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Abstract—In a previous work, we presented the numerical 
solution of the two dimensional second order telegraph partial 

differential equation discretized by the centred and rotated five-point 

finite difference discretizations, namely the explicit group (EG) and 

explicit decoupled group (EDG) iterative methods, respectively. In 

this paper, we utilize a domain decomposition algorithm on these 

group schemes to divide the tasks involved in solving the same 

equation. The objective of this study is to describe the development 

of the parallel group iterative schemes under OpenMP programming 

environment as a way to reduce the computational costs of the 

solution processes using multicore technologies. A detailed 

performance analysis of the parallel implementations of points and 

group iterative schemes will be reported and discussed. 

 

Keywords—Telegraph equation, explicit group iterative scheme, 
domain decomposition algorithm, parallelization.  

I. INTRODUCTION 

ONSIDER the telegraph equation which is a hyperbolic, 

second order partial differential equation (PDE) defined 

in the rectangular region { }( , , ) | 0 , 1, 0x y t x y tΩ = < < >  

of the following form: 
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where ( , , ) 0, ( , , ) 0, ( , , ) 0, ( , , ) 0x y t x y t A x y t B x y tα β> ≥ > > , 

with the initial and Dirichlet boundary conditions are given by 
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     Let 0k > and 0h > be the time step and space step, 

respectively. We discretized the Ω  uniformly in both x and y 

directions with a mesh size 1h n=  where n  is an arbitrary 

positive integer. The grid points are given by 

( , , ) ( , , )
i j m
x y t ih jh mk≡ where 1, 2, 3, ...m = . Let 

,

m

i j
U

 
be the 

exact solution of the differential equation and 
,

m

i j
u be the 

computed solution of the approximation method at the grid 

point ( , , )
i j m
x y t .  

 

L. M. Kew is a doctoral candidate at the School of Mathematical Sciences, 

Universiti Sains Malaysia, 11800 Penang, Malaysia (corresponding author e-

mail: leeming_kew@hotmail.com).  
Norhashidah Hj. M. Ali is a permanent staff of School of Mathematical 

Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia. (e-mail: 

shidah@cs.usm.my). 

 

     There are various ways to discretize Equation (1), where 

this equation is commonly encountered in physics and 

engineering mathematics. In [1], two new explicit group 

relaxation methods derived from the standard and rotated five-

point difference approximation are used to solve the two 

dimensional second order hyperbolic telegraph equation (1). 

These explicit group methods were developed using small 

fixed size group strategy which required lesser execution time 

than the classic point iterative methods. The aim of this paper 

is to develop a more economical computational solution for 

Equation (1) by utilizing a domain decomposition strategy [2] 

to divide the discretized solution domain, and parallelize it 

using OpenMP programming environment. In the next section, 

a brief explanation will be given on the standard and rotated 

five-point difference formulas and explicit group relaxation 

methods for the two dimensional telegraph equations. Domain 

decomposition techniques and ordering strategies for each 

discretized method will be discussed in Section III. Section IV 

describes the parallelization under OpenMP programming 

environment. The numerical experiments and the results are 

presented in Section V. Finally, concluding remarks are given 

in Section VI. 

II. THE GROUP ITERATIVE METHODS 

     As described in the previous section, Equation (1) can be 

approximated by various finite difference formulas. One 

commonly used formula is the standard five-point difference 

scheme: 
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where 
2 2

, ,r t h a t b tα β= ∆ = ∆ = ∆ and 1h x y n= ∆ = ∆ = .  

 Another formula is the rotated five-point difference scheme: 
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     Equation (3) is obtained by rotating the x-y axis clockwise 

45 degrees [3]. Rotated five-point difference scheme can be 

constructed by dividing the grid points into 2 types of points 

on the x-y plane of the solution domain. Iterations can be 

generated involving one type of points only and when 
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convergence is achieved, the solution at the remaining points 

will be evaluated directly using equation (2).  

 

     The application of Equation (2) and (3) to the grid points in 

the solution domain at each time level will result in a large 

sparse linear system of form 

                                     Au b=                                         (4) 

where the matrix A and the column vector b are both known, 

and the column vector u is unknown. We will next describe 

the construction of the Explicit Group (EG) and Explicit 

Decoupled Group (EDG) methods. 

 

A. Explicit Group (EG) Method 

     Applying equation (2) to any group of four points on a 

solution domain will result in a (4x4) system of equations 
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The (4x4) system in (4) can be inverted to produce a four-

point EG formula: 
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B. Explicit Decoupled Group (EDG) Method 

   Similarly, applying equation (3) to any group of four points 

on a solution domain at each time level will result in a (4x4) 

system  
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which can be written in decoupled system of (2x2) equations 

in explicit form 
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     Similar to the rotated five-point formula, the EDG scheme 

is also constructed by dividing the grid points into 2 types of 

points on the x-y plane of the solution domain at each time 

level. It corresponds to generation of iterations on one type of 

points by using either equation (8) or (9) until a certain 

convergence criteria are met. After convergence is achieved, 

the solution at the other remaining half of the points are 

evaluated directly once using the standard five-point 

difference formula of equation (2). With this, the execution 

time of this EDG scheme may be reduced by half of the 

execution time of the EG scheme. Further details regarding 

these explicit group iterative methods on elliptic and parabolic 

equations can be obtained in [1, 3-5]. 

III. DOMAIN DECOMPOSITION METHOD 

     Most domain decomposition methods (DDM) are developed 

for solving elliptic problems [6, 7] and parabolic problems [8, 

9]. Domain decomposition methods have been considered as 

very efficient methods for solving partial differential equations 

on parallel computers [9]. It can be classified to two classes; 

overlapping and non-overlapping methods with respect to the 

decomposition of the domain. The main difference between 

overlapping and non-overlapping schemes is in the choice of 

the shared boundaries or areas. In this paper we focus on the 

use of overlapping domain decomposition method in the 

spatial domain to solve the two-dimensional hyperbolic 

problem (1). In order to solve this DDM with overlapping sub-

domain, Schwarz alternating procedure (SAP) is used. This 

Schwarz alternating procedure operates between two 

overlapping sub-domains; solving the Dirichlet problem on one 

sub-domain in each iteration by taking the boundary conditions 

based on the most recent solution obtained from the other sub-

domain. The details of this SAP can be obtained in [2].  

In order to implement this domain decomposition algorithm, 

different ordering strategies need to be considered for each 

finite discretization scheme due to the shared boundaries 

between sub-domains. In this case, the standard point iterative 

scheme uses natural ordering strategies, the rotated point 

iterative scheme uses zebra ordering strategies while the 

explicit group iterative method uses red black group ordering 

strategies and explicit decoupled group method uses 

combination of red black and zebra ordering strategies. We 

describe the ordering strategies used for the explicit group 

iterative method and its algorithm. In Fig.(1), we decompose  

the solution domain into four sub-domains, 1 2 3 4, ,  and Ω Ω Ω Ω  

. In order to solve at the points   in 1Ω , we need the points 

1, 2, 3, 4 where the points 1 and 2 are from 2 3 and Ω Ω

respectively, while the points 3 and 4 are from 1Ω . In the case 

of parallelization, the sub-domains 1 2 3 4, ,  and Ω Ω Ω Ω are 

computed concurrently. There is a possibility that the solutions 

at the points 1 and 2 are updated on the respective sub-domains 

when the points  are computed. This may cause inaccuracy 

in the numerical results. Thus, we need to organize the 

ordering strategies to prevent any conflict on the usage of 

points among sub-domains. With this in mind, a red black 

group ordering strategy is introduced to this scheme. The black 

group points are computed concurrently, followed by red group 

points. The algorithm of this scheme is presented in Table 1.  

 
Fig. 1 Explicit group scheme with domain decomposition method 

 

This domain decomposition strategy can also be 

implemented for the EDG scheme. But the iterations will only 

involve two out of 4 points in a group using either equation (8) 

or (9). After the global iteration converges, the solutions at the 

remaining points are obtained directly using the standard 

equation (2) before proceeding to the next time level 

 
TABLE I  

ALGORITHM FOR EXPLICIT GROUP SCHEME USING RED BLACK GROUP 

ORDERING STRATEGY 

1.   Choose an initial guess u to the solution 

2.  For each time step: 
3.       Set Boundary Condition 

4.       Until convergence, Do (Global): 

5.               Identify the subdomain boundaries values 
6.               Until Convergence, Do (Local): 

7.                         For each subdomain: 
 
 

8.                                  Solve at the black group points 
9.                         EndDo 

10.                         For each subdomain: 
 
 

11.                                  Solve at the red group points 
12.                         EndDo 

13.                         Check the local convergence test 

14.             EndDo 
15.             Check the global convergence test 

16.       EndDo 

17. EndDo 

IV. PARALLEL IMPLEMENTATION ON MULTI-CORE 

PROCESSORS 

     A multiple-core (multi-core in short) processor is an 

integrated circuit (IC) which combines two or more 

independent cores in a single PC. As of now, some PC may 

have dual-core or quad-core processors. Hence for the purpose 

of this paper we will focus on quad-core processors. However 

a multi-core PC will operate with a single core, unless 
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specially instructed to run on multi-core. To run on multi-core 

computers, the programs must be modified appropriately. The 

aims are to enhance the processing performance, to reduce 

power consumption, and to process multiple tasks 

simultaneously with better efficiency. In order to take 

advantage of these multi-core architectures, programs need be 

tailored to enable it to be executed in parallel mode [10]. 

Table 2 presented the syntax of implementing the program on 

multi-core processor. Considering parallelism, it is observed 

that Steps 7 – 12 in Table 1 is the most expensive part of the 

algorithm and this part should have the most advantage from 

the parallelization. For convenience, the solution domain is 

decomposed into four horizontal strips. Each strip will send to 

each core or thread for execution which runs concurrently.   

 
TABLE II 

SYNTAX FOR IMPLEMENTING THE PROGRAM ON MULTI-CORE PROCESSOR 

#include <omp.h> 

void main() 

{ 

         int num_threads; 
         omp_set_num_threads(omp_num_procs()); 

         #pragma omp parallel for 
         { 

                 Compute the points in each sub-domain 

         } 
} 

V. EXPERIMENTAL RESULTS AND DISCUSSIONS 

In order to demonstrate the viability of the proposed 

methods in solving the two dimensional second order 

hyperbolic equation (1), experiments were carried out on a 

quad core i7 CPU 2.0 GHz, 4GB of RAM with Window 7 

operating system using Microsoft Visual Studio 2010. This 

experiment is to solve the hyperbolic problem (1) with the 

exact solution 
2 2

( , , )u x y t x y t= + + and 

2 2
( , , ) 2f x y t x y t= − + + + over the region

[0,1] [0,1] and 0 1tΩ = × ≤ ≤
 
[11]. The boundary and initial 

conditions are given by
 

2 2

2 2

2 2 2 2

(0, , ) ;  (1, , ) 1 ;

( , 0, ) ;  ( ,1, ) 1 .

( , , 0) ;  ( , , 0) 1.
t

u y t y t u y t y t

u x t x t u x t x t

u x y x y u x y x y

= + = + +

= + = + +

= + = + +

 

The relaxation factor is set equal to 1.0 (Gauss Seidel 

relaxation scheme). The local and global epsilons were set 

equal to10 9 and 10 10E E− − , respectively. The time step 

used is 0.001t∆ = and the total time is 100T = . The 

experiment result in Table 3 shows the comparison execution 

times obtained for the sequential algorithm (1 thread) and 

parallel algorithm (4 threads) for the standard point, rotated 

point, explicit group and explicit decoupled group methods. 

The speedup is used to measure the performance of the 

parallel algorithms compared to the corresponding sequential 

algorithms. The speedup formula used is in the form of 

1

p

2

Execution time for a single thread T
Speedup = S  = 

Execution time using 4  threads / 4
 ; 

T

 

It can be observed that the computational results obtained 

from the EG and EDG methods maintained the same degree of 

accuracies with the point methods. The EDG method requires 

the least computing times compared to other methods due to 

its lower computational complexity. It is observed that the 

speedups for the rotated point, EG and EDG are not as good as 

the standard point method due to its ordering strategies. For 

the EG method for example, the black group points need to 

finish its computation before the updates on red group points 

start to be computed. This may incur more overheads and 

delay the execution timings. The same thing also occurred in 

the rotated point and the EDG method. However, as shown in 

Table 3, the execution times of the parallel EDG can be saved 

up to about 50% compared to the sequential EDG, 41% for the 

EG method, 52% for the rotated point method and 47% for the 

standard point method for the mesh size 321.  

 
TABLE III 

EXPERIMENT RESULTS 

h-1 

Non Parallel (1 Thread) Parallel (4 Threads) 

Standard Point Iterative Method 

Iter 
Max 
Error 

Elapsed 
Time 

Iter 
Max 
Error 

Elapsed 
Time 

Speed-
up 

81 2 6.978E-5 77.835 2 6.978E-5 37.307 8.345 

161 2 6.978E-5 396.618 2 6.978E-5 194.343 8.163 
201 2 6.978E-5 731.795 2 6.978E-5 362.542 8.074 

321 2 6.940E-5 2554.604 2 6.942E-5 1351.804 7.565 

h-1 

Rotated Point Iterative Method 

Iter 
Max 
Error 

Elapsed 
Time 

Iter 
Max 
Error 

Elapsed 
Time 

Speed-
up 

81 2 6.981E-5 25.573 2 6.981E-5 22.947 4.458 

161 2 6.981E-5 170.089 2 6.981E-5 117.238 5.803 
201 2 6.981E-5 280.781 2 6.981E-5 196.040 5.729 

321 2 6.981E-5 1862.908 2 6.981E-5 889.472 8.378 

h-1 

Explicit Group Iterative Method 

Iter 
Max 
Error 

Elapsed 
Time 

Iter 
Max 
Error 

Elapsed 
Time 

Speed-
up 

81 2 6.978E-5 30.301 2 6.978E-5 27.071 4.477 

161 2 6.980E-5 192.598 2 6.980E-5 141.821 5.432 

201 2 6.980E-5 366.113 2 6.980E-5 268.105 5.462 
321 2 6.980E-5 1698.085 2 6.980E-5 1008.308 6.736 

h-1 

Explicit Decoupled Group Iterative Method 

Iter 
Max 

Error 

Elapsed 

Time 
Iter 

Max 

Error 

Elapsed 

Time 

Speed-

up 

81 2 6.981E-5 24.358 2 6.981E-5 22.261 4.377 

161 2 6.981E-5 162.271 2 6.981E-5 111.641 5.814 

201 2 6.981E-5 273.845 2 6.981E-5 190.635 5.745 
321 2 6.981E-5 1559.025 2 6.981E-5 790.265 7.891 

VI. CONCLUSION 

      In this paper, we have presented the utilization of domain 

decomposition techniques on some newly developed finite 

difference schemes in solving two dimensional telegraph 

equations. The finite difference schemes used in this paper 

were the explicit group (EG) and explicit decoupled group 

(EDG) methods. We have described the development of these 

parallel group iterative schemes under OpenMP programming 

environment. For comparison purposes, we also include the 

results of the pointwise schemes; the traditional standard and 

the rotated point methods.  The experimental results show that 

the parallel algorithms managed to successfully save up to 

50% of the computational costs compared to their sequential 

algorithms. Research on how these algorithms need to be re-

constructed to be implemented on parallel technology using 
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graphics processing unit (GPU) is still under investigation and 

will be reported soon.  
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