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Abstract—The weighting exponent m is called the fuzzifier that 
can have influence on the clustering performance of fuzzy c-means 
(FCM) and m∈ [1.5,2.5] is suggested by Pal and Bezdek [13]. In this 
paper, we will discuss the robust properties of FCM and show that the 
parameter m will have influence on the robustness of FCM. According 
to our analysis, we find that a large m value will make FCM more 
robust to noise and outliers. However, if m is larger than the theoretical 
upper bound proposed by Yu et al. [14], the sample mean will become 
the unique optimizer. Here, we suggest to implement the FCM 
algorithm with m∈ [1.5,4]  under the restriction when m is smaller 
than the theoretical upper bound. 
 

Keywords—Fuzzy c-means, robust, fuzzifier.  

I. INTRODUCTION 

N fuzzy clustering, the fuzzy c-means (FCM) algorithm is 
the best-known method [1,2]. Although FCM is a good 

clustering algorithm, there are some drawbacks when we apply 
FCM. Therefore, many extensions to the FCM algorithm had 
been proposed in the literatures. Overall, these extended types 
of FCM can be divided into two categories. One is to extend the 
dissimilarity (or distance) measure between the data point and 
the cluster center  in the FCM objective function by replacing 
the Euclidean distance with the other types of metric measures 
(see Refs. [3,4,5,6,7]). Another one is to extend the FCM 
objective function by adding a penalized term (see Refs. 
[8,9,10,11]).  

 Another important influence factor to the effectiveness of 
FCM is the weighting exponent m which had been well 
investigated by Pal and Bezdek [13] and Yu et al. [14]. Pal and 
Bezdek [13] suggested to take m∈ [1.5,2.5]  and Yu et al. [14] 
proposed a theoretical upper bound for m that can prevent the 
sample mean being the unique optimizer of FCM objective 
function. In this paper, we will analysis the robustness of FCM 
based on the statistical point of view and show that FCM can be 
robust to noise and outliers in a large m case. In Section II, we 
brief review the FCM clustering method. We also discuss the 
parameter selections of FCM in Section III. In Section IV, we 
will discuss the robust properties of FCM and show that the 
parameter m will have influence on the robustness of FCM. We 
find that a large m value will make FCM more robust to noise 
and outliers. Conclusions are illustrated in Section V. 
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II. FUZZY C-MEANS CLUSTERING ALGORITHM 

Let { }1 , ,
n

X x x= �  be a data set in an s-dimensional space 

s
R . Let c be a positive integer greater than one. A partition of X 
into c parts can be presented by mutually disjoint set 

1 ,
c

X X�  

such that 
1 c

X X X∪ ∪ =� , or equivalently by the indicator 

functions 
1 ,

c
µ µ�  such that ( ) 1ij i jxµ µ= =  if 

j i
x X∈  and 

0
ij

µ =  if 
j i

x X∉  for 1, ,i c= �  and 1, ,j n= � . The set of 

indicator functions 
1 ,

c
µ µ�  is called a hard c-partition of 

clustering X into c clusters. Now consider an extension to allow 

( ) [0,1]ij i jxµ µ= ∈  to be membership functions of fuzzy sets 

i
µ  on X such that 

1
1

c

iji
µ

=
=∑  for all 

j
x . In this section, we 

will give a brief review of the best-known fuzzy clustering 
method fuzzy c-means (FCM) and then discuss the parameter 
selections in FCM. We will also discuss the influence of 
fuzzifier m on the robustness of FCM. 

In unsupervised learning clustering literatures, the fuzzy 
c-means (FCM) algorithm is the best-known fuzzy clustering 
method. The FCM is an iterative algorithm using the necessary 
conditions for a minimizer of the objective function 

FCM
J  with 

( )
2

1 1

,
c n

m

FCM ij j i

i j

J a x aµ µ
= =
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where the weighting exponent m>1 is a fuzziness index, 

1{ , }
c

µ µ µ= �  with ( )ij i jxµ µ=  is a fuzzy c-partition and 

{ }1 , ,
c

a a a= �  is the set of c cluster centers. The necessary 

conditions for a minimizer ( , )aµ  of 
FCM

J  are the following 

update equations: 
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Note that, 
2

( , )j i j id x a x a= −  is most used. However, other 

types of metric may be used to improve the usage and 
effectiveness of FCM (see Refs. [3,4,5,6,7]). On the other hand, 
another important factor influencing the effectiveness of FCM is 
the fuzziness index m, which has previously been thoroughly 
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TABLE II 
MEAN SQUARE ERROR (MSE) AND NUMBER OF ITERATIONS OF 100 

RANDOMLY GENERATED NORMAL-4 DATA SETS 

best case average worst case best case average worst case
m=1.5 0.05791 0.14554 0.33201 10 14.93 23
m=2 0.16153 0.45912 0.91060 13 20.20 35
m=2.5 3.87754 5.95604 6.52174 50 50.00 50
m=3 6.67529 6.74813 6.79683 36 42.24 50
m=3.5 6.73916 6.75495 6.78513 27 30.80 36

MSE Number of iterations

 

Fig. 1. The membership functions and ϕ  functions of FCM. (a), (b), (c) and (d) are membership functions with different fizzifier m=1.5, 2, 4 and 6, 

respectively. (e), (f), (g) and (h) are ϕ  functions with different fizzifier m=1.5, 2, 4 and 6, respectively. 

TABLE I 
THE UPPER LIMIT OF M FOR THE DATA SETS 

Data set
Number of
Samples

Number of
Features

Number of
Clusters

λmax (Cx )
Upper
limit of
m

Isolet 1+2+3+4 6238 617 26 0.1889 1.6072
Isolet 5 1559 617 26 0.1926 1.6265

Sonar 208 60 2 0.1949 1.6388
Vowel 990 10 11 0.2189 1.7787

PimaIndiansDiabetes 768 8 2 0.2558 2.0475
Waveform 5000 21 3 0.3272 2.8935

Glass 214 9 6 0.3424 3.1726
Iris 150 4 3 0.6652 +∞
 

investigated in Pal and Bezdek [13] and Yu et al. [14]. 

III. PARAMETER SELECTIONS IN FCM 

The weighting exponent m is called the fuzzifier that can have 
influence on the clustering performance of FCM. The influence 
of the weighting exponent m on the FCM membership function 
is shown in Fig. 1. This figure is produced by assuming that 
there are only two clusters with centers 0 and 2. The curves with 
different m values are the membership functions belonging to 
the cluster with center 0. When m = 1, the FCM will reduce to 
the traditional hard c-means. When m tends to infinity, 

1 /ij cµ =  for all i, j and the sample mean will be a unique 

optimizer of FCM objective function. In fact, this situation may 
occur for any specified m values and Yu et al. [14] proposed a 
theoretical upper bound for m that can prevent the sample mean 
from being the unique optimizer of FCM objective function. 
The rule is that ,

i
i a x∀ =  is stable for FCM 

if ( )max 0.5
X

Cλ <  and ( ) 1
max(1 2 )

X
m Cλ −

≥ − , where 

( )( )
2

1

Tn

X j j jj
C x x x x n x x

=
= − − −∑ and ( )max X

Cλ  is 

the maximum eigenvalue of the matrix 
X

C . Therefore, for 

FCM, we should set ( ) 1
max(1 2 )

X
m Cλ −

< −  if 

( )max 0.5
X

Cλ < . If ( )max 0.5XCλ ≥ , we can take m to be any 

positive values and m ∈ [1.5,2.5] is suggested by Pal and 
Bezdek [13]. 

Table I (refer to Yu et al. [14]) shows the upper limit of m for 
some data sets obtained from the UCI Repository of Machine 
Learning Databases. For the data sets with ( )max 0.5

X
Cλ < , 

sample mean will be the unique optimizer of FCM when the 
fizzifier ( ) 1

max(1 2 )
X

m Cλ −
≥ −  (the upper limit). The 

traditional specified m for FCM is 2 and we find that there are 
four data sets with the upper limit of m smaller than 2. In IRIS 
data set [15,16], since the maximum eigenvalue of the matrix 

X
C  is larger than 0.5, the upper limit of m for the Iris data set is 

positive infinity. Yang and Wu [11] also confirmed a part of 
these results. We now give a simple example to demonstrate 
above properties.  

We implement the Normal-4 data set to test the inferences of 
m on the performances of FCM. Pal and Bezdek [13] proposed 
the Normal-4 data set, which is a 4-dimensional data set with the 
sample size n=800 and each of four clusters contains 200 points. 
The population mean vectors are ( )1 3, 0, 0, 0c = , 

( )2 0, 3, 0, 0c = , ( )3 0, 0, 3, 0c =  and ( )4 0, 0, 0, 3c = . The 

covariance matrix for each population is the identity matrix 4I . 

We randomly generate 100 Normal-4 data sets and implement 
the FCM algorithm for each one of the data set with the 
parameters m=1.5, 2, 2.5, 3 and 3.5. We then calculate the 
average MSE and average number of iterations for these 100 
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Fig. 2. Clustering results of FCM with grid points. 

randomly generated Normal-4 data sets. The results are shown 
in Table II. Yu et al. [14] concluded that the theoretical valid m 
for a random Normal-4 data set should be not greater than 2.6 
which sample mean is an optimizer with approximately 50% 
probability. In Table II, when m=2.5, the worst case is the 
sample mean being the unique optimizer with MSE=6.52. When 
m=3 and 3.5, the FCM always produce the unique optimizer x . 
These results are coincident to Yu et al. [14]. Although a too 
large m may cough trouble in FCM, a suitable large m value can 
make FCM more robust to noise and outlier. We will discuss this 
property in next subsection. 

IV. ROBUST ANALYSIS OF FUZZY C-MEANS 

The influence curve (IC) can help us to assess the relative 
influence of an individual observation toward the value of an 
estimate. The influence function of an M-estimator is 
proportional to its ϕ  function [17]. If the influence function of 

an estimator is unbounded, an outlier might cause trouble where 
the ϕ  function is used to denote the degree of the influence. Let 

the loss between the data point 
j

x  and cluster center 
i

a  be  

2
( ) m

j i ij j ix a x aρ µ− = −   (4) 

and 

( )( ) ( ) 2 m

j i j i ij j i

i

d
x a x a x a

da
ϕ ρ µ− = − = − −  (5) 

By solving the equation 
1

( ) 0
n

j ij
x aϕ

=
− =∑ , we have the 

result shown in Equation (3). Thus, the FCM cluster center 
estimate is an M-estimator with the loss function (4) and ϕ  

function (5). Refer to Figs. 1(a)~1(d), the corresponding ϕ  

functions with different m are illustrated in Figs. 1(e)~1(h). The 
influences of adding a point on the cluster center 0 will become 
very small when m is large. That is, FCM can be robust to noise 
and outliers with a large m value. Figure 2 is a simple example 
to illustrate this phenomenon.  

This is an artificial data set with grid points. We implement 
FCM with different m values and the results are shown in Figs. 
2(a), 2(d) and 2(g). We then add an outlier point in the 
coordinate (50,50) and the results are shown in Figs. 2(b), 2(e) 
and 2(h). Moreover, we add one more outlier point in the 
coordinate (100,100) and the results are shown in Figs. 2(c), 2(f) 
and 2(i). These results are coincident to the phenomenon 
illustrated in Fig. 1. We also implement the IRIS data set [15,16] 
to test the influences of parameter m on the results of FCM. The 
IRIS data set  has n = 150 points in an s = 4 dimensional space. 
It consists of three clusters wih Iris Setosa, Iris Versicolor and 
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Fig. 3. The error counts of IRIS data set. 

Iris Virginica. Two clusters have substantial overlapping. The 
clustering error counts of this data are approximate 16. Figure 3 
shows the clustering error counts of the IRIS data obtained by 
FCM with different m values (m=1.1, 1.5, 2, 3, 4, …, 50). The 
error counts are approximate 13 when m is large. These 
examples reveal the robust properties of FCM when m becomes 
large.  

V. CONCLUSIONS 

Note that, when m tends to infinity, the ϕ  function of a finite 

point 
j

x  will tend to 0. However, in real application, we never 

observe an infinity data point. We then have  

lim ( ) 0j i
m

x aϕ
→ ∞

− =  (6) 

for a real data point. That is, a very large m value will make 
FCM very robust. However, this is not a good guideline for 
selecting m in FCM. Although FCM becomes very robust in a 
large m case, the membership value for each data point will very 
close to 1/c in this case and the sample mean will become the 
unique optimizer. Figure 1(d) also shows that the membership 
values for the data points becomes closed to 0.5 when m=6. 
Here, we suggest implementing FCM with m∈ [1.5,4] under the 
restriction that m is smaller than the theoretical upper bound 
proposed by Yu et al. [14]. 
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