

that

|[fσi(t0)− f ti
i (t0)]− fΔi(t0)[σi(t

0
i )− ti]| ≤ ε|σi(t

0
i )− ti|

for all ti ∈ Uδ(t
0
i ). fΔi(t0) is called the partial delta

derivative of f at t0 with respect to the variable ti (partial
Δi-derivative). Similarly, the partial nabla derivative of f
at t0 ∈ (Λi

n)κ with respect to the variable ti (partial ∇i-
derivative), denoted by f∇i(t0), is the number (provided it
exists) with the property that given any ε > 0, there exists a
neighborhood Uδ(t

0
i ) = (t0i − δ, t0i + δ) ∩ Ti for δ > 0 such

that

|[fρi(t0)− f ti
i (t0)]− f∇i(t0)[ρi(t

0
i )− ti]| ≤ ε|ρi(t0i )− ti|

for all ti ∈ Uδ(t
0
i ).

From the works [4]–[6] we have that fΔi(t0) and f∇i(t0)
are equal to

lim
ti→t0i

ti �=σi(t
0
i )

fσi(t0)− f ti
i (t0)

μi(t0i , ti)
and lim

ti→t0i
ti �=ρi(t

0
i )

fρi(t0)− f ti
i (t0)

ηi(t0i , ti)
,

(1)

respectively, where μi(t
0
i , ti) = σi(t

0
i ) − ti and ηi(t

0
i , ti) =

ρi(t
0
i ) − ti. For n = 1 we obtain the one-dimensional time

scales delta and nabla derivatives

lim
t→t0

t �=σ(t0)

f(σ(t0))− f(t)

σ(t0)− t
and lim

t→t0

t �=ρ(t0)

f(ρ(t0))− f(t)

ρ(t0)− t
,

respectively, where σ and ρ are forward jump operator and
backward jump operator, respectively. See [16], [17].

Similarly to the one-dimensional time scale Λ1, [16], [17],
we obtain the partial delta and nabla derivatives of sums,
products, and quotients of functions that have partial delta and
nabla derivatives.

Theorem 1: If f, g : Λn → R have partial delta and nabla
derivatives at t0 ∈ (Λi

n)
κ
κ with respect to the variable ti, then

(i) f + g has partial delta and nabla derivatives at t0

with respect to the variable ti, and

(f + g)Δi(t0) = fΔi(t0) + gΔi(t0),

(f + g)∇i(t0) = f∇i(t0) + g∇i(t0).

(ii) For any constant c, cf has partial delta and nabla
derivatives at t0 with respect to the variable ti, and

(cf)Δi(t0) = cfΔi(t0),

(cf)∇i(t0) = cf∇i(t0).

(iii) fg has partial delta and nabla derivatives at t0 with
respect to the variable ti, and

(fg)Δi(t0) = fΔi(t0)g(t0) + fσi(t0)gΔi(t0)

= gΔi(t0)f(t0) + gσi(t0)fΔi(t0),

(fg)∇i(t0) = f∇i(t0)g(t0) + fρi(t0)g∇i(t0)

= g∇i(t0)f(t0) + gρi(t0)f∇i(t0).

(iv) If g(t0)gσi(t0) �= 0 and g(t0)gρi(t0) �= 0, then f/g
has partial delta and nabla derivatives at t0 with
respect to the variable ti, and

(
f

g

)Δi

(t0) =
fΔi(t0)g(t0)− f(t0)gΔi(t0)

g(t0)gσi(t0)
,

(
f

g

)∇i

(t0) =
f∇i(t0)g(t0)− f(t0)g∇i(t0)

g(t0)gρi(t0)
.

Proof: Using Definition 1 we can prove these properties
similarly to the proofs for the one-dimensional time scales
presented in [16] and [17]. Another method to prove this, is
to use (1). Let us prove the first equality of (iii). The other
results are proved by the same way. If t0 is i-right-dense, then
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we have

(fg)Δi(t0) = lim
ti→t0i

ti �=σi(t
0
i )

(fg)σi(t0)− (fg)tii (t
0)

μi(t0i , ti)

= lim
ti→t0i

ti �=σi(t
0
i )

fσi(t0)gσi(t0)− f ti
i (t0)gtii (t

0)

μi(t0i , ti)

+ lim
ti→t0i

ti �=σi(t
0
i )

(fσi(t0)− f ti
i (t0))gΔi(t0)

= lim
ti→t0i

ti �=σi(t
0
i )

fσi(t0)− f ti
i (t0)

μi(t0i , ti)
g(t0)

+ lim
ti→t0i

ti �=σi(t
0
i )

gσi(t0)− gtii (t
0)

μi(t0i , ti)
fσi(t0)

= fΔi(t0)g(t0) + fσi(t0)gΔi(t0),

because

gΔi(t0) = lim
ti→t0i

ti �=σi(t
0
i )

gσi(t0)− gtii (t
0)

μi(t0i , ti)

= lim
ti→t0i

ti �=σi(t
0
i )

g(t0)− gtii (t
0)

μi(t0i , ti)

and f(t0) = fσi(t0). If t0 is i-right-scattered, then we have

(fg)Δi(t0) = lim
ti→t0i

ti �=σi(t
0
i )

(fg)σi(t0)− (fg)tii (t
0)

μi(t0i , ti)

= lim
ti→t0i

ti �=σi(t
0
i )

fσi(t0)gσi(t0)− f ti
i (t0)gtii (t

0)

μi(t0i , ti)

+ lim
ti→t0i

ti �=σi(t
0
i )

g(t0)− gtii (t
0)

μi(t0i , ti)
(fσi(t0)− f ti

i (t0))

= lim
ti→t0i

ti �=σi(t
0
i )

fσi(t0)− f ti
i (t0)

μi(t0i , ti)
g(t0)

+ lim
ti→t0i

ti �=σi(t
0
i )

gσi(t0)− gtii (t
0)

μi(t0i , ti)
fσi(t0)

= fΔi(t0)g(t0) + fσi(t0)gΔi(t0),

because

lim
ti→t0i

ti �=σi(t
0
i )

g(t0)− gtii (t
0)

μi(t0i , ti)
=

g(t0)− g(t0)

μi(t0i , t
0
i )

= 0.

Definition 2: Let f : Λn → R be a function and let t0 ∈
(Λi

n)
κ
κ. Then define f�αi (t0) to be the number (provided it

exists) with the property that given any ε > 0, there exists a
neighborhood Uδ(t

0
i ) = (t0i − δ, t0i + δ) ∩ Ti for δ > 0 such

that

|αi[f
σi(t0)− f ti

i (t0)]ηi(t
0
i , ti) + (1− αi)[f

ρi(t0)− f ti
i (t0)]

×μi(t
0
i , ti)− f�i(t0)μi(t

0
i , ti)ηi(t

0
i , ti)|

≤ ε|μi(t
0
i , ti)ηi(t

0
i , ti)|

for all ti ∈ Uδ(t
0
i ). f

�αi (t0) is called the partial diamond-αi

derivative of f at t0 with respect to the variable ti (partial
�αi-derivative).

Easily, using the same process that Rogers Jr. and Sheng
used for one-dimension case in [18], we obtain that the partial
diamond-αi derivative is well-defined.

Now, we define the partial �αi -derivative in relation to the
partial Δi-derivative and partial ∇i-derivative.

Theorem 2: Let 0 ≤ αi ≤ 1, i = 1, n. If f has both partial
Δi-derivative and partial ∇i-derivative at t0 ∈ (Λn)

κ
κ, then f

has partial �αi -derivative at t0 and

f�αi (t0) = αif
Δi(t0) + (1− αi)f

∇i(t0).

Proof: The proof mimics the one given in [18] for
the one-dimensional time scales. Assume that fΔi(t0) and
f∇i(t0) exist at t0 ∈ (Λi

n)
κ
κ. Then, for all ε > 0, there exists

a neighborhood Uδ1(t
0
i ) = (t0i − δ1, t

0
i + δ1) ∩ Ti for δ1 > 0

such that

|[fσi(t0)− f ti
i (t0)]− fΔi(t0)μi(t

0
i , ti)| ≤ ε|μi(t

0
i , ti)|

for all ti ∈ Uδ1(t
0
i ) and there exists a neighborhood Uδ2(t

0
i ) =

(t0i − δ2, t
0
i + δ2) ∩ Ti for δ2 > 0 such that

|[fρi(t0)− f ti
i (t0)]− f∇i(t0)ηi(t

0
i , ti)| ≤ ε|ηi(t0i , ti)|

for all ti ∈ Uδ2(t
0
i ). Then, for all ti ∈ Uδ1(t

0
i ), we get

|αi[f
σi(t0)− f ti

i (t0)]ηi(t
0
i , ti)−αif

Δi(t0)μi(t
0
i , ti)ηi(t

0
i , ti)|

≤ αiε|μi(t
0
i , ti)ηi(t

0
i , ti)|

and, for all ti ∈ Uδ2(t
0
i ), we obtain

|(1− αi)[f
ρi(t0)− f ti

i (t0)]μi(t
0
i , ti)

−(1− αi)f
∇i(t0)μi(t

0
i , ti)ηi(t

0
i , ti)|

≤ (1− αi)ε|μi(t
0
i , ti)ηi(t

0
i , ti)|.

Thus, for all ti ∈ Uδ1(t
0
i ) ∩ Uδ2(t

0
i ), we have

|αi[f
σi(t0)− f ti

i (t0)]η(t0i , ti) + (1− αi)[f
ρi(t0)− f ti

i (t0)]

×μ(t0i , ti)− [αif
Δi(t0) + (1− αi)f

∇i(t0)]μ(t0i , ti)η(t
0
i , ti)|

≤ |αi[f
σi(t0)− f ti

i (t0)]ηi(t
0
i , ti)

−αif
Δi(t0)μi(t

0
i , ti)ηi(t

0
i , ti)|

+|(1− αi)[f
ρi(t0)− f ti

i (t0)]μi(t
0
i , ti)

−(1− αi)f
∇i(t0)μi(t

0
i , ti)ηi(t

0
i , ti)|

≤ αiε|μi(t
0
i , ti)ηi(t

0
i , ti)|+ (1− αi)ε|μi(t

0
i , ti)ηi(t

0
i , ti)|

= ε|μi(t
0
i , ti)ηi(t

0
i , ti)|.

Therefore f�αi (t0) exists and

f�αi (t0) = αif
Δi(t0) + (1− αi)f

∇i(t0).

Remark 1: It is clear that f�αi (t0) reduces to fΔi(t0) for
αi = 1 and f∇i(t0) for αi = 0.
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From Definition 2, Theorem 1 and Theorem 2 we obtain
the following properties.

Theorem 3: If f, g : Λn → R have partial diamond-αi

derivative at t0 ∈ (Λi
n)

κ
κ with respect to the variable ti, then

(i) f + g has partial diamond-αi derivative at t0 with
respect to the variable ti, and

(f + g)�αi (t0) = f�αi (t0) + g�αi (t0).

(ii) For any constant c, cf has partial diamond-αi deriva-
tive at t0 with respect to the variable ti, and

(cf)�αi (t0) = cf�αi (t0).

(iii) fg has partial diamond-αi derivative at t0 with
respect to the variable ti, and

(fg)�αi (t0) = f�αi (t0)g(t0) + αif
σi(t0)gΔi(t0)

+(1− αi)f
ρi(t0)g∇i(t0).

(iv) If g(t0)gσi(t0)gρi(t0) �= 0, then f/g has partial
diamond-αi derivative at t0 with respect to the vari-
able ti, and(

f

g

)�αi

(t0) =
f�αi (t0)gσi(t0)gρi(t0)

g(t0)gσi(t0)gρi(t0)

−αif
σi(t0)gρi(t0)gΔi(t0)

g(t0)gσi(t0)gρi(t0)

− (1− αi)f
ρi(t0)gσi(t0)g∇i(t0)

g(t0)gσi(t0)gρi(t0)
.

Definition 3: Suppose that there exist partial �αi -
derivatives at t0 ∈ (Λn)

κ
κ for all i = 1, n. The diamond-α

gradient of a function f : Λn → R at point t0 ∈ (Λn)
κ
κ is the

vector whose coordinates are equal to partial �αi
-derivatives

at t0 for i = 1, n. We denoted it by

�αf(t
0) = (f�α1 (t0), f�α2 (t0), . . . , f�αn (t0)).

The delta and nabla gradients of f at t0, denoted by Δf(t0)
and ∇f(t0), respectively, are defined equivalently.

III. OPTIMIZATION PROBLEM ON TIME SCALES

In this section we present the main result. Similarly to
definition of continuity on time scales to the one-dimensional
case we obtain the following.

Definition 4: A function f : Λn → R is continuous at t0 if
for all ε > 0 there is some δ > 0 such that

∣∣f (t)− f
(
t0
)∣∣ ≤ ε

whenever d(t, t0) < δ, t ∈ Λn. We say that the function f is
continuous on Λn if it is continuous for all t0 ∈ Λn and we
write f ∈ C(Λn,R).

Suppose that max{d(t) : t ∈ Λn} = ∞, where

d(t) =

(
n∑

i=1

|ti|2
)1/2

.

Consider an optimization problem on time scales

f(t) → min,
gj(t) = 0, j = 1,m,

hk(t) ≤ 0, k = 1, l,
(2)

where f : Λn → R, gj : Λn → R, j = 1,m, hk : Λn → R,
k = 1, l, are continuous and have partial �αi -derivatives, i =
1, n, for all t ∈ Λn.

Definition 5: A point t∗ ∈ Λn is a local solution to problem
(2) if there exists ε > 0 such that for all t that verifies the
conditions d2(t, t∗) ≤ ε, gj(t) = 0, j = 1,m, hk(t) ≤ 0,
k = 1, l, we have f(t) ≥ f(t∗).

Lemma 1: Let X ⊂ Λn be a closed set and let f : Λn → R

be a continuous function that verifies

lim
d(t)→∞
t∈Λn

f(t) = +∞.

Then there exists t∗ ∈ X such that f(t∗) ≤ f(t) for all t ∈ X .
Proof: In order to prove that result we need an auxiliary

function which extends f to
∏n

i=1[minTi,maxTi],

f̂ :

n∏
i=1

[minTi,maxTi] → R,

defined as
f̂(t) :=

{
f(t) if t ∈ Λn,
g(t) if t ∈ X l,

for some l ∈ I , with I ⊂ N and tl a point i-right-scattered for
some i = 1, n, where

X l =

n∏
i=1

σi(t
l
i) �=tli

(tli, σi(t
l
i))×

n∏
i=1

σi(t
l
i)=tli

Ti,

g(t) is a continuous function on X l,

lim
t→t̂
t∈Xl

g(t) = f(t̂) < g(t), t̂ ∈ ∂X l ∩ Λn, (3)

and
∏

is the cartesian product. By continuity of f and
by definition of f̂ we deduce that f̂ is continuous on∏n

i=1[minTi,maxTi]. We have also that

lim
d(t)→∞

t∈∏n
i=1[minTi,maxTi]

f̂(t) = lim
d(t)→∞
t∈Λn

f(t) = +∞.

Consider Xi ⊂ Ti such that X =
∏n

i=1 Xi. Since X is closed
then there exist minXi and maxXi, i = 1, n. As a direct
consequence of the Weierstrass theorem for the continuous-
time case, there exists t∗ ∈ X̂ =

∏n
i=1[minXi,maxXi] such

that f̂(t∗) ≤ f̂(t) for all t ∈ X̂ . See, e.g., [19].
Suppose that t∗ /∈ X . Then there is an l∗ ∈ I ⊂ N such that

f̂(t∗) = g(t∗) for t∗ ∈ X l∗ . By (3) we have g(t∗) > f(t̂), t̂ ∈
∂X l∗ ∩ Λn, and f̂(t∗) > f(t̂) = f̂(t̂) that is a contradiction.
Thus t∗ ∈ X and f(t∗) ≤ f̂(t), t ∈ X̂ . This implies that
f(t∗) ≤ f(t) for all t ∈ X .

Definition 6: A function f : Λn → R has a local extremum
at t∗ ∈ (Λn)

κ
κ if there is a neighborhood U(t∗) of the point

t∗ such that either f(t) ≥ f(t∗) or f(t) ≤ f(t∗) for all t ∈
U(t∗). For the case f(t) ≥ f(t∗), the image of t∗ by f is
defined by local minimum. For another case, f(t) ≤ f(t∗),
f(t∗) is defined by local maximum.

Lemma 2: Suppose that a function f : Λn → R assumes
its local extremum at t∗ ∈ (Λn)

κ
κ and f has partial Δi and

∇i-derivatives at t∗. Then, there exist αi ∈ [0, 1], i = 1, n,
such that �αf(t

∗) = 0.
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Proof: We prove this result for a local minimum. The
proof for a local maximum is done to a similar way. Suppose
that f assumes its local minimum at t∗ ∈ (Λn)

κ
κ. Using (1) we

obtain fΔi(t∗) ≥ 0 and f∇i(t∗) ≤ 0, i = 1, n. If fΔi(t∗) = 0
or f∇i(t∗) = 0, then we put αi = 1 or αi = 0, respectively.
If fΔi(t∗) > 0 and f∇i(t∗) < 0 we make

αi =
f∇i(t∗)

f∇i(t∗)− fΔi(t∗)
.

Since f∇i(t∗) − fΔi(t∗) < 0 and fΔi(t∗) − f∇i(t∗) >
−f∇i(t∗) we have that 0 < αi < 1 and we obtain the result.

We can see that result for one-dimensional case in [20].
Let a ∈ R be a number. By a+ we denote the max{0, a}

and we take

sign(a) =
{
a/|a| if a �= 0,
0 if a = 0.

Now, we present the main result that consists to obtain
necessary conditions for a solution of problem (2).

Theorem 4: Let t∗ be a local solution of problem (2). Then
there exist λ ∈ R

+
0 , μj = sign(gj(t))aj , aj ∈ R

+
0 , j = 1,m,

νk ∈ R
+
0 , k = 1, l, and αi ∈ [0, 1], i = 1, n, such that

1.

λ�αf(t
∗) + 〈μ,�αg(t

∗)〉+ 〈ν,�αh(t
∗)〉 = 0, (4)

2.
νkhk(t

∗) = 0, k = 1, l, (5)

3.

λ2 +
m∑
j=1

μ2
j +

l∑
k=1

ν2k �= 0, (6)

where

μ = (μ1, μ2, . . . , μm), ν = (ν1, ν2, . . . , νl),

�αg(t
∗) = (�αg1(t

∗),�αg2(t
∗), . . . ,�αgm(t∗)),

and

�αh(t
∗) = (�αh1(t

∗),�αh2(t
∗), . . . ,�αhl(t

∗)).

Proof: Set γ < f(t∗) and λγ , μγ
j , ν

γ
k ∈ R, j = 1,m,

k = 1, l. Consider the functions

Φ(t, γ) = λγ(f(t)− γ)+ +
m∑
j=1

μγ
j gj(t) +

l∑
k=1

νγkhk(t)+

and

F (t, γ) = Φ(t, γ) +
n∑

i=1

pi(ti),

where pi : Ti → R are continuous functions such that

pi(ti) ≥ (ti − t∗i )
2, ti ∈ Ti \ {t∗i },

pi(t
∗
i ) = 0,

and
0 ≤ p

�αi
i (ti) ≤ qi(αi, t

∗
i )(ti − t∗i )

2

for functions qi of [0, 1]× Ti into R and i = 1, n. If λγ ≥ 0,
μγ
j = sign(gj(t))a

γ
j , aγj ≥ 0, and νγk ≥ 0, then we have

Φ(t, γ) ≥ 0 for all t ∈ Λn and F (t, γ) → +∞ if d(t) → ∞.
From Lemma 1 we get that F (t, γ) has a global minimum at
a point tγ . Since the functions f : Λn → R, gj : Λn → R and
hk : Λn → R have partial �αi -derivatives, i = 1, n, for all
t ∈ Λn, from (i)-(ii) of Theorem 3 we have that Φ(t, γ) has
also partial �αi-derivatives for all t ∈ Λn. Then F (t, γ) has
also partial �αi

-derivatives for all t ∈ Λn and from Lemma
2 there exist αi ∈ [0, 1], i = 1, n, such that �αF (tγ , γ) = 0.
From (i)-(ii) of Theorem 3 we obtain

λγ�αf(t
γ) +

m∑
j=1

μγ
j�αgj(t

γ) +
l∑

k=1

νγk�αhk(t
γ) = 0. (7)

Set νγk = bγkhk(t
γ)+, bγk ≥ 0, k = 1, l, and γ ↑ f(t∗). Without

loss of generality we consider that λγ → λ, μγ
j → μj , that is,

aγj → aj , and νγk → νk. Since

d2(tγ , t∗) ≤
n∑

i=1

pi(t
γ
i )

≤ Φ(tγ , γ) +
n∑

i=1

pi(t
γ
i ) = F (tγ , γ)

≤ F (t∗, γ) = λγ(f(t∗)− γ)

we have tγ → t∗. Therefore, passing to the limit in (7) we
obtain (4) and we have (5) because if hk(t

∗) < 0 then νk = 0.
The condition (6) is very important, because otherwise the
condition (4) is always verified.

Remark 2: If optimization problem (2) has not any restric-
tions, the Theorem 4 becomes into Lemma 2. If Λn = R

n,
then �αf(t

∗) = ∇tf(t
∗), �αgj(t

∗) = ∇tgj(t
∗), j = 1,m,

and �αhk(t
∗) = ∇thk(t

∗), k = 1, l, where ∇t represents the
classical gradient in R

n with respect to the variable t, and
we obtain the classical conditions of the Lagrange multipliers
rule. See, e.g., [19].

Example 1: Consider the optimization problem

t21 + t22 + t23 → min,
t1 + t2 = 1,
t2 ≤ 0,

(8)

on time scale Λ3 = Z× Z× Z. Since

Δ(t21 + t22 + t23) = (2t1 + 1, 2t2 + 1, 2t3 + 1),

∇(t21 + t22 + t23) = (2t1 − 1, 2t2 − 1, 2t3 − 1),

Δ(t1 + t2 − 1) = ∇(t1 + t2 − 1) = (1, 1, 0),

Δt2 = ∇t2 = (0, 1, 0),

by (4) we obtain

λ

⎛
⎝2t1 + 2α1 − 1

2t2 + 2α2 − 1
2t3 + 2α3 − 1

⎞
⎠+ μ

⎛
⎝1

1
0

⎞
⎠+ ν

⎛
⎝0

1
0

⎞
⎠ =

⎛
⎝0

0
0

⎞
⎠ ,

where λ ≥ 0, μ = sign(t1 + t2 − 1)a, a ≥ 0, ν ≥ 0, and
αi ∈ [0, 1], i = 1, 3. Set λ = 0. Thus we obtain μ = ν = 0.
This contradicts the condition (6). Then we can choose λ = 1.
We obtain

t1 =
1− 2α1 − μ

2
,
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t2 =
1− 2α2 − μ− ν

2
,

and
t3 =

1− 2α3

2
.

Since α3 ∈ [0, 1], we get t3 ∈ [−1/2, 1/2]. Then we obtain
t3 = 0 because t3 ∈ Z. If ν = 0 we have

t2 =
1− 2α2 − μ

2

and by the first restriction of problem (8) we obtain μ =
−α1 −α2. First, we make μ = 0. We obtain α1 = −α2. That
implies

t1 =
1 + 2α2

2
and t2 =

1− 2α2

2
.

Since we also have α2 ∈ [0, 1], we obtain t1 ∈ [1/2, 3/2]
and t2 ∈ [−1/2, 1/2]. Then we get the critical point (1, 0, 0).
Now, put μ �= 0. We obtain t1 = 0 and t2 = 1 or t1 = 1 and
t2 = 0. The first case contradicts the last restriction of (8) and
the second case is the same critical point (1, 0, 0). Consider
ν > 0. By condition (5) we get

t2 =
1− 2α2 − μ− ν

2
= 0.

If μ = 0, we obtain ν = 1− 2α2 and

t1 =
1− 2α1

2
.

Thus we have t1 = t2 = t3 = 0 that contradicts the first
restriction of (8). Finally, taking μ �= 0 and using again the
first restriction of (8) we obtain the same critical point (1, 0, 0).
Therefore, the image of the point (1, 0, 0) is the only local
extremum. Since the function f(t1, t2, t3) = t21+ t22+ t23 tends
to infinity when d((t1, t2, t3)) tends to infinity, from Lemma
1 we have that f(1, 0, 0) is the global minimum.

IV. CONCLUSION

In this work we obtained necessary conditions for a so-
lution of an optimization problem on time scales that are
a generalization of the results to the discrete and continu-
ous cases. The obtained result allows to solve optimization
problems on mixed domains. We also obtained important
properties and results about partial diamond-alpha derivatives
of continuous-multivariable functions. We presented the pro-
perties of the partial delta, nabla and diamond-alpha deriva-
tives of an n-dimensional function. We defined continuity to
an n-dimensional function, local extremum, local minimum
and local maximum, and we presented conditions to local
extremum. Based on this work, it is possible to obtain results
about necessary conditions for a solution of an optimal control
problem on time scales. That will be our future work.
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differentiation for multivariable functions on n-dimensional time scales,”
J. Math. Inequal., vol. 3, no. 2, pp. 277–291, 2009.

[6] P. Stehlı́k, “Maximum principles for elliptic dynamic equations,” Math.
Comput. Model., vol. 51, no. 9–10, pp. 1193–1201, 2010.
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