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Abstract—Complex assemblies of interacting proteins carry out 

most of the interesting jobs in a cell, such as metabolism, DNA 
synthesis, mitosis and cell division. These physiological properties 
play out as a subtle molecular dance, choreographed by underlying 
regulatory networks that control the activities of cyclin-dependent 
kinases (CDK). The network can be modeled by a set of nonlinear 
differential equations and its behavior predicted by numerical 
simulation. In this paper, an innovative approach has been proposed 
that uses genetic algorithms to mine a set of behavior data output by 
a biological system in order to determine the kinetic parameters of 
the system. In our approach, the machine learning method is 
integrated with the framework of existent biological information in a 
wiring diagram so that its findings are expressed in a form of system 
dynamic behavior. By numerical simulations it has been illustrated 
that the model is consistent with experiments and successfully shown 
that such application of genetic algorithms will highly improve the 
performance of mathematical model of the cell division cycle to 
simulate such a complicated bio-system. 
 

Keywords—Cell cycle, Cyclin-dependent kinase, Fission yeast, 
Genetic algorithms, Mathematical modeling, Wiring diagram  

I. INTRODUCTION 
HE cell cycle is the sequence of events during which a 
growing cell replicates all its components and divides 

them more or less evenly between two daughter cells, so that 
each daughter contains the information and machinery 
necessary to repeat the process [1]–[2]. Cell proliferation 
underlies all biological growth, reproduction, and 
development, and its misregulation results in serious human 
diseases. As might be expected of a process so central to cell 
viability, the molecular machinery regulating crucial events of 
the cell cycle (DNA synthesis and mitosis) is highly conserved 
across eukaryotic organisms (Nurse, 1990). Hence, thorough 
genetic studies of cell cycle regulation in budding yeast [3]–
[4] and fission yeast [5]–[6] have paid handsome dividends in 
understanding cell proliferation in multicellular plants and 
animals.  

The fast progress of biology development has accumulated 
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a tremendous amount of experimental data, which becomes a 
big challenge to efficiently extract valuable knowledge hidden 
behind. In a series of researches in two past decades, scientists 
have been trying to provide simulations of complex 
biochemical networks and show the general principles of 
eukaryotic cell cycle regulation.  

Mathematical models of cell cycle controls have kept pace 
with the advances of molecular genetics (Goldbeter 1991, 
Tyson 1991, Novak and Tyson 1993, Novak and Tyson 1995). 
In these models, biochemical mechanisms are translated, by 
the law of mass action, into systems of non-linear differential 
equations, and dynamical systems theory is used to uncover 
the qualitative behavior of these equations and to bridge the 
gap between mechanisms and physiology. A number of 
mathematical models [7]–[20] have been developed to 
illuminate the workings of the cell cycle, based on various 
dynamical mechanisms including limit cycle oscillation, 
bistability, and transient processes. In the past decade, Tyson 
and colleagues developed models for the yeast cell cycle and 
the Xenopus egg cell cycle which have greatly improved our 
understanding of cell cycle dynamics.  

One of the difficulties of solving a mathematical model in a 
bio-system is parameter identification of the model so that the 
results provide a suitable fit to the experimental data. The 
parameter values proposed in previously mentioned models 
have been selected by a painstaking process of trial-and-error 
in order to achieve the best fit to real results. 

The mathematical model used in this research is described 
by a dozen differential equations, involving ~40 kinetic 
parameters. Concerning plurality of parameters this method of 
trial-and-error is very frustrating. A possible way to deal with 
the problem is to use robust mathematical methods like 
optimization control algorithms or genetic algorithms that can 
contribute substantially in this area by generating optimum 
solutions to save the time and effort of a scientist. 

In this research genetic algorithms will be applied to 
discover the kinetic parameters of the model. The proposed 
method is applied to experiment on the mathematical model of 
the fission yeast cell cycle with checkpoint controls at the 
G1/S, G2/M and metaphase/anaphase transitions [21]. The 
method is applied to find a parameter set that accounts for the 
properties of wild-type cells. After assigning values to these 
constants, the differential equations can be solved to produce a 
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simulation of progression through the cell cycle in fission 
yeast. The results are then compared with the original data to 
evaluate the effectiveness of the approach. 

II. MATERIALS AND METHODS 

A. A Quantitative Mathematical Model 
The molecular mechanism in Fig. 1 is a hypothetical 

account of the chemical reactions among the genes and 
proteins known to play principal roles in controlling the cell 
cycle of fission yeast. The mechanism summarizes 
information from many publications on the individual genes, 
their patterns of expression, and the interactions among their 
encoded proteins. 

The cell cycle is controlled by a single CDK, namely Cdc2 
(the protein encoded by the cdc2+ gene), in combination with 
three B-type cyclins (Cdc13, Cig1, and Cig2 [22]). The most 
important cyclin partner of Cdc2 protein is Cdc13. The 
complex of Cdc2 and Cdc13 (known as M-phase promoting 
factor (MPF)) is absolutely essential to initiate mitosis, and in 
the absence of other cyclins, this complex can trigger S-phase 
as well [23]. The Cdc13 level fluctuates dramatically during 
the cell cycle, reaching a maximum as cells enter mitosis, 
dropping precipitously as cells exit mitosis, and reappearing 
after S-phase is initiated [24]. To simplify this molecular 
machinery Cig1 and Cig2 are ignored as demonstrated by 
[21]. 

The wiring diagram represented in Fig. 1 consists of a set of 
boxes (components) interconnected by arrows (reactions). An 
instantaneous state of the system is a specification of the 
current concentrations of all its components. Given a state of 
the system, the chemical reactions (synthesis, degradation, 
activation, inhibition, binding, and release) indicate how the 
state will change in the next moment of time. 

Each reaction proceeds at a rate determined by the state of 
the system and by kinetic parameters (e.g., rate constants and 
binding constants). By applying the general principles of 
biochemical kinetics, the mechanism in Fig. 1 can be 
converted into a set of differential and algebraic equations that 
determine how the state of the control system evolves in time. 

A mathematical description of this control system could be 
start with rate equations for Cdc2/Cdc13 (MPF) concentration 
as follows: 

 
[ ] [ ] [ ] [ ][ ]

[ ]( ) [ ]MPFkkkiMPF

RumMPFkMPFkMPFkmasskMPF
dt
d

ir
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24

251 1.
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Where, k1 illustrates the influence of concentration of 

cyclin in nucleus through growing cell. kwee is the specific rate 
of degradation of Cdc2/Cdc13 (dependent on the activity of 
wee1 enzyme) and kcdc25 shows the formation rate of this 
complex due to Cdc25 activity. The influence of Rum1 is 
given by the ki rate and its reverse effect, namely arising 
Cdc2/Cdc13 through disengaging Rum1, is modeled by 
(kir+k4). Finally the effect of APC on degradation of cyclin 

and consumption of active complex is presented by k2 
parameter. 

Similar equations must be written for each temporally 
varying protein in the reaction mechanism. The following 
equation is applied for preMPF (tyrosine-phosphorylated 
dimmers) concentration; 

 

[ ] [ ] [ ] [ ]pMPFkpMPFkMPFkpMPF
dt
d

cdcwee 225 −−=                             (2) 

 
iMPF is Cdc2/Cdc13 complex which is inactivated by 

Rum1 enzyme; 
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 And the rate equation for Rum1 will be extracted from 
wiring diagram as below; 
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 Synthesis, degradation and interconversion of Cdc2/Cdc13 
dimers and Rum1 have been represented in Eq.s (1), (2), (3) 
and (4). Eq.s (5), (6) and (7) illustrate generation and 
degradation of tyrosine phosphorylating or dephosphorylating 
enzymes. Michael-Menten kinetics has been used to write 
equations with fractional form; 
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 Variation of cyclin degradation enzymes can be calculated 
by Eq.s (8), (9) and (10); 
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 Mass increases steadily as the cell grows and drops by a 
factor of two at cell division, therefore the growth of the cell 
can be pointed by; 

massmass
dt
d .μ=

                                                                     (11) 

 And finally the variable parameters are given by following 
equations; 

 
[ ]( ) [ ]APCvAPCvk 222 ''1' +−=                                                     (12) 
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[ ]( ) [ ]APCvAPCvk ccc 222 ''1' +−=                                                    (13) 
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swtwt kkk += '                                                                           (17) 

srr kkk += 2525 '                                                                           (18) 

smrmr kkk += '                                                                           (19) 

saiai kkk += '                                                                            (20) 
 

The concentrations variables are scaled so that all rate 
constants (k’s and V’s) have units of min -1 and all Michaelis 
constants (J’s) are dimensionless. The aforementioned 
differential equations simply capture, in mathematical terms, 
the intuitive ideas about protein synthesis and degradation, 
phosphorylation and dephosphorylation. They allow us to test 
a hypothesis (for example, the network in Fig. 1) by 
computing how the concentration of each protein will rise and 
fall, and then comparing the simulated behavior of the model 
with observed behavior of the cell. 

There are few direct kinetic measurements of the individual 
steps of the mechanism in fission yeast, so in the next section 
robust mathematical methods like genetic algorithm will be 
applied to identify the parameters of the model so that the 
results provide a suitable fit to experimental data. 

B. Application of Genetic Algorithm in Mathematical 
Modeling 

Genetic algorithms, introduced by John Holland in 1975 to 
mimic the mechanisms of natural adaptation are evolutionary 
methods widely used in different aspects of optimization and 
system biology modeling because of their unique capabilities 
of finding global optimum in highly multi-modal and/or non-
differentiable search space [25]–[26]. Such stochastic methods 
can be used in the modeling of cell division cycles in terms of 
associated weights or coefficients which successfully perform 
better than traditional gradient-based techniques [27]. In 
particular, the search space of possible solutions is infinitely 
large, complex and not necessarily differentiable which makes 
the evolutionary methods more attractive for efficiently 
searching such complex search spaces [25].  

C. The Genome for Kinetic Parameters Representation 
The genome or chromosome representation, which shows a 

set of kinetic parameters simply consists of a binary string, 
composed of concatenation of 0 or 1 represented of input 
variables. In this encoding scheme, each coefficient is 
assigned and defined sub-string and a chromosome is a string 
of concatenated sub-strings of these parameters as variables. 
Therefore, for a given input vector K (Kinetic Parameters) a 
chromosome can be represented as a string of concatenated 
binary digits in the form of 100010001111000…. It is easily 

 
Fig. 1 The cell-cycle control system in fission yeast. The control system can be divided into three modules. The first module regulates the 
transition from G1 into S phase. Cdc2/Cdc13 dimers are in short supply in G1 because Cdc13 is rapidly degraded by AAE. In addition, 
any dimers that might be present are bound to a stoichiometric inhibitor, Rum1. Active Cdc2/Cdc13 opposes its ‘enemies’ (AAE and 
Rum1) by phosphorylating them. At the G1/S transition, the balance of power shifts from AAE and Rum1 to Cdc2/Cdc13. However, 
Cdc13-dependent kinase activity increases only to a moderate level because a second control module (G2/M) comes into play: a tyrosine 
kinase, wee1, phosphorylates Cdc2, thereby suppressing Cdc2/Cdc13 activity below the level necessary for initiating mitosis. At the 
G2/M transition, a tyrosine phosphatase, Cdc25, reverses this phosphorylation and promotes entry into mitosis. Notice that Cdc2/Cdc13 
inhibits wee1 and activates Cdc25. These positive-feedback loops make for an abrupt transition from G2 into M phase. Exit from mitosis 
is the job of the third module. As chromosomes align on the metaphase plate, APC is activated. APC promotes sister-chromatid 
separation (anaphase) and degradation of Cdc13 (which allows nuclear division and cell division). As Cdc2/Cdc13 activity drops, the 
kinase enemies’ AAE and Rum1 return, and APC becomes inactive. The newborn cells are now backing in G1 phase, ready to repeat the 
process [21]. 
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seen that, for example, in the case of 40 parameters involved 
in optimization, a strings of concatenated sub-string must be 
created with different length depended to the desired accuracy 
and search interval of related parameter. 

For instant the domain of variable kj is [aj,bj] and the 
required precision is five places after the decimal point. The 
precision requirement implies that the range of domain of each 
variable should be divided into at least (bj − aj) × 105 size 
ranges. The required bits for a sub-string (denoted with mj) for 
a variable is calculated as follows: 

 
( ) mj5

jj
1mj 210ab2 ≤×−<−

                                                  (21) 
 

The mapping from a binary string to a real number for 
variable kj is straightforward and completed as follows: 
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jj
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substringdecimalak                                       (22) 

 
where decimal(substringj) represents the decimal value of 
substring j for decision variable kj. 

D. Genetic Operators 
Such genome representation can now be readily used for 

the most two important genetic operators, namely, crossover 
and mutation. In this work, the natural roulette wheel selection 
method is used for choosing two parents producing two 
offsprings. The crossover operator for two selected 
individuals is simply accomplished by exchanging the tails of 
two chromosomes from a randomly chosen point as shown in 
Fig. 2. 

 

 
 

Fig. 2 Crossover operator 
 

It is very evident from Fig. 2 that the crossover operation 
can certainly exchange a part of genome of such kinetic 
parameters and similarly, the mutation operation which is 
often given little importance in some research papers as 
reported in [25], can contribute effectively to the diversity of 
the population. This operation is simply accomplished by 
charging one or more binary digits as genes in a chromosome 
to another digit as illustrated in Fig. 3. 

 

 
 

Fig. 3 Mutation operator 

The incorporation of genetic algorithm into the 
mathematical modeling of cell division cycle starts by 
representing each set of kinetic parameters as a string of 
concatenated sub-strings of binary digits. A generated solution 
during the evolution process is ranked by a fitness function 
that measures the similarity between the target behavior 
pattern and the actual one. Since the pattern is a time series of 
real value points, a simplest function of such a measurement is 
the reciprocal of the Sum of Squared Errors (SSE). The 
following equation is our fitness function: 

 

∑∑ −
=

i t
itit YY

Fitness
))ˆ((

1
2

                                                   (23) 

 
where, Yit is the desired output;       is the actual output of 
some system variable y; t represents the tth time point, and i 
represents the index of a variable. 

The evolutionary process starts by randomly generating an 
initial population of binary strings each as a candidate 
solution. Then, using the aforementioned genetic operations of 
roulette wheel selection, crossover, and mutation, the entire 
populations of binary strings are caused to improve gradually. 
In this way, models of cell division cycle with progressively 
increasing fitness are produced until no further significant 
improvement is achievable. 

III. DISCOVERING KINETIC PARAMETER VALUES 
Note that, although the aforementioned mathematical 

models create the initial models of the system, they are just the 
skeleton with no parametric information and hence cannot be 
executed. So, the simulated behavior data generated from the 
original fission yeast cell cycle system created by Tyson in 
2001 is used as an input to train the model. The genetic 
evolutionary process was allowed to run for 1000 generations 
and each generation has 50 populations. The initial value of 
each parameter is guessed randomly in an appropriate range.  

The best parameter solutions are shown in Table I. In this 
table, there also show the parameter values introduced by 
Tyson which have been selected by a painstaking process of 
trial-and-error in order to achieve the best fit to real results. In 
Table I, one can see that the parameter values discovered in 
the process are quite close although some of them have a little 
larger difference. These reflect the sensitivity of different 
parameters with respect to the system behavior changes. 
However, the behavior of the system is not affected by these 
minor parameter variations.  

The evolution history of the fitness function is shown in 
Fig. 4. 

itŶ
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Fig. 4 The evolution process of best fitness value for each 

generation in GA 

IV. SOLUTION OF MATHEMATICAL MODEL 
A simulation of ‘wild-type’ fission yeast cell growth and 

division cycle with trained parameters is shown in Figs. 5 to 8. 
To solve and simulate the proposed model, the Simulink 
section of MATLAB 7.4.0 software was applied. When the 
simulated behaviors with the original ones are compared, one 
can see that they match quite well in all proteins. It is obvious 
from the pictures that the proposed model with trained kinetic 
parameters has identified the bio-system precisely and the 
phase durations coincide exactly with what extracted from 
experimental data and the lag appeared in solving 
mathematical model by parameter values assigned by Tyson 
has been disappeared (see Fig. 8). 

The cell cycle should be viewed as an alternation between 
two characteristic phases: pre-Start (G1), when APC is active, 
Rum1 is present, and Cdc13 level is low, and post-Start (S 
+ G2 + M), when APC is inactive, Rum1 is absent, and Cdc13 
is accumulating. As model shows the duration of pre-Start is 
short while the post-Start phase is long, as in wild-type fission 
yeast cells [28]. In our simulation, the cell is so large in pre-
Start that Cdc13/Cdc2, in combination with Puc1/Cdc2, 
quickly inactivates the APC and phosphorylates (destroys) 
Rum1. Rising CDK activity in the nucleus initiates DNA 
synthesis (the cell passes Start). As Cdc13/Cdc2 dimers 
accumulate after Start, they are at first tyrosine 
phosphorylated by the unreplicated-DNA surveillance 
mechanism and by the cell size surveillance mechanism. 
Under normal conditions, the DNA-replication requirement is 
satisfied long before the cell-growth requirement. When the 
cell grows large enough, the positive feedback loops activate 
the pool of preMPF (tyrosine-phosphorylated dimers), driving 
the cell into M-phase. G2-phase is long in wild-type strains 
because a cell must grow to this minimal size before it can 
enter mitosis [29]. 

In this manner, the rising pattern of Cdc13-dependent 
kinase activity can drive an orderly progression of S- and M-
phases, if initiation of DNA synthesis requires a lower CDK 
activity than initiation of mitosis [23]–[30]. 

As MPF activity increases dramatically at the end of G2-
phase, chromosomes begin to condense, a mitotic spindle 
forms, and apoAAE begins to accumulate. At the same time, 
dynamic microtubules search for kinetochores on individual 

TABLE I 
KINETIC PARAMETERS 

Kinetic Parameters Tyson Genetic Design 

CYCLIN  SYNTHESIS & DEGRADATION 
k1 0.03 0.05 
V’

2 0.03 0.07 
V’

2c 0.03 0.09 
V”

2 1 4 
V”

2c 0.16 0.43 
AAE SYNTHESIS & DEGRADATION & APC REGULATION 

kas 0.25 0.45 
k’

aa 0.001 0.097 
k’

ai 0.25 0.65 
k’

apr 0.04 0.07 
Jaa 0.1 0.8 
Jap 0.01 0.002 
kad 0.1 0.1 
k”

aa 1 4 
kap 4 9.6 
k”

apr 3 6.4 
Jai 0.1 0.8 
Japr 0.01 0.02 

RUM1 SYNTHESIS & DEGRADATION & BINDING 

k3 0.15 0.11 
k’

4 0.15 0.39 
ki 200 220 
k”

4 20 27.6 
kir 1 0 

TYR-15 PHOSPHORYLATION & DEPHOSPHORYLATION 
V’

wee 0.01 0.09 
kw 0.5 0.5 
Jw 0.2 0.3 

V’
25 0.01 0.095 

k25 0.5 0.99 
J25 0.2 0.13 

V’
mik 0.002 0.003 

km 0.1 0.9 
Jm 0.2 0.6 

V”
wee 0.93 2.9 

k’
wr 0.2 0.05 

Jwr 0.2 0.2 
Jwr 0.4 0.96 

V”
25 0.2 0.5 

k’
25r 0.2 0.3 

J25r 0.2 0.14 
V”

mik 0 0.13 
k’

mr 0.2 0.14 
Jmr 0.01 0.09 
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chromosomes, which get pulled back and forth as they attach 
first to one pole of the spindle and then to the other. High 
MPF activity tries to activate AAE, but a strong signal coming 
from unaligned chromosomes inactivates AAE. As the 
chromosomes line up on the metaphase plate, MPF is able to 
activate AAE, which in turn activates APC. Cdc13 is 
degraded, AAE decays, and the cell returns to pre-Start. 

 

 
 

Fig. 5 Comparison of the learnt model behavior (Blue line) to the real 
one (Red line) and the previous model (Green Line) for Mass 

 

 
 

Fig. 6 Comparison of the learnt model behavior (Blue line) to the real 
one (Red line) and the previous model (Green Line) for MPF 

 

 
 

Fig. 7 Comparison of the learnt model behavior (Blue line) to the real 
one (Red line) and the previous model (Green Line) for Pre-MPF 

 

 
 

Fig. 8 Comparison of the learnt model behavior (Blue line) to the 
previous model (Red line) for Phases (G1=1, S=2, G2=3 and M=4) 

V. DISCUSSION AND CONCLUSION 
In this paper, a precise, mathematical connection between 

the molecular networks is provided that surrounds cyclin-
dependent kinase and the classical phases of the cell cycle.  
The modeling process starts by using the fission yeast’s 
experimental data and applying genetic algorithm to mine this 
set of behavior data in order to determine the kinetic 
parameters of the system. In our approach the machine 
learning method is integrated with the framework of 
biological information in a wiring diagram, which has been 
proposed by Novak and Tyson, so that its findings are 
expressed in a form of system dynamic behavior. Computer 
simulations of the model are in accordance with the 
physiological properties of wild-type cells and it has shown 
that the simulation results are improved considerably with 
trained kinetic parameters. The proposed approach is unique 
in that it provides a means to discover system’s coefficient by 
genetic algorithm so that the solutions can be shared and 
transferred in a mathematical model for better integration. 
Computer simulations of the model are in accordance with the 
physiological properties of wild-type cells.  

Applying genetic algorithm to analysis of bio-information is 
an important area of study. The fast progress of biology 
development has accumulated a tremendous amount of 
experimental data, which becomes a big challenge to 
efficiently extract valuable knowledge hidden behind. Genetic 
algorithm can contribute substantially in this area by 
generating potential solutions to save the time and effort of a 
biologist. The method proposed in our approach is just an 
initial step to discover related information from a biological 
system. The ultimate goal of this line of study can be using 
data mining to assist model construction and behavior analysis 
in systems biology. 
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