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Abstract—Imitation learning is considered to be an effective way
of teaching humanoid robots and action recognition is the key step
to imitation learning. In this paper an online algorithm to recognize
parametric actions with object context is presented. Objects are key
instruments in understanding an action when there is uncertainty.
Ambiguities arising in similar actions can be resolved with object
context. We classify actions according to the changes they make to
the object space. Actions that produce the same state change in the
object movement space are classified to belong to the same class.
This allow us to define several classes of actions where members of
each class are connected with a semantic interpretation.

Keywords—Parametric actions, Action primitives, Hand gesture
recognition, Imitation learning.

I. INTRODUCTION

Developing human like robots is an exciting area due
to its potential application in areas such as medicine [!],
[2], industry [3], [4] and rehabilitation [5], [6]. One of the
challenging task in building humanoid robots is to endow it
with human-like capabilities. Since it is not feasible to program
robots with all desired capabilities, research is being focused
on building robots with learning capabilities. One approach
is to teach robots new skills through demonstration where
a teacher demonstrates a task and robot tries to imitate the
task. Action recognition can be seen as the first step in robot
task learning through imitation. With the finding of mirror
neurons in brain [7], [8] , there has been a lot of attempts to
enhance robot learning techniques by modeling activities with
primitives [9], [10], [11]. Treating primitives as an alphabet for
actions, one can think of finding a grammar for human actions
[12][13][11]. This will give a unifying framework for the
sensory, motor and natural language descriptions of actions.
The symbolic description to actions using primitives could be
thought of an intermediate level where all three descriptions
meet. It is common to define the primitives manually since
there is no generally accepted definition for what a primitive
should be [14], [9], [15]. There has also been some attempts
to find the primitives automatically so that the task would be
simple [10], [16] .

Works on imitation learning fall into two groups: the first
group aims at producing an exact reproduction of trajectories
and the latter aims at reproducing only a subset of the prede-
fined goals. Exact reproduction of actions are less favorable
if we want the robots to have the ability to adapt to varying
situations. It will not be possible to pre-program robots with all
possible scenarios it might encounter. In those situations goal
level imitation would be favorable which focuses on the effects
of the performed action and try to reproduce those effects.
In robot task learning scenarios, one usually needs to teach
robots about how to handle objects. This work is considering
such a scenario where a robot needs to be taught to recognize
different actions that can be performed on objects in a simple

table top scenario. We consider effects of manipulative actions
on objects to classify actions.

Our aim is to model activities as a combination of primitive
actions. In [16] a sequential learning algorithm was proposed
to find primitives automatically. This approach has a limitation
that the primitives are location dependent. Therefore, if the
performer were to stand in a different position for the same
action, a different set of primitives were found. Since the
actions can take place anywhere in a scene, we need a method
that will take care of the location of action/object. To achieve
this, we use the concept of parametric primitives [17] to
group actions with same semantic interpretation into one single
group and use only one primitive to represent one group.
Parametrized actions are actions that are similar but vary by
some parameter §. Parametrization allow us to specify a class
of actions by some parameter 6. For example, consider pushing
an object forward on a table. One can push the object at
different lengths and thus we get parametrized push forward
object action with parameter 6 where 0 represents the distance
moved by the object. A modified version of the primitive
extraction method in [16] is used to recognize parametrized
actions.

A. Related work

Several authors have represented actions in a hierarchical
manner. In [18] hierarchy of different action complexities such
as movements, activities and actions is defined. Staffer and
Grimson [19] computed a set of action primitives based on
co-occurrences of observations for a surveillance scenario. In
[20] Robertson and Reid present a full surveillance system
that allows high-level behavior recognition based on simple
actions. Their system seems to require human interaction in
the definition of the primitive actions such as walking, running,
standing, dithering and the qualitative positions (nearside-
pavement, road, driveway, etc). These works require the man-
ual modeling of atomic movements/primitives. We extract this
kind of segmentation automatically.

The experimental results from [7] suggests that action
perception and execution of motor primitives are connected
through objects. There are also further studies from exper-
imental psychology which confirms the role of objects in
action understanding [2 1], [22]. In this paper we exploit object
context to parametrize actions.

Even though object detection and classification literature
is quite large (for overview see [23]), there are not many
attempts to combine it with action recognition [24], [25].
In [24] Hidden Markov models are combined with object
context to classify hand actions. Image, object and action-
based evidence was used to label and summarize activity and
also to identify objects. They define a generalized class model

2466



International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:3, No:10, 2009

to describe objects. Actions associated with each class were
represented using trained HMMs. The states of such HMMs
were connected to the regions through which the object moved
for the particular action. A graphical Bayesian model was
used in [25] for modeling human-object interactions. Some
of the conditional probabilities of this model was calculated
using trained HMMs. Starting and end time of action was an
important feature in their model. The parametric HMM intro-
duced in [17] indirectly model the effect of object properties
with human actions. These approaches require a good initial
training of action models for later recognition even though a
known structure is assumed. In this work we eliminate the
training task but still obtain a good model to represent and
classify actions.

II. RECOGNITION SYSTEM
A. Modeling object action interactions

We consider a scenario where a robot need to be taught to
recognize different actions that can be performed on a simple
table top scenario. Objects are moved around the table in
different directions. In this set up , we assume that at any point
of time, only one object will be manipulated. To make the
problem scenario more clear we give a quick summary of some
of the relevant works. In [26] manipulation actions performed
on a table top scenario was analyzed using hand generated
primitives. They considered five actions : a) pick up an object
from a table, b) rotate an object on a table, c) push an object
forward, d) push an object to the side, and e) move an object
to the side by picking it up. The experiments were performed
by recording 3-D data using sensors attached to the body
of the performer. Each action was performed in 12 different
conditions: Objects placed on two different heights and two
different locations on the table, and the demonstrator stand in
three different locations (0, 30, 60 degrees). All the actions are
demonstrated by 10 different people. Support vector machines
was used to recognize manually segmented primitives and the
outcome of the SVMs were fed to HMMs to model actions.
The most important findings of their experiments could be
stated as:a) sequences of simple semantic primitives can be
used in describing actions, and b) actions learned as sequences
of primitives from other demonstrators can be combined with
knowledge of personal primitives to recognize new actions.

Following the above work, a method to find the primitives
automatically is presented in [16]. In this work, the same
data set described above was used to segment the primitives
automatically in a sequential manner. Though the primitives
were found automatically, the number of primitives needed
to model the whole data was high since the primitives were
location dependent. For each repetition, where the object or the
performer was in a different position, the set of primitives were
different. Even though object was present in these actions,
their context was not included in the analysis. By including
object context, it is possible to attach semantic interpretation
to the observed primitives. For example consider the reaching
of object primitive. If we are considering only the physical
movement space, each time the object is moved to a different
location, the reaching motion will produce different trajectory.

As aresult, in [16] different primitives were required to model
each of these motions. But if we consider what is happening in
the object space, we can summarize the whole set of reaching
motion as reaching the object. In this sense we can group
all reaching motions into one single group and then look for
a representation for this group. Our argument is that actions
should be grouped according to the final state of the object
when the action is completed. Thus all actions that makes the
same effect on the object will belong to the same action class.
When some manipulation action is performed, there is a
clear segmentation of the action based on object movement:

1) Then hand is moved and reaches the object.
2) The object is moved/manipulated.
3) The hand is removed.

It is in fact what is happening in the middle that dis-
tinguishes between different actions. The classes of actions
that are under consideration are such that how the action is
being done is not important but what is being done is the
interesting part. Hence when we want to perform classification
we segment the parts where object is being moved and note
its initial state and final state. When the object has stopped
moving we assume that the manipulation part is completed.
Depending on the final state of the object, actions will be
assigned to different classes.

Our aim is to design an online algorithm where we do
not have information about the number of action classes. The
number different action classes will be inferred at the end.

Let [H} Oj] represent the feature vector for i th action
sequence we are analyzing where H and O represent features
for the dominating hand and object respectively. The subscript
t is used for indexing time. Each of H; and O; are of the
form [P; V;] where P, and V; represent the position vector
and velocity vector respectively. We choose ¢; and ¢y such
that |V,{| > thresh and |V,§| < thresh. The value of thresh
is chosen such that spurious movements due to measurement
errors will be discarded. We can segment the sequence of
observations as shown below:

Hy,Ho, -+, Hy, - Hyyy Hyyp1-- Hr
——

A B C

01,02,--,04,++- Oy, Oty y1 -+ - Or
————

D E P

The observations in segment E denote the part
where the object is moving. Now by the transformation
O; — Oy, forty < t < t; we can imagine that the object
starts to move from the origin in each of the sequences. The
transformed trajectory is then subjected to a modified version
of the initial state building approach in [16] to cover the
trajectory traced by the object by a sequence of Gaussians.
To cover the trajectory with a number of Gaussians, we place
the Gaussians in such a way that each of them cover a certain
part of the trajectory. The size of the Gaussians are adjusted
such that in any repetition of the same motion, each motion
will have some points from each of these Gaussians. If we
form a Gaussian by accumulating points over time, we might
get very small Gaussian where the spacial variation is small.
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Fig. 1: The experimental setup showing the marker positions.

Therefore we look at the spatial variation to determine the
placement of the Gaussians. We look at the arc length of the
trajectory to determine if we have enough spacial variation
to form a Gaussian. This way we avoid building a Gaussian
that is too small. Our approach is outlined in Algorithm 1.

Algorithm 1: Algorithm for covering the data with Gaus-
sians
Input: Observation sequence P=x1,- - -z
Output: Means i and ¥ for a set of Gaussians covering
the the trajectory
Compute arcLen=arc length of the trajectory
Set threshold=60
Divide P into segments such that each part has an arc
length |arcLen/0|
foreach segment i = do
Calculate p(7)=mean(segment 1)
Calculate Y(4)=covariance(segment i)
end

Algorithm 1 is applied to each observation sequences in a
sequential manner. The output of Algorithm 1 will be used to
form an HMM as in [16]. A brief description of the procedure
is outlined below.

Each of the Gaussians that are used to cover a sequence are

then used to form a left-right HMM. We follow the notation
in [27] to describe an HMM. Let A\; = (A, Bl 7!) be the
initial left-right HMM for the first sequence. Set Ay; = A;.
Ay will be updated sequentially by adding more states into
it or by modifying existing states. For each of the subsequent
Ak, k> 1, the states of A\ and Ap; are compared. If any two
states are very close, they are merged together. States that are
different from those in A, will be added to A\j;. We use the
Kullback-Leibler divergence to measure the distance between
the states. When we compare two Gaussians, the Kullback-
Leibler divergence has a closed form solution [28] as shown
in Eqn.1.

Derl@ 1 P) = 5 (1o ] + (s )
2 o D

% ((m — 110) S (11 = po) — n)

Here n is the dimension of the space spanned by the random

variable x, and »;, u; represent the mean and covariance of

states i=0,1.

When two states s, s; are merged, all transitions to s; are
re-directed to sg. All transitions from s; will be adjusted to
be from s;. The output probability of the combined state will
become a mixture of the output probabilities of the individual
states.

When all the observation sequences have been processed,
we end up with a single HMM \j;. Sequences that belong to
different class of actions will go through different sequence
of states on this HMM. To find the class of the observation
sequences we do the following: Each sequence is used as an
observation from our HMM and the hidden states it passes
through is found using the Viterbi algorithm [27]. These state
sequences are then expressed as state changes by removing
multiple occurrences as shown below.

51,81, " 81,82,82," 852, """ SkysSky """ Sk

81,82, Sk

From now on by state sequences we mean the processed
state sequences after removing multiple occurrences. These
state-change sequences are such that sequences that with
common states belong to the same class. Treating the state
sequences as strings, we can pose the problem of finding the
common state subsequences across various sequences as the
Longest Common Substring(LCS) problem [16]. This can be
solved using a dynamic program [29]. The LCS problem can
be solved in O(mn) time where m, n are the lengths of strings
A and B.

Once the primitives are found, we can form a primitive
graph with primitives as nodes. Two nodes are connected if
they appear together in some sequence. Each sequence will be
a path in this tree and any two paths sharing primitives will
belong to the same class. For each sequence, the parameter for
the sequence will be the arc length associated with the final
state.
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Same action
Different scale

Fig. 2: Data covered with Gaussians.

III. EXPERIMENTS

We have collected data of moving objects around on a
table using a Vicon motion capture system!. A small box
type object with 3 markers on it was moved around on a
table with one hand. The hand movements were recorded
using markers placed on the hand. The experimental setup
with marker positions is shown in Fig. II-A. Among the 14
markers placed on the person, only the 3 markers placed
on the hand was important in analyzing the actions under
consideration.The recorded data contain the 3-d trajectories
of hand and the object. The center of mass of the 3 markers
on the hand was used as the position vector for the hand. The
object was placed at different locations on the table. The object
was subjected to 4 movements: push forward, push downward,
push right and push left. The distance moved varied each time
of the repetition. Our aim is to classify all movements in a
particular direction into one class regardless of the distance
the object was moved.

The recorded data was then segmented as described in
Sec.II-A to find the part where the object was moved. The
result of applying Algorithm.1 is shown in Fig. III. To cope
with noise and variation in different sequences of same type, a
few more sequences were generated by adding certain amount
of noise to the input sequence before the algorithm was
applied. The final grammar-like structure of the primitives
found are plotted in Fig.III. In this graph, all actions are shown
to start with primitive 1. But the number of observations that
belong to this state are in fact very few. Few initial points
are assigned to this state. Once we have enough movement
to indicate the general direction of motion, the rest of the
observations are assigned to appropriate states. Using the

Uhttp://www.vicon.com/

Approach

Fig. 3: Extracted primitive graph. Each path in this graph rep-
resent movements in different directions and is parametrized
by the distance the object was moved.

constructed model, all the actions were classified to belong
to 4 classes. Each class denote movement in a This way the
object movements were classified regardless of the distance it
was moved.

In [16], two types of primitives were defined: those that are
unique to certain actions and those that are common across
different actions. Using the same primitive extraction method,
we are able to represent actions of same class as a combination
of some primitives. The common primitive will represent the
action in the smallest scale.

IV. CONCLUSION

In this paper we have presented a sequential learning
method for modeling and recognizing parametrized actions.
Parametrized actions define a class of actions that are con-
nected semantically through a parameter. Another advantage
with our method is that all calculations are performed in the
input space itself. Object context help us to group actions with
a semantic interpretation. Though these initial results are not
impressive they are suggestive. We plan to recognize more
complex actions in our future works.
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