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Abstract— An efficient parallel form in digital signal processor 

can improve the algorithm performance. The butterfly structure is an 

important role in fast Fourier transform (FFT), because its symmetry 

form is suitable for hardware implementation. Although it can perform 

a symmetric structure, the performance will be reduced under the 

data-dependent flow characteristic. Even though recent research 

which call as novel memory reference reduction methods (NMRRM) 

for FFT focus on reduce memory reference in twiddle factor, the 

data-dependent property still exists. In this paper, we propose a 

parallel-computing approach for FFT implementation on digital signal 

processor (DSP) which is based on data-independent property and still 

hold the property of low-memory reference. The proposed method 

combines final two steps in NMRRM FFT to perform a novel 

data-independent structure, besides it is very suitable for 

multi-operation-unit digital signal processor and dual-core system. We 

have applied the proposed method of radix-2 FFT algorithm in low 

memory reference on TI TMSC320C64x DSP. Experimental results 

show the method can reduce 33.8% clock cycles comparing with the 

NMRRM FFT implementation and keep the low-memory reference 

property.  

Keywords— Parallel-computing, FFT, low-memory reference, TI 

DSP

I. INTRODUCTION

he signal processing plays an important role in real 

application, such as audio coding, image compression and 

video processing. Especially, data domain transformation is an 

essential step for above application. The discrete Fourier 

transform (DFT) is main and important procedure in the data 

analysis, system design and implementation [1]. The DFT 

formula can be expressed by  
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)/2(  is twiddle factor and x[n], X[k] are 

temporal and frequency signal individually. Obviously, the 

formula is inefficient in hardware system if programmer 

directly implement it. 
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In order to solve the drawback, many fast Fourier transforms 

(FFT) are proposed and implemented on different platforms. 

To reduce the complexity computation is central ideal on most 

of FFT algorithms. These algorithms focus on twiddle factor or 

radix order to perform a simply and efficient algorithm which 

includes the higher radix FFT [2], the mixed-radix FFT [3], the 

prime-factor FFT [4], the recursive FFT [5] and low-memory 

reference FFT [6]. In general, one is application-specific 

integrated circuits (ASIC) system such as [7-8]. The 

ASIC-based system can fit real application for low-power or 

high performance; however, it is very hard to modify the 

function. Thus the flexibility is not enough. Furthermore 

another is digital signal processing (DSP) system such as [9] 

which can achieve wide-range design by software. Although 

DSP-based system also keeps a high enough performance, the 

result is lower than ASIC-based system. Today, commercial 

product has a lot of considerations such as cost, performance, 

flexibility, and convenience implementation. The DSP-based 

system becomes a favorable solution.  

 Nevertheless, an efficient FFT algorithm be implemented on 

DSP is very difficult. Although TI [10] proposes an efficient 

FFT algorithm for C64x DSP system, data-dependent condition 

leads to increase clock cycle. In [6], in order to avoid multi time 

swap in the same data, a reorder FFT structure is proved. In Fig. 

1, a 16-pts radix-2 decimation-in-frequency (DIF) FFT 

structure, each twiddle factor is fetched only once. For example, 

the twiddle factor of W16
0 in the step 4 is selected to execute 

butterfly; but W16
0 disappear in the other step. Hence, memory 

reduction method would reduce total memory usage and 

decrease power consumption as well.  

   
Fig. 1. A structure of NMRRM in 16-pt radix-2 DIF FFT 

diagram 
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 By careful observation, the final step (i.e. step 4) has a 

serious problem for parallel execution in Fig. 1. First, the step 4 

can divides into four groups. Because between each part has 

data-dependent relation, a series of flow is performed. Even if 

NMRRM FFT algorithm can improve the data usage, the 

problem of series process is still existence. The drawback leads 

to increase the clock cycle and waste hardware resource if the 

DSP has numerous operation units. Hence, to develop a parallel 

flow and hold the low-memory reference property algorithm 

becomes an important issue.  

 In this paper, we propose a novel algorithm to make 

parallel-computing flow from NMRRM FFT algorithm. Based 

on hardware representation, we first build two blocks and 

allocate individual operation unit. Afterward, we modify the 

data flow in the final two steps to perform a parallel-processing 

flow. In implementation part, the TI TMSC320C64x DSP is 

used as verification target. Experimental results demonstrate 

that the parallel-processing flow can dramatically reduce clock 

cycles.  

 The rest of this paper is organized as follows. In section II, 

we will brief introduce NMRRM FFT algorithm. In section III, 

a parallel-processing flow is designed. The experimental results 

are shown on section IV. Finally, some useful conclusions are 

demonstrated. 

II. REVIEW OF NOVEL MEMORY REDUCTION METHODS

In this section, we will brief introduce NMRRM FFT 

structure which is based on TI’s library. Afterward we will 

show the implementation of radix-2 DIF FFT from NMRRM 

FFT as a main template for FFT algorithm on DSP.  

In embedded system, the memory access is a key point on 

performance expression. A large number of clock cycles will be 

increased if memory swap is frequently executed. In Fig. 1, 

NMRRM FFT algorithm is proposed in order to reduce the 

memory swap, shows a simple and an efficient architecture. We 

can clear observe that each twiddle factor is used only once on 

each step; it is no reference in the other steps. The 

data-independent property is main ideas to perform this 

structure. For example, the calculation of twiddle factor W16
0 in 

the step 1, 2 and 3 can be moved to the step 4 and no influence 

in the result. The same skill also is applied to calculate the 

twiddle factor of W16
4 which is grouped into the step 3. 

Although this skill reduces the memory reference, the 

data-dependent effect is performed in the final step and can not 

run on pipeline structure. For example, in Fig. 1, each group 

from 1 to 4 has mutual dependence property. The part 2 can not 

be executed if part 1 runs processing. For this reason, NMRRM 

FFT algorithm has data-dependent status.  

III. A PARALLEL-COMPUTING FFT APPROACH ON DSP

The traditional FFT has a parallel structure for DSP 

processing, but its drawback is multi-time reference in the same 

twiddle factor. The revised FFT, NMRRM FFT, can 

successfully avoid above fault but it performs a data-dependent 

problem in final step. In order to keep the advantage and 

discard the disadvantage between both two different structures, 

we propose a parallel-computing approach on FFT for 

hardware implementation. The twiddle factor will be taken only 

once and parallel-processing in each step. In order to analyze 

the data flow, in Fig. 2, we redraw NMRRM FFT structure 

which is based on 16-pt radix-2 FFT algorithm. 

Fig. 2. Partitioning of NMRRM in16-pt radix-2 DIF FFT 

diagram 

A. Algorithm analysis  

Based on Fig. 2, from group 9 to group 12 in the step 4, each 

group result will affect the next and later group. For example, 

we can not skip the group 10 and direct to compute the group 

11. Moreover, in the step 3, all groups are independently on 

computing process. If we change group 6 and group 8, the 

result is unchangeable. In further, three pairs of the group 6 

with group 10, group 7 with group 11 and group 8 with group 

12 has relation respectively. For example, the group 8 will be 

computed in first if we want to execute the group 12. Based on 

this constriction, thus, we can technologically combine step 3 

and step 4 into a new step. Due to the step 3 and step 4 only use 

one twiddle factor respectively, the both twiddle factors are 

different, the new step needs two twiddle factors. Under the 

new group, the memory reference and usage equals the steps 3 

and step 4 in NMRRM algorithm.  

B. Hardware analysis 

Each group has even element of twiddle factor from the 

group 1 to group 12 except group 6 and group 9 in Fig. 2. 

Furthermore, the numbers of twiddle factor are unbalanced in 

each group. The structure is inefficiently to directly implement 

on DSP system. Especially, the redundant hardware resource 

will be exhibited if the DSP system has numerous operation 

units. For example, we assume that a processor has eight 

operation units which can simultaneously run per clock cycle 

including four additions and subtractions; however, only one 

addition and one subtraction are required in the group 6. Thus 

the remainder operation units will be wasted. In future, the DSP 

system needs four clock cycles to compute eight twiddle factors 

in the group 12. Even if dual core processor is used, the 

hardware resource of processor still locates on idle status when 
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sequence algorithm is running.  

Fig. 3. Parallel-computing approach after combine the step 3 

and 4 in 16-pt radix-2 DIF NMRRM FFT diagram  

C. The rule of new algorithm 

From above analysis, based on computational order, we can 

arbitrarily move the twiddle factor to perform a new structure 

which includes different steps and groups. In addition, only 

final two steps need to modify. Because the step 1 and step 2 

has even number of twiddle factor in group for symmetric 

parallel design. Thus we propose a parallel-processing flow 

which depends on NMRRM FFT algorithm, take 16-pt FFT as 

example, and it can be separated into two main flows in Fig. 3. 

One is in left part and the variable I, L are its data index; 

another use J and K as its variable in the right part. In vertical 

direction, the main goal is to explain that the computation unit 

is independent and how many units are needed. Each stage 

provides output for next is also independent in the horizontal 

direction. The starting points are x[0] and x[L], by pre-calculate 

the index and following the formula set: 
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Where N is N points in FFT and i is program index. 

It can provide for left and right parts to compute butterflies 

firstly. This output is prepared for butterflies in the next stage. 

Following on this order, the left and right part can 

simultaneously process butterfly when these index are 

pre-decided.  

In order to improve processing speed, most of DSP has 

numerous operation units. For example, in Fig. 4, TI 

TMSC320C64x [12] series includes two register files which 

has eight parallel units totally. However, the operation of 

addition and subtraction only are supported by four units 

(includes .S1, .L1, .S2, .L2). The data flow will occurs cross 

status when butterfly is executed. For example, in Fig. 3, the 

right part usually performs output for next calculation in left 

part. Based on two register file or dual core architecture, the 

data exchange becomes an essential issue. The data can be 

changed between file A and file B using 1X and 2X operator 

units. The syntax can be expressed as “.M2X” in assembly code 

which means data is processed in register file A by M unit and 

passed into some register in register file B by 2X. Thus the data 

can be arbitrarily exchanged between two register file and the 

system only delays one cycle in order to keep the transfer data 

safety. The redundant unit (such as M. and D.) are allocated to 

perform data address and some mathematical application. 

Beside, the core provides automatically 16K byte in level 1 as 

cache memory for data operation and 256K byte for 

programmable cache/RAM in level 2. Although level 2 can 

provides large enough memory, the 1024-pts FFT based on our 

new algorithm only use level 1 cache to allocate essential 

memory. Thus an efficient approach to allocate unit becomes 

an important work.  

Due to the butterfly needs one addition and subtraction in 

radix-2, it will use two units. Namely, the maximum usage of 

butterfly is bounded on two units. In Fig. 3, we apply our 

approach in the DSP system and take 16-pt FFT as example. It 

can be clear obtained that two parallel-processing flows are 

executed in two register files, and no delay slot occurs. The unit 

of .L1 and .L2 can operate addition instruction in respective 

register file, as well as the units S1 and .S2 will operate 

subtraction instruction. In detail, we treat each dotted line in 
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horizontal direction as independent stage. It means that every 

stage will be finished per cycle. After, these units are uniformly 

separated to perform a balanced computation. 

Fig. 4. The core architecture of TMSC320C64x 

Fig. 5. Integrating NMRRM and our approach in 16-pt radix-2 

DIF FFT diagram 

A parallel-computing DSP-based DIF FFT algorithm is 

evidently depicted in Fig. 3. Besides, a parallel form is 

integrated in Fig. 5 which is a 16-pt DIF FFT structure. The 

step 3 and step 4 are combined into one step, namely new step 3, 

and the stage 3 is split as group from 1 to 11. In further, the step 

1 and step 2 has equal properties which also can be separated 

into the same mode. Each group includes two twiddle factors 

which are mutual independence. Based on this reason, the 

parallel-processing can be also realized in dual-core system.  

TABLE I 

Comparison of Reduction Clock Cycles in radix-2 DIF FFT 
FFT size 16 32 64 128 

NMRRM (C1) 929 1929 3929 7929 

Our approach (C2) 574 1222 2515 5164 

Reduction ratio 

((C1-C2)/C1)×100% 
38.21% 36.65% 35.99% 34.87% 

TABLE II 

Comparison of Reduction Clock Cycles in radix-2 DIF FFT 
FFT size 256 512 1024 

NMRRM (C1) 15929 31929 63929 

Our approach (C2) 10640 22150 46736 

Reduction ratio 

((C1-C2)/C1)×100%
33.20% 30.63% 26.89% 

IV. EXPERIMENTAL RESULTS

We have applied the parallel-computing approach to 

implement the radix-2 DIF FFT on TI TMSC320C64x DSP, 

which is a fixed-point property and based on very long 

instruction word (VLIW) architecture. The comparison item 

only includes number of clock cycles, in table I and table II 

with different FFT size, due to the memory reference is equal 

and NMRRM FFT has better performance than TI’s library. 

The clock cycles are measured by TI’s development 

environment calls as code composer studio (CCS), and current 

version is CCS v3.1 which also provides a suitable interface 

and build-in library for programmer debug such as print 

function. For example, data stream input and output are 

important skill if user wants to check relative results. Beside, 

the JTAG has high data rate and convenient properties are used 

as interface between PC and target. In order to give a fair 

comparison between both, all effective function in compiler 

option will be kept on original setting. The measurement 

function calls as “profile” which is plug-in and accurate in CCS, 

the item of clock of profile will be enabled to exactly measure 

the clock cycles. 

The experimental results show that our approach has lower 

clock cycles than NMRRM FFT in radix-2 DIF FFT and 

average of 33.8% reduction in the number of clock cycles, in 

addition, the approach also keep low-memory reference 

property. 

V. CONCLUSIONS

In this paper, a parallel-computing FFT approach on DSP is 

proposed. The approach is based on low-memory reference 

property to perform two parallel flows. The performance still 

equals to NMRRM FFT on radix-2 model which has better 

performance than TI’s library. TI TMSC320C64x DSP is taken 

as verification system which has multiple multiply-accumulate 
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units is very suitable for our algorithm. The experimental 

results demonstrate that our approach can efficiently reduce 

33.8% clock cycles and hold the low-memory reference 

property. In future, due to two parallel flows, our approach also 

can be applied on dual-core system. Thus no any bottleneck is 

considered when the algorithm applies on DSP-based 

embedded system. 
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