
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:6, 2008

1120

Abstract— An efficient parallel form in digital signal processor

can improve the algorithm performance. The butterfly structure is an

important role in fast Fourier transform (FFT), because its symmetry

form is suitable for hardware implementation. Although it can perform

a symmetric structure, the performance will be reduced under the

data-dependent flow characteristic. Even though recent research

which call as novel memory reference reduction methods (NMRRM)

for FFT focus on reduce memory reference in twiddle factor, the

data-dependent property still exists. In this paper, we propose a

parallel-computing approach for FFT implementation on digital signal

processor (DSP) which is based on data-independent property and still

hold the property of low-memory reference. The proposed method

combines final two steps in NMRRM FFT to perform a novel

data-independent structure, besides it is very suitable for

multi-operation-unit digital signal processor and dual-core system. We

have applied the proposed method of radix-2 FFT algorithm in low

memory reference on TI TMSC320C64x DSP. Experimental results

show the method can reduce 33.8% clock cycles comparing with the

NMRRM FFT implementation and keep the low-memory reference

property.

Keywords— Parallel-computing, FFT, low-memory reference, TI

DSP

I. INTRODUCTION

he signal processing plays an important role in real

application, such as audio coding, image compression and

video processing. Especially, data domain transformation is an

essential step for above application. The discrete Fourier

transform (DFT) is main and important procedure in the data

analysis, system design and implementation [1]. The DFT

formula can be expressed by

1,.....,1,0][][
1

0

NknxkX W
nK

N

N

n

Where
eW

nkNjnk

N

)/2(is twiddle factor and x[n], X[k] are

temporal and frequency signal individually. Obviously, the

formula is inefficient in hardware system if programmer

directly implement it.

 Yi-Pin Hsu is with the Department of Electrical and Control Engineering,

National Chiao Tung University, Hsinchu, Taiwan. (Corresponding author to

provide phone: +886-9-39902564; e-mail: hsuyipin@gmail.com).

 Shin-Yu Lin is also the Department of Electrical and Control Engineering,

National Chiao Tung University, Hsinchu, Taiwan.

In order to solve the drawback, many fast Fourier transforms

(FFT) are proposed and implemented on different platforms.

To reduce the complexity computation is central ideal on most

of FFT algorithms. These algorithms focus on twiddle factor or

radix order to perform a simply and efficient algorithm which

includes the higher radix FFT [2], the mixed-radix FFT [3], the

prime-factor FFT [4], the recursive FFT [5] and low-memory

reference FFT [6]. In general, one is application-specific

integrated circuits (ASIC) system such as [7-8]. The

ASIC-based system can fit real application for low-power or

high performance; however, it is very hard to modify the

function. Thus the flexibility is not enough. Furthermore

another is digital signal processing (DSP) system such as [9]

which can achieve wide-range design by software. Although

DSP-based system also keeps a high enough performance, the

result is lower than ASIC-based system. Today, commercial

product has a lot of considerations such as cost, performance,

flexibility, and convenience implementation. The DSP-based

system becomes a favorable solution.

 Nevertheless, an efficient FFT algorithm be implemented on

DSP is very difficult. Although TI [10] proposes an efficient

FFT algorithm for C64x DSP system, data-dependent condition

leads to increase clock cycle. In [6], in order to avoid multi time

swap in the same data, a reorder FFT structure is proved. In Fig.

1, a 16-pts radix-2 decimation-in-frequency (DIF) FFT

structure, each twiddle factor is fetched only once. For example,

the twiddle factor of W16
0 in the step 4 is selected to execute

butterfly; but W16
0 disappear in the other step. Hence, memory

reduction method would reduce total memory usage and

decrease power consumption as well.

Fig. 1. A structure of NMRRM in 16-pt radix-2 DIF FFT

diagram

Parallel-computing approach for FFT

implementation on digital signal processor

(DSP)

Yi-Pin Hsu and Shin-Yu Lin

T

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:6, 2008

1121

 By careful observation, the final step (i.e. step 4) has a

serious problem for parallel execution in Fig. 1. First, the step 4

can divides into four groups. Because between each part has

data-dependent relation, a series of flow is performed. Even if

NMRRM FFT algorithm can improve the data usage, the

problem of series process is still existence. The drawback leads

to increase the clock cycle and waste hardware resource if the

DSP has numerous operation units. Hence, to develop a parallel

flow and hold the low-memory reference property algorithm

becomes an important issue.

 In this paper, we propose a novel algorithm to make

parallel-computing flow from NMRRM FFT algorithm. Based

on hardware representation, we first build two blocks and

allocate individual operation unit. Afterward, we modify the

data flow in the final two steps to perform a parallel-processing

flow. In implementation part, the TI TMSC320C64x DSP is

used as verification target. Experimental results demonstrate

that the parallel-processing flow can dramatically reduce clock

cycles.

 The rest of this paper is organized as follows. In section II,

we will brief introduce NMRRM FFT algorithm. In section III,

a parallel-processing flow is designed. The experimental results

are shown on section IV. Finally, some useful conclusions are

demonstrated.

II. REVIEW OF NOVEL MEMORY REDUCTION METHODS

In this section, we will brief introduce NMRRM FFT

structure which is based on TI’s library. Afterward we will

show the implementation of radix-2 DIF FFT from NMRRM

FFT as a main template for FFT algorithm on DSP.

In embedded system, the memory access is a key point on

performance expression. A large number of clock cycles will be

increased if memory swap is frequently executed. In Fig. 1,

NMRRM FFT algorithm is proposed in order to reduce the

memory swap, shows a simple and an efficient architecture. We

can clear observe that each twiddle factor is used only once on

each step; it is no reference in the other steps. The

data-independent property is main ideas to perform this

structure. For example, the calculation of twiddle factor W16
0 in

the step 1, 2 and 3 can be moved to the step 4 and no influence

in the result. The same skill also is applied to calculate the

twiddle factor of W16
4 which is grouped into the step 3.

Although this skill reduces the memory reference, the

data-dependent effect is performed in the final step and can not

run on pipeline structure. For example, in Fig. 1, each group

from 1 to 4 has mutual dependence property. The part 2 can not

be executed if part 1 runs processing. For this reason, NMRRM

FFT algorithm has data-dependent status.

III. A PARALLEL-COMPUTING FFT APPROACH ON DSP

The traditional FFT has a parallel structure for DSP

processing, but its drawback is multi-time reference in the same

twiddle factor. The revised FFT, NMRRM FFT, can

successfully avoid above fault but it performs a data-dependent

problem in final step. In order to keep the advantage and

discard the disadvantage between both two different structures,

we propose a parallel-computing approach on FFT for

hardware implementation. The twiddle factor will be taken only

once and parallel-processing in each step. In order to analyze

the data flow, in Fig. 2, we redraw NMRRM FFT structure

which is based on 16-pt radix-2 FFT algorithm.

Fig. 2. Partitioning of NMRRM in16-pt radix-2 DIF FFT

diagram

A. Algorithm analysis

Based on Fig. 2, from group 9 to group 12 in the step 4, each

group result will affect the next and later group. For example,

we can not skip the group 10 and direct to compute the group

11. Moreover, in the step 3, all groups are independently on

computing process. If we change group 6 and group 8, the

result is unchangeable. In further, three pairs of the group 6

with group 10, group 7 with group 11 and group 8 with group

12 has relation respectively. For example, the group 8 will be

computed in first if we want to execute the group 12. Based on

this constriction, thus, we can technologically combine step 3

and step 4 into a new step. Due to the step 3 and step 4 only use

one twiddle factor respectively, the both twiddle factors are

different, the new step needs two twiddle factors. Under the

new group, the memory reference and usage equals the steps 3

and step 4 in NMRRM algorithm.

B. Hardware analysis

Each group has even element of twiddle factor from the

group 1 to group 12 except group 6 and group 9 in Fig. 2.

Furthermore, the numbers of twiddle factor are unbalanced in

each group. The structure is inefficiently to directly implement

on DSP system. Especially, the redundant hardware resource

will be exhibited if the DSP system has numerous operation

units. For example, we assume that a processor has eight

operation units which can simultaneously run per clock cycle

including four additions and subtractions; however, only one

addition and one subtraction are required in the group 6. Thus

the remainder operation units will be wasted. In future, the DSP

system needs four clock cycles to compute eight twiddle factors

in the group 12. Even if dual core processor is used, the

hardware resource of processor still locates on idle status when

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:6, 2008

1122

sequence algorithm is running.

Fig. 3. Parallel-computing approach after combine the step 3

and 4 in 16-pt radix-2 DIF NMRRM FFT diagram

C. The rule of new algorithm

From above analysis, based on computational order, we can

arbitrarily move the twiddle factor to perform a new structure

which includes different steps and groups. In addition, only

final two steps need to modify. Because the step 1 and step 2

has even number of twiddle factor in group for symmetric

parallel design. Thus we propose a parallel-processing flow

which depends on NMRRM FFT algorithm, take 16-pt FFT as

example, and it can be separated into two main flows in Fig. 3.

One is in left part and the variable I, L are its data index;

another use J and K as its variable in the right part. In vertical

direction, the main goal is to explain that the computation unit

is independent and how many units are needed. Each stage

provides output for next is also independent in the horizontal

direction. The starting points are x[0] and x[L], by pre-calculate

the index and following the formula set:

)(^2

)(^2

log

2/

)2/(

2

iSIK

iSIJ

S

NLI

N

Where N is N points in FFT and i is program index.

It can provide for left and right parts to compute butterflies

firstly. This output is prepared for butterflies in the next stage.

Following on this order, the left and right part can

simultaneously process butterfly when these index are

pre-decided.

In order to improve processing speed, most of DSP has

numerous operation units. For example, in Fig. 4, TI

TMSC320C64x [12] series includes two register files which

has eight parallel units totally. However, the operation of

addition and subtraction only are supported by four units

(includes .S1, .L1, .S2, .L2). The data flow will occurs cross

status when butterfly is executed. For example, in Fig. 3, the

right part usually performs output for next calculation in left

part. Based on two register file or dual core architecture, the

data exchange becomes an essential issue. The data can be

changed between file A and file B using 1X and 2X operator

units. The syntax can be expressed as “.M2X” in assembly code

which means data is processed in register file A by M unit and

passed into some register in register file B by 2X. Thus the data

can be arbitrarily exchanged between two register file and the

system only delays one cycle in order to keep the transfer data

safety. The redundant unit (such as M. and D.) are allocated to

perform data address and some mathematical application.

Beside, the core provides automatically 16K byte in level 1 as

cache memory for data operation and 256K byte for

programmable cache/RAM in level 2. Although level 2 can

provides large enough memory, the 1024-pts FFT based on our

new algorithm only use level 1 cache to allocate essential

memory. Thus an efficient approach to allocate unit becomes

an important work.

Due to the butterfly needs one addition and subtraction in

radix-2, it will use two units. Namely, the maximum usage of

butterfly is bounded on two units. In Fig. 3, we apply our

approach in the DSP system and take 16-pt FFT as example. It

can be clear obtained that two parallel-processing flows are

executed in two register files, and no delay slot occurs. The unit

of .L1 and .L2 can operate addition instruction in respective

register file, as well as the units S1 and .S2 will operate

subtraction instruction. In detail, we treat each dotted line in

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:6, 2008

1123

horizontal direction as independent stage. It means that every

stage will be finished per cycle. After, these units are uniformly

separated to perform a balanced computation.

Fig. 4. The core architecture of TMSC320C64x

Fig. 5. Integrating NMRRM and our approach in 16-pt radix-2

DIF FFT diagram

A parallel-computing DSP-based DIF FFT algorithm is

evidently depicted in Fig. 3. Besides, a parallel form is

integrated in Fig. 5 which is a 16-pt DIF FFT structure. The

step 3 and step 4 are combined into one step, namely new step 3,

and the stage 3 is split as group from 1 to 11. In further, the step

1 and step 2 has equal properties which also can be separated

into the same mode. Each group includes two twiddle factors

which are mutual independence. Based on this reason, the

parallel-processing can be also realized in dual-core system.

TABLE I

Comparison of Reduction Clock Cycles in radix-2 DIF FFT
FFT size 16 32 64 128

NMRRM (C1) 929 1929 3929 7929

Our approach (C2) 574 1222 2515 5164

Reduction ratio

((C1-C2)/C1)×100%
38.21% 36.65% 35.99% 34.87%

TABLE II

Comparison of Reduction Clock Cycles in radix-2 DIF FFT
FFT size 256 512 1024

NMRRM (C1) 15929 31929 63929

Our approach (C2) 10640 22150 46736

Reduction ratio

((C1-C2)/C1)×100%
33.20% 30.63% 26.89%

IV. EXPERIMENTAL RESULTS

We have applied the parallel-computing approach to

implement the radix-2 DIF FFT on TI TMSC320C64x DSP,

which is a fixed-point property and based on very long

instruction word (VLIW) architecture. The comparison item

only includes number of clock cycles, in table I and table II

with different FFT size, due to the memory reference is equal

and NMRRM FFT has better performance than TI’s library.

The clock cycles are measured by TI’s development

environment calls as code composer studio (CCS), and current

version is CCS v3.1 which also provides a suitable interface

and build-in library for programmer debug such as print

function. For example, data stream input and output are

important skill if user wants to check relative results. Beside,

the JTAG has high data rate and convenient properties are used

as interface between PC and target. In order to give a fair

comparison between both, all effective function in compiler

option will be kept on original setting. The measurement

function calls as “profile” which is plug-in and accurate in CCS,

the item of clock of profile will be enabled to exactly measure

the clock cycles.

The experimental results show that our approach has lower

clock cycles than NMRRM FFT in radix-2 DIF FFT and

average of 33.8% reduction in the number of clock cycles, in

addition, the approach also keep low-memory reference

property.

V. CONCLUSIONS

In this paper, a parallel-computing FFT approach on DSP is

proposed. The approach is based on low-memory reference

property to perform two parallel flows. The performance still

equals to NMRRM FFT on radix-2 model which has better

performance than TI’s library. TI TMSC320C64x DSP is taken

as verification system which has multiple multiply-accumulate

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:6, 2008

1124

units is very suitable for our algorithm. The experimental

results demonstrate that our approach can efficiently reduce

33.8% clock cycles and hold the low-memory reference

property. In future, due to two parallel flows, our approach also

can be applied on dual-core system. Thus no any bottleneck is

considered when the algorithm applies on DSP-based

embedded system.

REFERENCES

[1] A. V. Oppenheim and C. M. Rader, Discrete-Time Signal Processing, 2nd

ed. Upper Saddle River, NJ:Prentice-Hall, 1990, 0137549202.

[2] G. D. Bergland, “A radix-eight fast-Fourier transform subroutine for

real-valued series,” IEEE Trans. Audio Electroacoust., vol. AE-17, no. 2,

pp.138-144, Jun. 1969.

[3] R. C. Singleton, “An algorithm for computing the mixed radix fast Fourier

transform,” IEEE Trans. Audio Electroacoust., vol. AE-17, no. 2,

pp.93-103, Jun. 1969.

[4] D. P. Kolba and T. W. Parks, “A prime factor FFT algorithm using

high-speed convolution,” IEEE Trans Acoust. Speech, Signal Process.,

vol. ASSP-25, no. 4, pp.281-294, Aug. 1977.

[5] A. R. Varkonyi-Koczy, “A recursive fast Fourier transform algorithm,”

IEEE Trans Circuits Syst. II, vol. 42, no. 9, pp.614-616, Sep. 1995.

[6] Y. Wang, Y. Tang, Y. Jiang, J. G. Chung, S. S. Song and M. S. Lim,

“Novel memory reference reduction methods for FFT implementation on

DSP processors,” IEEE Trans Signal Processing, vol. 55, no. 5,

pp.2338-2349, May 2007.

[7] Y. Zhou, J. M. Noras and S. J. Shephend, “Novel design of multiplier-less

FFT processors,” signal processing, vol.87, Issue 6, pp. 1402-1407,June

2007.

[8] B. M. Baas, “A low-power, high-performance, 1024-point FFT

processor,” IEEE J . Solid-State Circuits, vol. 34, no. 3, pp.380-387, Mar.

1999.

[9] L. He and X. Liao, “Specialising for High Performance FFT Algorithms

Based on Fixed-Point DSP,” in Proc. IEEE Int. Conf. Communication,

Circuits and Systems, Vol. 1, pp. 563-566, June 2006.

[10] “TMS320C64 DSP Library Programmer's Reference (Rev. G),” Texas

Instrument, Oct., 2003, SPRU7198G.

[11] “TMS320C6000 Programmer’s Guide,” Texas Instrument, Mar., 2006,

SPRU1981.

[12] “TMS320C64/C64x+ DSP CPU and Instruction Set Reference Guide,”

Texas Instrument, Aug., 2006, SPRU732C.

Yi-Pin Hsu was born in Taitung, Taiwan, in 1981. He received the B.S degrees

in electrical engineering from the Private Chinese Culture University (PCCU),

Taiwan, in 2003 and the M.S. degrees in Department of Mechanical Electrical

in 2005 in National Taiwan Normal University (NTNU). He is now a Ph.D.

candidate in electrical and control engineering at National Chiao-Tung

University (NCTU), Taiwan. His research interests are in the areas of parallel

computing, image signal processing and DSP-based embedded system.

