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Abstract—This paper presents parametric probability density 

models for call holding times (CHTs) into emergency call center 
based on the actual data collected for over a week in the public 
Emergency Information Network (EIN) in Mongolia. When the set of 
chosen candidates of Gamma distribution family is fitted to the call 
holding time data, it is observed that the whole area in the CHT 
empirical histogram is underestimated due to spikes of higher 
probability and long tails of lower probability in the histogram. 
Therefore, we provide the Gaussian parametric model of a mixture of 
lognormal distributions with explicit analytical expressions for the 
modeling of CHTs of PSNs. Finally, we show that the CHTs for 
PSNs are fitted reasonably by a mixture of lognormal distributions 
via the simulation of expectation maximization algorithm. This result 
is significant as it expresses a useful mathematical tool in an explicit 
manner of a mixture of lognormal distributions. 
 

Keywords—A mixture of lognormal distributions, modeling call 
holding times, public safety network.  

I. INTRODUCTION 
MERGENCY communication networks that serve various 
safety personnel, including medical responders, police, 

hazard, and fire fighters, play a critical role in responding to 
Emergency calls and managing voice traffic. 

Studying call holding time provides the ability to estimate 
the probability of an ongoing call to hang up the phone during 
the next t  seconds [1]. Therefore, the call holding time 
distribution plays a prominent role that is used to analyze the 
traffic and accurate design of the system resources, simulation, 
performance, and resource allocation strategy. 

The call duration over fixed, cellular, and trunked radio 
networks is traditionally assumed to be negative exponentially 
distributed. However, this distribution approximation is not 
valid for communication networks because many empirical 
approaches have proved that lognormal distribution and two 
and three mixed lognormal distributions fit empirical data 
much better [2]- [9]. For instance, the exponential distribution 
in cellular networks is quite inaccurate in capturing the 
empirical data compared to the mixture of lognormal 
distributions.  

It is observed that the probability of very short occurrences 
is overestimated, while the area with the highest probability in 
the empirical histogram is underestimated [3], [10]. 
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Whereas there exists a literature such as call holding time 
distribution modeling in fixed PSTN network [4], in PCS 
network [6], in cellular networks [7], in private mobile radio 
PAMR [8], in public safety network [11], and in various 
networks [2], in this paper, we present the study of more 
flexible distribution of CHTs with its mathematical tools in 
PSNs, which has not has been presented before. 

It is proved that the parametric mixture model has been 
implemented to show that average CHTs of PSNs may be 
approximated accurately by a mixture of lognormal 
distributions compared to the fitting of the statistical 
probability distributions of Lognormal, shifted Lognormal, 
and Weibull distributions, which provides the example of 
visual view of non superimposed distribution graphs (Fig. 2).  

This article is structured as follows: Section II presents the 
IP based EIN as a PSN, its system structure and components. 
Section III presents a measurement data exploration and data 
statistics. Section IV describes the statistical methods of the 
deriving CHT distributions and fitting with statistical 
candidate distributions. Section V presents the proposed 
modeling of a mixture of lognormal distributions. Section VI 
presents the EM algorithm performance.  In section VII, we 
demonstrate some results of the proposed method for PSN. 
Finally, we conclude the research. 

II.   IP BASED EMERGENCY INFORMATION NETWORK 
The ability to access emergency services by dialing fixed 

numbers is a vital component of public safety and emergency 
preparedness. The Federal Communications Commission 
(FCC) defines voice over Internet Protocol (VoIP) as a 
technology that supports some IP based services to allow a 
user to call anyone who has a telephone number, including 
mobile and fixed network numbers. Gradually, the Emergency 
telephonic services are migrating to “interconnected” Voice 
over Internet Protocol (VoIP). 

The IP based EIN is the provider network with state-of-the-
art ICT technology solution compared with previous 
Emergency services which were handled by the national 
medical, police, and emergency management agencies in 
Mongolia separately. There are four Emergency telephone 
numbers in the country. They are:103 (ambulance), 102 
(police), 101 (fire), and 105 (hazards, disaster). When dialing 
any one of these numbers from telecommunications networks 
(PSTN, GSM, CDMA) through PSTN, the emergency call is 
pushed/forwarded to an emergency call center agency desk of 
the EIN.  
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In addition to the public emergency call services, the EIN 
supports the Government Emergency Telecommunication 
Services (GETS) which are transferred through the connected 
mutually citizen and government agencies such as the 
National Defense Agency, National Emergency Management 
Agency, National Security Agency, National Medical, 
National Transportation Agency, and all the branches of the 
respective agencies. 

Fig. 1 Communication Architecture of EIN 
 

Fig. 1 presents the EIN architecture that provides 
Emergency call services through wired (PSTN) and wireless 
(GSM, CDMA) system services for the main capital 
Ulaanbaatar city as well as provinces within 1100 km. The 
EIN system is composed of four main networks including 
Fiber optical (F/O) backbone network, IP based 
telecommunications and computer networks (IP 
PABX/VoIP/LAN/WAN/WiMax/WiFi), Trunk Radio System 
(TRS), and CCTV( Digital Camera TV) networks for data, 
video, and image transfers in urban area coverage. 

However, the life-threatening emergency voice calls which 
are transferred through the bulk of the existing E1 optical 
trunks across long haul telecommunication networks are the 
main part of the system used for the peak period traffic 
analysis because of the dedicated limited number of inbound 
and outbound E1 trunks under the government regulation.  

If the number of calls addressed to the system is too large 
during the peak period, the incoming trunks will be 
overloaded and operators cannot handle the volume of 
emergency calls. Hence, one aspect of particular interest is the 
peak period network analysis to model the call holding time 
for the traffic analysis and to estimate the call holding time 
parameters. 

III. DATA EXPLORATION AND STATISTIC RESULTS 
We explore the real data from a number of incoming 

bundled digital trunks that connect into the main edge port of 
IP PBX of EIN, a national emergency service provider in 
Mongolia.  

The statistics indicate that the mean of CHT of Emergency 
ambulance, police, fire, and hazards incoming calls are 61.16s 
( 0.14cv = ),  42.56s ( cv = 0.22), 27.17s  ( cv = 0.42), and 
27.76s ( cv = 0.58), respectively. The mean CHT data for all 
emergency incoming call samples measured is 39.66s. This is 
a shorter call duration and less value of coefficient of variance 
 cv compared to 201s with cv = 1.23 in non-VoIP call center 
[13], 110s with cv = 2.7 in Taiwan-mobile [5], 113s with cv  = 
1.4 in public telephone system [4], 63.3s with cv = 2.91 in 
PAMR-PCS [10],   40.6s with cv  = 1.7 in non VoIP cellular 
network [3]. 

From this comparison, emergency VoIP calls are considered 
more efficient time-wise than those of commercial networks. 
The ambulance customers keep longer holding call behavior 
than the other emergency customers, such as police, fire and 
hazards; 35s ambulance's mean CHT is longer than the fire's 
mean CHT. 

IV. GENERAL METHODS ON DERIVING CALL HOLDING 
DISTRIBUTIONS 

In this section, the set of probability density functions (pdfs) 
as a main statistical candidate to fit the CHT empirical 
distributions for ambulance, police, fire, and hazards call 
classes is considered. 

For the fitting of these candidate distributions, we use the 
tests: K-S tends to be more sensitive near the center of the 
distribution than at the tails. Due to this limitation above, we 
prefer to use the Anderson-Darling goodness-of-fit test which 
gives more weight to the tails than does the K-S test. The pdf 
of the these candidate distributions: 

1. The pdf of Exponential Distribution: 
                  

( ; ) exp( )f x xλ λ λ= −                         (1) 
 

where  0 < ߣ is the rate parameter of distribution. 

2. The pdf of Weibull Distribution: 
Weibull distribution is a continuous probability distribution 

with wide applicability, primarily due to its relation to the 
Gamma distribution family.  
    The pdf of Weibull distribution has the form: 

                  

( )( ; , ) exp xF x
β

β σ σ=              (2) 

 
where β  and σ are the scale and shape parameters of 
distribution, respectively. 

3. The pdf of Shifted Lognormal Distribution: 
The pdf of a shifted lognormal distribution has the form: 
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1 ( ( ) )( ) exp

2( ) 2x
Ln xx
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σ μφ

γσ γ π
⎛ ⎞− −= −⎜ ⎟

− ⎝ ⎠
        (3) 

 
where γ >0, ݔ ൐ 0 , ܽ݊݀ σ ൐ 0.  We use the likelihood 
function : 
 

11

( ( )) ( ) ( )
n n

x x i x i
ii

L x x Ln xφ φ φ
==

= = ∑∏    (4) 

 
where γ > 0, ݔ ൐ 0 , ݔ ݀݊ܽ ൐ σ.   

4. The pdf of Lognormal Distribution: 
Lognormal distribution is a probability distribution of any 

random variable whose logarithm is normally distributed. The 
pdf of a lognormal distribution has the form: 

 
2

2
1 ( )( ) exp

22x
Lnxx

x
μφ

γγ π
⎛ ⎞−= −⎜ ⎟
⎝ ⎠

  (5) 

 
   The log-likelihood function is given by 
 

2
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2
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22
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ii
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=

= =

⎡ ⎤⎛ ⎞−= −⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

= − − − − −

∑

∑ ∑
    (6) 

 
The parameter values are computed through Maximum 

Likelihood Estimate (MLE) for a lognormal distribution [18], 
[19]. The statistical fitting results of police, fire, hazard’s 
CHTs are similar to the ambulance’s CHT pdf, which is 
depicted in Fig. 2.  

The relative tail frequencies of the real data are much larger 
than the values of the Exponential, Weibull, Lognormal, and 
Shifted Lognormal distributions. The lognormal and shifted 
lognormal distributions are assumed to be the better fitted 
distributions with similar parameters for D.max values and p 
values at the 0.02 significance level under K-S, Chi-Sq, and A-
D tests (see Table I).  

The significance resulting from the Kolmogorov- Smirnov 
(K-S) goodness-of-fit test which is described by the modified 
K-S distance ݔܽ݉ܦ ൌ Ԗሺ√݊ ൅ 0.12 ൅ ଴.ଵଵ

√௡
ሻ, where Ԗ for the 

maximum difference between the fitting distribution and the 
empirical cdf and the level of significance 
ߙ ൌ 2 ∑ ሺെ1ሻ௜ିଵ݁ିଶ௜మ௡Ԗమ∞

௜ିଵ [12], [17].  
However MLE does not simplify a solution of a mixture of 

lognormal distributions for call holding time. Therefore, the 
EM approach [14], a specialized approach designed for MLE 
problems, is described for a mixture of lognormal distributions 
in this paper.  

Based on the assumption of smooth histograms of an 
empirical data, the standard distributions for the empirical data 
fit quite accurate. However, in practice, a jagged probability 

histogram with random spikes and long tails frequently 
occurred. Therefore, the spikes and tails may cause the call 
holding time to have a jagged histogram. The most 
comprehensive method of a mixture of lognormal distributions 
with two or more parameters can be used to approximate the 
whole call duration, including the spikes and tails, detailed in 
the section V. 
 

TABLE I 
“103” CHT: PARAMETERS OF FITTED DISTRIBUTIONS AT SIGNIFICANCE LEVEL   

m=61.16 
cν=0.14 

“D. max” 
K-S 

“D. max” 
Chi-sq 

p value 
K-S 

p value 
Chi-sq 

Shifted  
Lognormal 
Log normal 
Weibull 
 
 
Shifted  
Lognormal 
Log normal 
Weibull 
 

 
0.037 
0.038 
0.067 
    p val  
    (A-D) 
 
0.1936 
0.1959 
2.156 

 
2.232 
2.23 
14.7 
 
“scale” 
 
0.14 
σ=0.15 
β=64.45 

 
0.9631 
0.96 
0.4 
 
“shape” 
 
µ=4.1 
γ=4.1 
α=8.64 

 
0.9458 
0.9459 
0.0388 
 
“loc” 
 
-1.63 
0 
0 

 

 
 

Fig. 2 PDF of CHT of Emergency Ambulance Calls 

V. PROPOSED MODELING OF MIXED LOGNORMAL 
DISTRIBUTIONS BASED ON EXPECTATION MAXIMIZATION 

ALGORITHM  
In the EM approach, when CHTs ݔ ൌ ሺݔ௜,  ௡ሻ areݔ ,…

observed, we may   consider the component indicators  
1( ,..., )ny y y= as missing like as in the usual mixture situation, 

so that ݖ ൌ ሺݔ,   .ሻ becomes the complete data [20]ݕ
In literature it might happen that the CHTs in networks are 

not explicitly described by a mixture of parametric 
multivariate distributions [14]. 

When each mixture component is mapped to a lognormal 
call holding time distribution using priority probabilities ߨ௜, 
we notice that the n  independent and identically distributed 
( . . )i i d call holding time observations ݔ ൌ ሺݔଵ, … ,  ௡ሻ comeݔ
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from a finite mixture of k lognormal CHT components as 
follows: 

 

1 1

( ) ( ) ( | , )
j

k k

j j k k
j j

x x N xθ θφ π φ π μ γ
= =

= =∑ ∑                    (7) 

 
where ߶ఏೕ

ሺݔሻ ൌ ሺ߶ఏభሺݔሻ, . . . , ߶ఏೖ
ሺݔሻሻ are the component 

lognormal densities, ߠ௝ ൌ ሺߤ௜ୀଵ, . . . , ,௞ߤ ,௜ୀଵߛ … ,  ௞ሻ are theߛ
parameters, and ߨ௝ ൌ ሺߨଵ, … ,  ௞ሻ are the component weightsߨ
satisfying ∑ ௝ߨ ൌ 1௞

௝ୀଵ . Therefore, the probability density 
function of the average CHTs  may be modeled by a mixture 
of k random variables of Gaussian densities on a logarithmic 
time scale: 
 

2
1

1 2
1 1

2

2
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2
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⎝ ⎠
⎛ ⎞−

−⎜ ⎟⎜ ⎟
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   (8) 

 
It is often assumed that the parametric MLE is to estimate 

the set of parameters θ for the density of the samples ߶ఏሺݔሻ 
that maximizes the likelihood function ܮ൫߶ఏሺݔሻ൯ ൌ
∏ ߶ఏሺݔ௜ሻ௡

௜ୀଵ  [15]. Hence the likelihood of the lognormal CHT 
distribution becomes: 

 
2

1
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∏
 (9) 

 
The complete CHT data set (observed CHTs ݔ plus un- 

observed CHTs ݕ datasets ) exists ݖ ൌ ሺݔ,  ሻ with densityݕ
߶ఏሺݖሻ ൌ ∏ ߶ఏሺݖ௜ሻ௡

௜ୀଵ  where ݖ ൌ ሺݖ௜, … ,  -௡ሻ. When a manyݖ
to-one mapping from z to ݔ, ௜ݕ ൌ ൫ݕ௜௝, ݅ ൌ 1, … , ݊; ݆ ൌ
1, . . . , ݇ሻ is the unobserved component of the origin of the n 
call holding times. Hence, it is clear that the indicator ݕ௜௝ 
implies ∑ ௜௝ݕ ൌ 1, ܽ௞

௝ୀଵ  Bernoulli random variable indicating 
that the CHT observation ݔ௜  comes from the exact lognormal 
distribution with parameter ߠ௝. 

The parametric MLE problem is to estimate the set of 
Gaussian parameters for the lognormal distribution that 
maximizes the likelihood function [15].  

In this multivariate model case, the likelihood function of 
this complete density for one data observation becomes 

11 1

2

2
11

( ) ( , ) ( )

( )
exp .

2 2

ij j

ij

n n k

i i j y i
ji i

y
n k

j i j

i j jji

L z L x y I x
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γ π γ

== =

==

= = =
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⎢ ⎥⎜ ⎟−

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑∏ ∏

∑∏
 (10) 

where the indicator function ܫ௬೔ೕ ൌ 1 for individual i  that 

comes from the lognormal component with  jθ  and is zero 

elsewhere.                                  
Since the logarithm is a convex increasing function, 

maximizing the likelihood is equivalent to maximizing the 
log-likelihood, thus the likelihood (10) is updated in the 
logarithm form as log- likelihood function for the complete 
CHT data: 
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where n  ( . . )i i d  and ݔ ൌ ሺݔଵ, … , .௡ሻݔ                   
The second component of the expected value of the complete 
CHT data log-likelihood is the marginal distribution of the 
unobserved CHT data  ݕ ൌ ሺݕଵ, … ,  ௡ሻ on both the observedݕ
CHT data  ݔ and on the current estimates   ߠ௧ ൌ (ߨ௬೔ୀଵ

௧ , . . .,
௞ߨ

௧ , ௬೔ୀଵߤ
௧ , … , ௞ߤ

௧ , ௬೔ୀଵߛ
௧ , … , ௞ߛ

௧ሻ. The weight π௝  is often 
assumed that  pሺy௜௝ ൌ 1ሻ ൌ π௝ .Therefore, we use Baysian 
theorem to compute the expression for the distribution of the 
unobserved CHT:  
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  (12) 

 
where ߶ఏሺݔ௜ሻ  is simply the CHT lognormal distribution eval- 
uated at ݔ௜ and likelihood function given ߠ௧ which is similar to 
the expression in the right side of (9).  

Given ߠ௧, a mixture of lognormal distribution is computed 
for each ݅ and ݆ .  

The expected value of the ”complete data ݖ ൌ ሺݔ,  -ሻ” logݕ
likelihood ߶ఏሺݖሻ would be the iterative process. It is formed 
as a function of the estimate θ from (11) and (12) where ߠ௧ is 
the current value at iteration ݐ .  
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Therefore, taking derivatives with respect to these ߨ௝, ,௝ߤ  ௝ߛ

and equating them to zero, we define the new estimates 
௝ߨ

௧ , ௝ߤ
௧ , ௝ߛ

௧    respectively as follows:  

1. The Weights of CHT Lognormal Components:  
To derive the expression for  ߨ௝

௧ , we need the Lagrange 
multiplier λ with the constraint that ∑ ௝ߨ ൌ 1௝ , then we can 
iteratively get the result: 
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2. The Parameter ߤ௝ of CHT Lognormal Components: 
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, it is clear that the parameter can be written in the form: 
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3. The Parameter ߛ௝ of CHT Lognormal Components: 
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, we get the result: 
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VI. EM ALGORITHM PERFORMANCE OF THE PROPOSED MIXED 
MODEL  

The EM algorithm provides computational techniques for 
distributions that are almost completely unspecified [14], [16].  

The algorithm performs the process with respect to the 
parametric part of this expected value of the completed CHT 
data log-likelihood by assuming the existence of the hidden 
variables and making a guess at the initial parameters of the 
distribution [15]. The EM algorithm iteratively maximizes 
  ܳሺߠ,  .௧ሻ by the following two stepsߠ

1.  E-step: Compute ܳሺߠ,  ௧ሻߠ
E- step calculates the expected value of the "complete data" 

log likelihood from Equation (13) with respect to the 
unobserved call holding times  ݕ for all ݅ ൌ 1, … , ݊ and  ݆ ൌ
1, … , ݇ . It means we calculate the expected value of the 
unobserved CHT data using the observed incomplete CHT 
data. Computing this expectation requires the posterior 
probability ߶௝

௧ሺݔ௜ሻ  as in equation (12) and ߨ௝
௧ for the 

parameter value ሺߠ௧ሻ (14). 

2. M-step: set  ߠሺ௧ାଵሻ ൌ  ௧ሻߠ|ߠఏܳሺݔܽ݉݃ݎܽ
This step maximizes the expectation we performed in E-

step. More specifically, M-step performs the first part 
containing ߨ௝

௧  and the second part containing ߠ௝
௧ iteratively 

from (13). We note that the parts are not related; we can 
maximize independently. 

These two steps are iterated as necessary until the saturation 
value of the expected complete log-likelihood. At the 
saturation value, the M-step performs the set of parameters ߠ, 
otherwise we repeat the E-step for the next iteration.  

Although the iteration increases the marginal log-likelihood 
function, the EM algorithm uses a random restart approach to 
avoiding a local maximum of the observed data log-likelihood 
function.  

VII. NUMERICAL RESULTS AND MODEL VALIDATION  
We start to look at how long a call conversation time into 

emergency ambulance incoming call services in the PSN.  
In a practical matter of models, it is always very difficult to 

fit the spikes and tails of frequencies. We observe clearly that 
the CHT pdf has extreme spikes around 56 and 66 seconds and 
long tails around more than 93 seconds, which shows why the 
CHT is not accurately modeled by Lognormal, shifted 
Lognormal, Exponential, and Weibull distributions, while a 
mixture of lognormal distributions can be used to approximate 
accurately the empirical data with the random spikes and long 
tails as a best fitted model. 

In the EM performance, we performed 50-321 iterations to 
find reasonable fits. 

From equation (8), the probability density function of  
CHTs of "103" is expressed by a mixture of lognormal 
distributions which has five lognormal components as follows: 

   

߶ఏሺݔሻ ൌ
1

ߨ2√ݔ
ሾ6.302066 ݁݌ݔ െ

ሺݔ݊ܮ െ 4.160792ሻଶ

0.000281
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൅0.038295݁݌ݔ െ
ሺݔ݊ܮ െ 4.005497ሻଶ

0.034232  

 
For the CHTs of other emergency call types, we express a 

mixture model similar as the above expression of "103" 
ambulance (Fig 3). The CHT distributions for emergency 
police ("102"), fire ("105"), and hazards ("101") are fitted 
quite well by five, five, and four lognormal distributions, 
respectively, in each case. The Fig. 3 through Fig. 6 shows the 
graphs for each data set.  

As shown in these figures, the observations also prove that 
a mixture lognormal model may be considered for the fitting 
of the average CHT data which may have incomplete history 
in future research. 

 

 
Fig. 3 Histogram of  “103” data and its fitting pdf curves 

 
This mixed lognormal model uses the average emergency 

conversation times for setting the model MLE parameters, so 
that the CHTs of simulated calls of emergency ambulance, 
police, fire, and hazard incoming calls are computed by the 
average values for the chosen model. 

 

 
Fig. 4 Histogram of  “102” data and its fitting pdf curves 

 

 
Fig. 5 Histogram of  “101” data and its fitting pdf curves 

 

 
Fig. 6  Histogram of  “105” data and its fitting pdf curves 

 
As described in the previous section, we should have a 

desired equation for the chosen CHT model by a mixture of  ݇ 
random variables of Gaussian densities on a logarithmic time 
scale: 

 
2

2
( )

( ) exp
2 2

k i k

k k

Lnx
x

xθ
π μ

φ
γ π γ

−
= −   (19) 

 
 

TABLE II 
PARAMETERS OF FITTED MIXTURE LOGNORMAL DISTRIBUTIONS  

CHTs 
D.max 

Ԗ

“102” 
0.2172569 

0.00013 

“103” 
0.0374377 

0.00023 

“105” 
0.0364377 

0.00023 

“101” 
0.025939 
0.00016 

µ1 
µ2 
µ3 
µ4 
µ5 
γ1 
γ2 
γ3 
γ4 
γ5 
π1 
π2 
π3 
π4 
π5 

3.590257 
3.823747 
3.701574 
3.968549 
3.928348 
0.184237 
0.017876 
0.050927 
0.089731 
0.253997 
0.421289 
0.115688 
0.220727 
0.100068 
0.142225 

4.009660 
4.160792 
4.156612 
4.181588 
4.005497 
0.011857 

0.1788397 
0.102826 
0.017986 
0.130829 

0.0747236 
0.178327 
0.410079 

0.0441521 
0.292717 

2.787204 
3.105966 
3.508355 
3.333218 
4.013681 
0.342812 
0.057409 
0.195627 
0.239888 

0.0414164 
0.237278 
0.060063 
0.315353 
0.351031 

0.0362751 

2.841544 
2.840751 
3.131199 
3.703959 

N/A 
0.272628 
0.029038 
0.200754 
0.355409 

N/A 
0.136657 
0.042747 
0.465886 
0.354708 

N/A 
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According (19), we would be able to obtain mathematical 
models that can accurately capture the spikes and heavy tails 
of call conversation time distribution of modern networks. 

By comparing the parameter results in Table I and II, we 
show that moving from Gamma family distributions to a 
mixture of Lognormals leads us to more accurate result and 
less error. As stated in the section III, although values of 
distance D.max in the Table I represent a successful outcome 
of experiments that the empirical CHT data may come from 
the Gamma distribution family, with respect to the all types of 
Emergency incoming call holding times. 

However, when simulations of a mixture model are carried 
out, a mixture of lognormal distributions represents significant 
improvements to hold the spikes and as well to estimate tails 
of frequencies. 

 

 
Fig. 7  P-P plot of  “103” data and its fitting cdf curves 

 
As a model validation, both pdf and cdf were depicted. 

Whereas pdf  plots the probability of occurrence of the 
random variable under study, the cdf  plots the probability that 
the random variable will not exceed specific values.  

The cdf results of police, fire, hazard's CHTs are similar to 
that of the ambulance's CHT, which is depicted in Fig. 7. As 
the illustration in this figure shows the relative head, body, 
and tail frequencies of the real data are fitted quite well by a 
mixed lognormals compared to values of Lognormal model. 

In Table II, the parameters (all µ, γ) of lognormal 
components with their D.max values are listed through the K-
S test and  Ԗ  of fitting a mixture of lognormal distributions. 
The values of D.max are 0.0217, 0.0374, 0.0364 and 0.0259 
for the police, ambulance, fire, and hazards CHTs, 
respectively. 

The values of D.max = 0.0374377 and 42.3 10ε −= ∗  for the 
ambulance CHT. The weights of component lognormal 
distributions are 0.0747236, 0.178327, 0.410079, 0.0441521, 
and 0.292717 respectively.       

It is clear that the smaller Dmax distance represents that the 
derived mixed lognormal distribution to model the spikes and 
tails is better than Gamma family distributions.  

Looking at D.max factors for each model by K-S, A-D and 
Chi-Sq tests represents that the model of a mixture of 

lognormals has the lowest distance D.max and error ε , then it 
can be chosen as the best call holding time model in a public 
safety network. 

VIII.  CONCLUSION 
The results contribute to the existing literature in two 

important ways: First, a mixture of lognormal distributions 
provides reasonable fits for the incoming CHTs of PSNs due 
to spikes of higher probability and long tails of lower 
probability in a data set. Second, the use of finite mixture 
lognormal modeling provides a best example of a statistically 
suitable method for modeling the distribution function when 
the long tails and peak spikes are randomly and frequently 
occurred in the frequencies, when we do a peak period 
performance analysis for PSN. We emphasize the EM 
algorithm is a powerful method to model the CHTs for IP 
based PSNs. A mixture of lognormal distributions with 
explicit analytical expressions is described for this model. This 
result is important as it provides a useful mathematical tool in 
an explicit manner for a mixture of lognormal distributions. 
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