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Abstract—Grobner basis calculation forms a key part of compu-
tational commutative algebra and many other areas. One important
ramification of the theory of Grobner basis provides a means to solve
a system of non-linear equations. This is why it has become very
important in the areas where the solution of non-linear equations is
needed, for instance in algebraic cryptanalysis and coding theory. This
paper explores on a parallel-distributed implementation for Grobner
basis calculation over GF(2). For doing so Buchberger algorithm is
used. OpenMP and MPI-C language constructs have been used to
implement the scheme. Some relevant results have been furnished
to compare the performances between the standalone and hybrid
(parallel-distributed) implementation.
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I. INTRODUCTION

GROBNER basis has been a cornerstone for Computa-
tional Commutative Algebra. Along with many problems

relating to System Theory [3], many problems from Algebra
like Ideal Membership problem or from Geometry like Auto-
matic Theorem Proving can be solved by constructing Grobner
basis [6]. There have been some very important and interesting
problems from Cryptanalysis [2] and Error Correcting Codes
and like these many more can be tackled by applying Grobner
basis in GF(2).

There have been several algorithms and implementations
- both standalone and distributed - proposed to calculate
Grobner basis. First algorithm to compute the Grobner basis is
proposed by Bruno Buchberger [3]. However the complexity
bounds of this algorithm is quite high and as a matter of fact
the complexity of any general methods to compute Grobner
basis is very stiff [12]. Later on, some improvements have
been done upon this algorithm primarily to reduce the unnec-
essary S-Polynomial computations [6]. Recently two major
contributions to this end have been made by Jean Charles
Faugere when he proposed F4 and F5 [7], [8]. Along with
these basic improvements, there are quite a few distributed and
parallel implementation of Grobner basis calculation have been
reported. As the best algorithm to compute Grobener basis,
namely F4 and F5, rely heavily on linear algebraic techniques
or more precisely on Gaussian Elimination, Faugere et. al.
have published a parallel Gaussian Elimination technique for
Grobner basis calculation over finite fields[5]. Another work
reported to this end is by Soumen Chakraborty et. al. [4],
where they proposed a set and priority queue data structures.
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Their approach also made balance between shared memory
and distributed designs. The work by Heinz Kredel [10]
reported a distributed and parallel implementation of Grobner
basis by Java Computer Algebra Library (JAS). Their sole
target is to provide an modern object oriented implementation
of the tool. Based upon the observation that a Grobner basis of
a set can be calculated from the Grobner basis of its subsets,
Hemal V. Shah et. al. [17] proposed a technique to compute
Grobner basis in a parallel machine in a tree like fashion. As
far as the calculation of Grobner basis on GF(2) is concerned,
the paper by Y. Sato [16] described a way to compute Grobner
basis in distributed way over Boolean field. However his target
was to solve the set constraint problem. He showed that set
constraints can be represented by certain equations over certain
boolean rings. In his work [11], Anton Leykin, elaborates on
a parallel computation of Grobner basis. His idea is to use the
traditional Buchberger algorithm and dedicate a process as the
master process while making others as slaves.

Along with these works, some tools to calculate Grobner
basis are already available, for instance Sage, Macauley,
Singular. However these tools don’t provide the option to
run in parallel or distributed mode, in particular they don’t
give options to cash in the benefits of multicore or cluster
machines. Moreover these tools are general purpose tools
capable of calculating in any fields. Therefore, it appeared
that a parallel-distributed implementation of Grobner basis
calculation algorithm which can run in cluster environment
will be good addition. As some recent works on algebraic
cryptanalysis and algebraic coding theory make use of Grobner
basis in Boolean field, the implementation done here is mainly
for Boolean field. In so doing, memory efficient data structures
to store and time efficient basic algorithms to manipulate
Boolean polynomials have been conceived. An ingenious
representation for Boolean polynomial has been reported in
the documentation of Sage tool [1], however for this work
our representation seems to be more apt. Load balancing and
synchronization aspects of parallel distributed techniques have
been taken care of by adopting an ingenious scheme as will be
described down the line. The work is presented in this paper
in the following way.

Section II presents Buchberger Algorithm along with some
basic definitions and theoretical background of the work.
The description of the basic data structures and polynomial
manipulation routines are given in Section III. It also deals
with the standalone implementation. Section IV describes the
strategies adopted here for the hybrid (parallel-distributed)
implementation of the tool. It also elaborates on how these
strategies have been materialized in practical settings. Results
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and observations are provided in Section V. Section VI draws
the conclusion of the work.

II. GROBNER BASIS AND BUCHBERGER ALGORITHM

Some relevant portions of the theory is provided in this
section. [18], [6] are consulted for this section. Let P =
F [x] = F [x1, . . . , xn] be a polynomial ring in n variable over
a field F. A power product of a variable is called a term. τ
denotes the set of all terms in R. Then τd ⊂ τ is the set of all
terms of degree d. The degree of a term t = x

d1
1 x

d2
2 . . . x

dn
n

is defined as deg(t) =
∑

n

i=1 di. The product of a term and an
element c ∈ R is called a monomial.

Let f =
∑

cx
a1
1 . . . x

an
n
∈ P be a non-zero polynomial.

Let’s define T (f) = {xa1
1 . . . x

an
n
∈ τ : c �= 0} and M(f) =

{cx
a1
1 . . . x

an
n

: c �= 0}, and Td(f) = T (f) ∩ τd. The degree

of f , denoted by deg(f), is the maximal d such that Td(f) �= ∅

Next for any set of polynomials S ⊂ R let’s define the
following.

T (S) = ∪f∈ST (f)

, Td(S) = T (S) ∩ τd. Moreover < S > is used to denote the
ideal generated by all f ∈ S.

A term order � is a linear order on the set of terms τ if for
all t, t1, t2 ∈ τ it holds that 1 = x

0
1x

0
2 . . . x

0
n
≤ t and if t1 � t2,

then t1t � t2t. There can be several term orderings possible
for the multinomials. Here lexicographical term order has been
used, which is by definition x

d1
1 . . . x

dn
n
�lex x

e1
1 . . . x

en
n

iff
there exists some i with 1 ≤ i ≤ n such that di < ei and
dj = ej for all 1 ≤ j ≤ i − 1. Let a term order � be fixed.
For any two monomials at1 and bt2 with t1, t2 ∈ τ and non-
zero coefficients a, b ∈ F , at1 � bt2 iff t1 � t2.

The maximal element of T (f) w.r.t. � is called the leading
term of f and is denoted by LT (f). And in the same way,
LM(f) = max�(M(f)), is called the leading monomial
of f , amd its coefficient, denoted by LC(f), is the leading
coefficient of f. Clearly, LM(f) = LC(f).LT (f). Also for
any S ⊂ R put LT (S) = {LT (f) : f ∈ S}.

A. Grobner Basis

Let � be a term order on τ . Let G = {g1, . . . , gm} ⊂
P be a set of polynomials. A polynomial f ∈ P is called
reducible modulo G, if there exists a term t ∈ T (f) that is
divisible by some leading term of G. The following algorithm
describes a generalized division of f by G for multivariate
case. It produces the reduced polynomial h produced after
reduction of f by G. It is generally called the normal form of
w.r.t. G. It is simply written by the notation as f

G

→ h or f
G

.
Either of the notations will be used appropriately.

Algorithm 1: Polynomial Reduction
Input: A set G = {g1, . . . , gn} ⊂ P and f ∈ P

Output: h ∈ P such that f
G
→ h where h ∈ P

begin1
h← f2
while h is reducible modulo G do3

Select a monomial m ∈M(h) such that m = a.t4
where a ∈ F and t = t1.LT (gi) ∈ τ for some
1 ≤ ileqn and t1 ∈ τ
h← h− c.t1.g1, where c = a/LC(gi)5

end6

From the above algorithm it’s clear that h is not reducible
modulo G and there are f1, . . . , fm ∈ P such that

f =
m∑
i=1

figi + h

and LT (figi) � LT (f) for all 1 ≤ i ≤ m. It is quite possible
that the reduction of the polynomial f is not uniquely defined
since the there can be several leading terms in G, dividing a
particular term of f . However, any f ∈ P has a unique normal
form w.r.t. G if G is a spacial kind of basis, namely Grobner
basis.

Definition Let I ⊂ P be an ideal. A finite set of polynomials
G ⊂ I is called a Groner basis of I (w.r.t�) if < LT (G) >=<

LT (I) >.
The key concept behind the idea of Grobner basis is of

S-Polynomial. The following theorem sums up the key to
calculate Grobner basis.

Theorem 1: Let G ⊂ P be a finite set of polynomials. Then

G is a Grobner basis iff spol(gi, gj)
G

= 0 for any gi, gj ∈ G,
where the polynomial spol(gi, gj) called the S-Polynomial of
gi and gj is given by
spol(gi, gj) =

lcm(LT (gi),LT (gj))
LM(gi)

.gi−
lcm(LT (gi),LT (gj))

LM(gj)
.gj

The work presented in this paper is based upon Buchberger
Algorithm which works as follows.

Algorithm 2: Buchberger Algorithm

Input: A set G = {g1, . . . , gn} ⊂ P

Output: Grobner basis for the ideal < G >

begin1

CP ← {(gi, gj) : ∀1 ≤ i < j ≤ n}2

while CP �= ∅ do3

Select (f, g) ∈ CP4

CP ← CP − {(f, g)}5

if spol(gi, gj)
G

�= 0 then6

CP ← CP ∪ {(g, h) : ∀g ∈ G} and7

G← G ∪ {h}, where h = spol(gi, gj)
G

end8

In the above algorithm the elements of CP are called
critical pairs.

Uptil now the theory and algorithms for calculating Grobner
basis in general settings have been presented. Here the theories
relevant for GF(2) will be given and only the statements of
the important theorems are provided here. The source of this
part is [13]. At first some definitions are furnished.

Definition A Boolean polynomial is same as a polynomial
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defined above with conditions that c, ai ∈ GF (2) where 1 ≤
i ≤ n. And the set of boolean polynomials in the variables
x1, . . . , xn will be denoted as B.

Definition The set of polynomials FP = {a21+a1, . . . , a
2
n
+

an} ⊂ F2[a1, . . . , an] is called the set of Field polynomials.
Definition The multiplication ”.” between two terms of

Boolean polynomials is called a Boolean multiplication and
is defined as

(aαi

1 . . . a
αn
n

).(aβ1

1 . . . a
βn
n
) = a

max(α1,β1)
1 . . . a

max(αn,βn)
n ,

where αi, βi ∈ {0.1}.
The typical way of calculating Grobner basis in GF(2)

is to include FP in the initial basis and then feed that to
the Grobner basis calculating algorithm. However, due to the
following theorem the things can be handled differently in
GF(2).

Theorem 2: Let S ⊂ B be a generating system of some
ideal, such that FP ⊂ S ⊂ B∪FP . Then all the polynomials
created in the classical Buchberger Algorithm applied to S are
either Boolean polynomials or field polynomials, if a reduced
normal form is used.

Theorem 3: FP is a Grobner basis.
This theorem tells that during the computation the field

equations FP matter only in the intermediate ideal basis G

and the set of critical pairs B. Therefore one doesn’t need to
represent them directly as data structure in the algorithm and
can implicitly assume that they are there. And due to Theorem
2, the implementations of basic polynomials operations can be
designed explicitly for Boolean polynomials. In the following
section, the details of such polynomial representation and
manipulation are given.

III. BASIC DATA STRUCTURES AND POLYNOMIAL

MANIPULATION ALGORITHMS

A. Data Structures to store Boolean polynomials

The primary concern while developing a tool for Grobner
basis is how to design the data structures to store the polyno-
mials. According to the definition of Boolean polynomial one
can store them by a number having at least l bit length of its
binary representation and treating the bits as follows.

Let T be a term which is represented by a number N =
(b1 . . . bl)2. Then T will be stored in the following way
bi = 1, if ai appears in T

= 0, otherwise
In case of the present work, the polynomial-terms having

at most 128 variables are treated. So a structure having two
long integers has been used. However our representation is
fairly typical, it can be extended to greater lengths also. So
the structure for a term is Term { long high, low ;}.

A polynomial has a structure which entails
number of terms and a pointer pointing to an array of
terms. So the structure is Polynomial { int number of terms;
Term *t;}.

B. The basic Boolean polynomial manipulating routines and
the standalone implementation of Buchberger Algorithm

From the description of Buchberger Algorithm, it is clear
that in order to implement it, the implementation of the

routines for basic polynomial operations such as polynomial
addition, polynomial multiplication and polynomial reduction
by a base, are needed. After presenting the data structures
to represent the polynomials in the previous subsection, here
we elaborate the implementation of the basic polynomial
operations and in so doing only the crux will be explained
for the auxiliary routines.

The first thing to note is that for monomial ordering lexico-
graphical ordering has been used and ordering of the variables
considered to be a1  a2  . . .  an. Therefore, according
to the proposed representation of the polynomial terms, the
ordering of the natural numbers N itself will provide the
lexicographic ordering of the terms. Based on this observation
the routine to compare two terms TermComparator has been
implemented. It just compares the constituent numbers in the
terms involved and returns the result accordingly.

In order to restore the polynomials generated during the
operations in lexicographic order, a sorting routine SortAPoly-
nomial to sort the terms in a particular polynomial has been
developed. As already the TermComparator routine provides
the ordering of the terms, Bubble sort algorithm has been
materialized using it. Based upon these two routines the
polynomial addition routine has been developed as follows.
It just merges the polynomials involved but discarding the
common terms.

Algorithm 3: AdditionOfTwoPolynomials
Input: P1, P2 of type Polynomial
Output: R of type Polynomial such that R = P1 + P2
begin1

size1 ← P1.number of terms2
size2 ← P2.number of terms3
R.terms← AllocateMemoryForSize(size1 + size2)terms4
while (i < size1)&&(j < size2) do5

if TermComparator(P1.terms[i], P2.terms[j]) > 0 then6
R.terms[k + +]← P1.terms[i + +]7

else if TermComparator(P1.terms[i], P2.terms[j]) < 08
then

R.terms[k + +]← p2.terms[j + +]9

else10
i++ ; j++ ;11

while i < size1 do12
R.terms[k + +]← p1.terms[i + +]13

while j < size2 do14
R.terms[k + +]← p2.terms[j + +]15

R.number of terms← k16
return R17

end18

In case of MultiplicationOfTwoPolynomials an accumulator
polynomial has been used and it has been added with the inter-
mediate polynomial generated by multiplying the latest term of
one operand polynomial with the other operand polynomial.
The addition has been done through AdditionOfTwoPolyno-
mial routine. For MultiplyTwoTerms, the bitwise OR between
the constituent numbers representing the terms involved will
do.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:2, 2013

225

Algorithm 4: MultiplyTwoPolynomials
Input: P1, P2 of type Polynomial
Output: R of type Polynomial such that R = P1× P2
begin1

size1 ← P1.number of terms2
size2 ← P2.number of terms3
R.number of terms← 04
if (size1 == 0)||(size2 == 0) then5

return R6

R.terms← AllocateMemoryForASingleTerm7
middle storage.number of terms← size28
middle storage.terms ← AllocateMemoryOf size2T erms9
for i← 0; i < size1; i + + do10

for j ← 0; j < size2; j + + do11
middle storage.terms[j] ←12
MultiplyTwoTerms(P1.terms[i], P2.terms[j])

temp← R13
R← AddTwoPolynomials(R,middle storage)14

return R ;15
end16

Algorithm 5: ReduceAPolyByABase
Input: base an array of type Polynomial, base size the size of base, P of

type Polynomial
Output: Remainder of type Polynomial such that

Remainder = P −
∑

base[i] for some i in {1, . . . base size}
begin1

divisionoccured← 02
poly size← poly.no of terms3
Remainder.no of terms← 04
while polysize > 0 do5

divisionoccured← 06
i← 07
while i < base size && !division occured do8

if IsDivisible(poly.terms[0], base[i].terms[0]) then9
term←10
DivideATermByATerm(poly.terms[0], base[i].terms[0])
R2 ←11
MultiplicationOfATermAndAPoly(base[i], term)
temp poly ← SubtractTwoPoly(poly, R2)12
poly ← temp poly13
poly size← poly.no of terms14
division occured← 115

else16
i← i + 117

if division occured == 0 then18
Remainder ←19
AddATermToAPoly(Remainder, poly.terms[0])
poly ← AddATermToAPoly(poly, poly.terms[0])20
poly size← poly.no of terms21

return Remainder22
end23

The term division, DivideATermByATerm is carried out by
the observation that divisible term will lose the variables which
are common with the dividing term. Therefore, the bitwise
XOR operation between the constituent numbers in the terms
involved is done. However before applying this routine it needs
to be checked if the term to be divided is actually divisible
by the dividing term (IsDivisible). It was done by checking
if the bitwise OR between the numbers in the terms involved
gives back the dividing term or not. Having presented these
auxiliary routines, in Algorithm 5 the polynomial reduction
routine is presented. Two other routines, namely Multiplica-
tionOfATermAndAPoly and AddATermToAPoly are used here.
As these routines are quite straightforward, their descriptions
are skipped.

According to the definition of spol given in Theorem
1, MultiplyTwoTerms, DivideATermByATerm, MultiplicationO-
fATermAndAPoly, SubtractTwoPolynomials these routines are
sufficient to implement that SPoly. After describing the imple-

mentation of the needed routines, next the implementation of
Buchberger Algorithm is presented.

Algorithm 6: Buchberger
Input: base, an array of type Polynomial, basesize the size of base
Output: Generate the Grobner basis and store it to a file. Returns the modified

basesize

begin1
InitializeIndicator() ;2
remainder.no of terms← 03
while changed > 0 do4

changed← 05
for i← 0; i < base size− 1; i + + do6

for j ← i + 1; j < base size; j + + do7
if ! indicator[i][j] then8

indicator[i][j]← 19
spoly ← SPoly(base[i], base[j])10
if spoly.no of terms then11

remainder ←12
DivideAPolyByAnyBase(base, base size, spoly)

if remainder.no of terms then13
AddToTheBase(base, base size, remainder) ;14
base size++ ;15
StoreAPolyToAFile (fp, remainder) ;16
changed← 117

return base size ;18
end19

In the following section, the details of parallel-distributed
(hybrid) implementation of the tool is presented.

IV. HYBRID IMPLEMENTATION OF BUCHBERGER

ALGORITHM

The fundamental property for which the Grobner basis cal-
culation can be made distributive is that the base polynomials
are independent of each other and they interact in a well
specified way. Therefore here the idea is to store the generated
basis in distributed fashion across several processes and device
a scheme whereby the basis polynomials interact with each
other in the specified way. Apart from this, an effort has
been made here to parallelize the S-Polynomial calculations.
The most time consuming part of Buchberger Algorithm is
the calculation of S-Polynomials. However, the advantage is
there is no interdependency between the S-Polynomials of
two distinct pairs of polynomials. So here a technique has
been adopted whereby the processes involved can calculate
the S-Polynomials parallely and they communicate these S-
Polynomials among themselves in a well defined way.

In the distribution scheme a process has been dedicated
to do the coordination among the processes involved. It’s
named as “Driver”. Rest of the processes involved is termed as
“Auxiliary processes”. Before elaborating the details we stress
on the fact that here the polynomials as well as the processes
are identified by their identification number. For polynomials
it’s given by their positions (index) in the basis and for the
processes it’s their process identification number (PID).

The number of polynomials each process will have, at least
initially is parts = � base size

no of processes involved−1�. And each
process will start reading its share of polynomial base from
the polynomial number, named as start index, calculated as
follows.

start index = parts×(PID−1). Note here by PID, the
rank of a particular process is meant. Moreover the process
with rank 0 is treated as the Driver Process.
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To store the information about which polynomial resides in
which process, a table named “Process Statistics Table” (PStat)
has been maintained. The entries in this table has the following
structure {int process no, number of polynomials}. A routine
AppropriateProcessNumber has been implemented as follows:

Algorithm 7: AppropriateProcessNumber
Input: globalindex of the Polynomial, PStat the Stat table itself
Output: The PID of the process which posses the polynomial and the

local index of the polynomial within that process
begin1

j ← 12
sum1← 03
sum← PStat[j].number of polynomials4
while global index > sum do5

sum1← sum6
sum+ = PStat[j + +].number of polynomials7

local index← global index − sum18
end9

On inquiring for a particular polynomial with its index,
its job is to give the appropriate process number where the
polynomial is and the index of the polynomial within that
process.

Before elaborating on “Load Balancing” and “Synchroniza-
tion” aspects of the work in the following subsection dedicated
to explain overall strategy.

A. The Basic Idea of Distribution and Parallelization of the
Algorithm

Figure 1, depicts the scheme. The “Driver” is the process
which actually finds the new polynomials to be included in
the basis. For each possible polynomial pairs it requests to a
particular process to give the S-Polynomial for that pair. Upon
requested by the “Driver”, that particular “Auxiliary process”
comply to the request. As all the “Auxiliary processes” cal-
culates the S-Polynomials parallely, it takes shorter time than
the case where the one particular process needs to calculate all
the s-Polynomial required. Here each process runs two threads,
one to calculate -by and large- the S-Polynomials and the other
to communicate with other processes.

   Driver Process

A A A A
1 2 3 p

Communicater Thread

S−Polynomial Calculator Thread

Fig. 1. Communication protocol between the processes

B. Load Balancing and Increasing the S-Polynomial Hit

After the polynomials in the basis get distributed, the
idea is that a particular process will start calculating the S-
Polynomials for the pairs of polynomials it can find in its

memory. As the polynomials are identified by their unique
indexes, a severe problem arises when the “Driver” starts
requesting the S-Polynomials. A typical nested loop is there
in the “Driver” to get all possible distinct order independent
pairs of polynomial indexes. Obviously, then the pair {1, j},
where 2 ≤ j ≤ N , N : Number of polynomials in the basis
will occur maximum number of times. Then {2, j} will occur
much of the time. And so on. Therefore the processes which
stores the polynomials with indexes of lesser values, need to
calculate more and more S-Polynomials than others. That’s the
work distribution across the process will be skewed. Another
problem is, suppose the “Driver” needs the S-Polynomial for
a pair {i, j} where both the polynomials belongs to different
processes, then neither of the processes can calculate the S-
Polynomial and comply to “Driver”’s request. In such cases,
the “Driver” itself needs to calculate the S-Polynomial, which
clearly will kill some time. Let’s dub such events as “S-
Polynomial Miss” and where “Driver” is complied with the
S-Polynomial request, is described as “S-Polynomial Hit”.

Therefore, the scheme designed should be such that it
balances the load across the processes involved and as well
as gives most S-Polynomial Hit. To address this issue, an
equivalence class of indexes is formed for each polynomial
index. The idea is the process which contains the polynomial
having the head index of some equivalence class will calculate
the S-Polynomials for the pair {i, j} such that j belongs to
i’s equivalence class. The algorithm presented in the box has
been used to generate the equivalence classes of the indexes.

Initialize i = 1, and then do the following.
while (i ≤ n− 1) {

1. Initialize the equivalence class for i with a viable pair, say {i, j} =
{i, i+ 1}.

2. Then do as follows steps and keep on adding the pairs generated
in the equivalence class for i. (i, j) → (j + 1, i) and then generate
(j + 1, i) → (i, j + 2), then again repeat the process as both i or j
remains within the required bound i.e. ≤ n, where n is the size of the
basis.

Once the series got stuck for i, start with i = i+ 1.
}

The following example illustrates the idea behind the
scheme.

Example: Let’s n = 5. Then the equivalence classes
generated will be {1, 2, 4}, {2, 3, 5}, {3, 4, 1}, {4, 2,
5}. Here the underlined numbers in each class are the class
heads. In the Figure 2, consider the numbers as the indexes
of the polynomials, then the dots represent a pair of distinct
polynomials. Obviously then the dots shown in the upper
triangular matrix in left hand side of the figure, represents
the pairs for which the S-Polynomials are needed to calculate.
Clearly it depicts the skewness where polynomials with lower
indexes have to be frequently paired up than the polynomials
with higher indexes. However, after the applying equivalence
algorithm, the dots spread out uniformly across the cells in the
matrix and it also doesn’t hamper the S-Polynomial calculation
as S-Polynomial(i,j) is equivalent to S-Polynomial(j,i) as far
as Buchberger algorithm is concerned.

Therefore to store these information regarding equivalence
class a 2D array of integers is allocated and is named as
“EquivalenceTable”. The crux of this table is that for each
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1        2        3        4       5  1       2        3       4        5

After applying Equivalence Algo.

Fig. 2. Redistribution of the polynomial pairs

{i, j} pair, either j will occur in i’s equivalence class or i will
occur in j’s equivalence class. Now, when the “Driver” needs
to request the S-Polynomial of a pair {i, j} it consults the
“Equivalence Table” and sees which among i and j appears as
the head of the other. It then request the process which contains
the polynomial with the head index among i, j for the required
S-Polynomial. As according to the scheme a particular process
calculates all the S-Polynomials of the pair {i, j} where i is
the index of a polynomials in it and j is the index appeared
in i’s equivalence class, “S-Polynomial Hit” will surely occur.

There is another issue which deals with how to augment
these informations when the basis itself gets augmented. In
the following subsection, an integrated view of these strategies
along with the augmentation scheme are presented.

C. Execution Flow of the Overall Implementation

“Driver” stores the new polynomials generated in the pro-
cesses circularly i.e. giving turn to each process one by
one. After doing so it updates the “PStat” and “Equivalence
Table” accordingly. It then broadcasts the information of the
newly generated polynomial to other processes which in turn
update their tables. In the following box, the overall process
is summarized from the perspective of the “Driver”.

1. Driver process creates the Equivalence Table and PSTAT table based
on size of the initial basis. It then broadcasts PSTAT table to all other
processes but selectively sends the Equivalence table.
2. The auxiliary processes start reading out their shares of base polyno-
mials from a file. Each auxiliary process when done with such reading,
intimates that to the Driver.
3. for all possible order independent pairs {i, j} with 0 < i < j ≤
Size Of The Basis

a. The Driver consults the Equivalence table and figure out which
process to request to for S-Polynomials(pi, pj).

b. The Driver then requests and get the S-Polynomial.
c. Divide the S-Polynomial by rest of the polynomials and note the

Remainder generated.
d. If Remainder is non-zero, Driver adds it to the process which

holds the current highest number and broadcast the information that a
new polynomial has been introduced with polynomial number of the
newly created polynomial. Driver then augments the Equivalence table.
The generated Remainder is also added to the file, Grobner basis.txt.

e. After receiving the notification for the introduction of a new
polynomial, the auxiliary processes updates their own “Equivalence” and
“PStat” tables.

From the perspective of a particular “Auxiliary Pro-
cess”, the overall scheme is being represented as fol-
lows. However in case of such processes the chal-
lenge is how to store the calculated S-Polynomials. It’s
obvious that on average the number of S-Polynomials

needed to be calculated by a process is roughly S =
�

(
number of polynomials

2

)
/total number of auxiliary

processes�. Therefore to store the calculated S-Polynomials
a 2D array of S × S dimension is maintained. Then all the
indexes occurred in the equivalence classes of the indexes of
the polynomials local to it, are orderly assigned a number,
starting from 0. So, whenever a request for S-Polynomial {i, j}
comes, it checks the order number for i and j and quarries
the S-Polynomial 2D array at the index given by these order
numbers.

1. Read out its share of initial basis from the initial basis file.
2. After reading out, intimates that to “Driver”.
3. Receive the “PStat” and “Equivalence Table” from “Driver” and stores
these to its local memory.
4. Consults the local basis of the polynomials and the “Equivalence Table”
and starts computing the S-Polynomials.
5. If the other polynomial to compute the S-Polynomial is not in its place,
it consults with “PStat” table and requests the appropriate process to send
the required polynomial to it. After calculating S-Polynomial, say for the
pair {i, j} it stores it at the position shown above in its local S-Polynomial
repository.
6. If it gets and request from the “Driver” for S-Polynomial for a particular
pair, it complies to that request.
7. In case it has the augmentation notification, it updates the tables in the
same way as the “Driver” does.

For augmenting the “Equivalence Table”, it is observed that
when the latest entry in the table is “Even” number then, only
it will add to the equivalence class of the “odd” entries, and
it has the equivalent class with “even” entries. On the other
hand, if the latest entry in the table is “odd”, it will add itself
to the equivalence entry of the “even” numbers and have the
“odd” entries as its own equivalent member.

In what follows some important snippets of implementation
have been provided.

D. Important Implementation Snippets

In all the above implementation, for communication be-
tween the processes MPI Send, MPI Recv and MPI Bcast
have been used. For the technical details of the APIs we
have consulted [14], [9]. Typical communicating portion of
the implementation are given below:
// For Polynomial Sending
MPI_Send (buffer, 1, MPI_INT, process_no, 123, MPI_COMM_WORLD);
for (k = 0; k < spoly.number_of_terms; k++)
MPI_Send (&(spoly.terms[k].a), 1, MPI_LONG, process_no, 123,

MPI_COMM_WORLD) ;

// For Polynomial Receiving
temppoly2.number_of_terms = buffer[0];
temppoly2.terms = (Term*)malloc(temppoly2.number_of_terms*

sizeof(Term));
for (k = 0; k < temppoly2.number_of_terms; k++)
MPI_Recv(&(temppoly2.terms[k].a), 1, MPI_LONG, process_no,

123, MPI_COMM_WORLD, &status);

// For MPI Broadcasting
for (k = 1; k <= size; k++)
MPI_Bcast(&(PStat[k+1].process_no), 1, MPI_INT, 0,

MPI_COMM_WORLD) ;

Note here that as the polynomials are being sent and re-
ceived by the processes one term at a time, the communication
cost will increase with the size of the polynomials.

Apart from these aspects, there is another issue to look
at i.e. how the different processes access a common file
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“Grobner Basis.txt”, which stores the generated Grobner basis
in a collaborative way, particularly for writing. To do that MPI
C provides some file handling functions. We have used the
following function.

int MPI File write(MPI File mpi fh, void *buf, int count,
MPI Datatype datatype, MPI Status *status)

Where fh : file handle (handle); buf : initial address of buffer
(choice); count: number of elements in buffer (nonnegative
integer) ; datatype : datatype of each buffer element (handle)

And it outputs a status object.
A typical use of this is as follows:

// For writing to the file
MPI_File_write(fh, buf, 1, MPI_CHAR, MPI_STATUS_IGNORE) ;

V. RESULTS

For testing the performance of the tool, we used the
equations generated for the Bivium stream ciphers [15] for
different number of rounds. Below a comparison between the
time taken to generate the Grobner basis by the standalone
implementation and that by hybrid implementation is given.
For the standalone part the following platform has been used:

Processor: Intel(R)xeon(R)CPU E5606@2.13GHz×8,
Memory: 7.8 GiB, Operating System: 12.04 (Ubuntu Server)
64-bit

And for the cluster part we have used “Daksh” cluster at
SAG, DRDO, New Delhi, India Office. It’s a normal state of
the art IBM super computer.

Table 1 shows the time comparison to calculate the Grobner
basis between 8 core machines with standalone implementa-
tion and using 20 cores using a cluster. The left hand part
shows the timing for standalone part and that of right is
showing the timing for cluster. The timings are given for 30
variable equations i.e. the initial base size is 30, however the
size of the polynomial i.e. the number of terms in a polynomial
is increased as the round increases. A rough estimation of the
polynomial sizes involved in the initial basis while doing the
experimentation is shown in Table 1. In Table 1, “M” stands
for minutes, “S” for seconds and “Mi” for microseconds.

From the Table 1, it’s clear that initially the hybrid code
doesn’t prove to be very effective but as the round increases
it started to give some advantages. The timing advantage is
most visible when the polynomial size is moderate. Then we
guess communication overhead started to show up and the this
timing gap diminishes. However if some more results can be
had, perhaps the tendency can be more clear.

VI. CONCLUSION

The work presented here is about the development of a
Grobner basis calculating software in GF(2) by applying
distributed and parallel techniques. This tool can be applied in
many areas of Coding and Cryptography where large amount
of equations needed to be processed. The approach of this
present work has been to develop a tool from scratch so that
a firm grip can be availed on the kind of data structures and
operations applied during the Grobner basis calculation. The
design and implementation of the tool has taken care of the
basic design criterion of the distributed algorithms such as

TABLE I
TIMING COMPARISON FOR GENERATING GROBNER BASIS OF THE

EQUATIONS FOR 30-VARIABLE BIVIUM

No. of Terms Standalone Machine Hybrid Machine
M S Mi M S Mi

17 6 2 2091 4 24 2366
23 6 48 65213 4 59 7210
50 7 12 754 7 782 5531

145 7 58 10092 7 30 9478
250 9 34 8011 8 28 1121
559 10 21 4526 9 30 10972
790 12 18 70034 10 49 7452

1067 13 27 845002 10 40 1780
1908 13 58 907223 10 37 45031
2400 14 57 3598 10 29 107948
2600 15 1 80017 11 41 87101
3090 15 32 715327 11 53 83167
3500 17 24 98151 13 34 302917
4000 19 10 860 14 12 87328
4300 23 28 9718 18 39 578
5800 27 15 4090 20 46 19888
6210 30 31 36342 23 12 383426
7900 32 42 42752 27 31 35325
8930 37 56 83421 31 34 47841
9400 45 47 726885 37 15 456348
10050 55 19 52327 45 42 8352
11500 62 56 34266 57 30 63852
12000 80 23 25721 69 28 35437
13500 100 31 735724 85 27 34527
14050 120 53 17311 102 9 311
15000 145 48 24619 136 27 34521
17000 180 29 981543 170 11 16429

load balancing and synchronization. The tool can be used in
cluster environment as well. Experimentation done so far at
authors end shows that it’s working as expected. As for future
improvement, the tool can be improved by adopting more
advanced Grobner basis calculating algorithms.
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