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Abstract—In this paper, parallelism in the solution of Omlip
Differential Equations (ODES) to increase the cotaponal speed is
studied. The focus is the development of parallgbrithm of the two
point Block Backward Differentiation Formulas (PBBpthat can
take advantage of the parallel architecture in adgeptechnology.
Parallelism is obtained by using Message Passitegfiice (MPI).
Numerical results are given to validate the efficye of the PBBDF
implementation as compared to the sequential imphéation.
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I. INTRODUCTION

E shall consider parallel &k Backward Differentiation
Formulas (PBBDF) forthe numerical solution of initial

value problems (IVPs) for the first order Ordinary

Differential Equations (ODEs) of the form

dy _
vl f(x,y),xIZI[O,X]

y(0)=yo

where f :RxR™ _. RM. For all xO[0, X],
|f(xy)-f(x2)| < L]y-x

, L is a Lipschitz constant.

Most of the existing numerical methods for solviit) are
sequential in nature. Various approaches to salyeuéing
multiple processor computer system with emphasigdaction
the computation time is due to the recent advaimcesmputer
technology. Many researchers develop or modifietbtiex
numerical methods to fully utilize the parallel litecture so
that some of the computations can be executed tsinedusly
on multiple processor computer system. Genernadlyallelism
can be achieved by partitioning the tasks acrassnbthods or
across the system of equations. Parallel blockhoukst have
been proposed by many researchers to
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speed up the integration of (1). Some of the aavlierks on
parallelism on ODEs are found in Gear [3], Belled Zennaro
[1], Franklin [4], and Chu and Hamilton [2] to naradew. In
[3] parallelism is classified as parallellism byrgitioning the
tasks either “across the method” or “across thedesgys of
equations”. [1] introduced parallelism across timet which
means that each processor evalubfesdifferent values ox.
The paper is organized as follows. The PBBDF nutiso
presented in Section I1. In Section Ill, a detaileglementation
of the PBBDF method using Message Passing Inteffdéd)
is given. Section IV provides numerical result @idate the
efficiency of the parallel algorithm of the PBBDFethod. The
conclusions are given in Section V.

Il. THEBLOCK BACKWARD DIFFERENTIATION
FORMULAS

In this section, we reviewed a class of block rstdfd
methods proposed by Ibrahin al in [6] which is called Block

(1) Backward Differentiation Formulas for solving 8tWDEs.The

method given in [6] will compute the solutions ofitlal Value
Problems (IVPs) at two points simultaneously ondais i.€. Y41

and y,4o . The solver
formulated as

start with constant step size whish

1 3 9 3 6

“roY2t YTt yn+1+EYn+2——5hfn+1 X
3y 16, 36 48 .=t @
o5 Yn-2 25yn—l 25yn 25yn+1 Yn+2 o5 2

The step size choosing strategy is based on timagstof the
local truncation error (LTE). The step is accepifetthe LTE
compared with the prescribed tolerance limit, TCatisdy
LTE <TOL and rejected otherwise. Denoting tolerance by

the next step size hneW is computed by
Y
hnew = ¢ hold X[fys,ﬁgl)— ,(ﬂ)z }

wherec is the safety factoand p is the order of the PBBDF
method. For our code, we take the safety fact@.&s

The next step size is increased by a factor ofd gpeed up
the computationThe PBBDF solver with the increased step size
1.6his formulated as
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®3)

If the LTE > TOL, the step is rejected, the prewctep will
be repeated and computed with halved the step sikee
PBBDF method when the step size is halved is gen

-—, +£ —E’ + +£) :_1?1]‘

128712 " gl 1T gl YT g Ynr 2= g i 4
2 3 18 192 _12
T1eYn-2 7 5aYn-1t o T Yne 1t Ve 2—§hfn+ 2

The formulas given in (2), (3) and (4) are in thmilsr form
of the standard Backward Differentiation Formul®B. The
clear advantage of PBBDF method is that all theffubents
will be stored with automatic control of the stapesfor the
purpose of optimizing performance in terms of e and
computation time but yet preserving the charadierisf the
variable step size. No differentiation coefficiemsed to be
calculated at each step since the coefficienthey values are
stored. Furthermore, in the PBBDF method, two $arfut.e.

Yo @nd y,,, values are computed simultaneously. This will

lead to a quicker execution time. See [6] for tkeeéads of the
derivation of the PBBDF and verification of the med.
We rewrite formulas (2), (3) and (4) in the gendoai

Yna1 = O Yneo Haihfog +¢; } ®)

Yni2 = 62 Yner T athn+2 +l/’2
with ¢, andy, are the backvalues.

Equation (5) in matrix-vector form is given by,
ER P o P
0 1) [, 0]) Yn2 0 a5 foea] (¥
From (6)
(I -A)Y =hBF +&
where
Izl O,Y: Vet A= 0 6 ,
01 Yn+2 6, 0
B{al 0] F{fm} and 5{%}
0 a fre2 ¥,

Applying Newton iteration to the matrix above bititey

(6)

F=(-AY-hBF-£=0

Therefore, the Newton-iteration form for the BBDIEtinod is
given as

oF

-1
Y8, =Y., = —[(I -A)- hBa—Y(Yn‘PM )} [0 - AN, -ner(v,.,)-¢

Where(l - A)— hBa—F (Y(i)
aY

n+ln+2) is the Jacobian matrix df

with respect toy. To reduce the amount of computations, the
Jacobian matrix is updated when there is a conisecatep
failure in the integratione. LTE >¢. The starting values were
computed from the exact solution if available orusing the
Euler method.

lll. PARALELL IMPLEMENTATION OFBBDF

In this section, we discuss the parallel implemigmeof the
BBDF method which allows the distribution of taskmongst
the available processors in order to reduce theutixm time.
Simultaneous approximations for several stapa obtained using
the Message Passing Interface (MPI) library whighsron a
High Performance Computer (HPC). These parallel
implementations are based on the master — slaveaqp The
computation occurs only in the slaves while the teras
broadcast all the data needed by the slaves. Tierayram,
JAC1, calculates the Newton-iteration for the PBBMDE&thod.
The matrix multiplication is given as

oF (i
|:hBa_Y(Yn(I+)1,n+2):| .
One way of performing the multiplication in paralle to
have each processor compute different parts ofptbeuct.
n
. . P
Consider matrixAj , By and Cij =Y Ak By

k=1
i) First, the matrixA is partition by rows an8 by columns:

- by 012---011

Gj

A B C
(donévyslaves) (masterdothebroadcast)

ii) The matrix A is striped row-wise among the slaves
P,P,...R, SO that each processor is assigned to one row. |

order, to avoid any processor been idle, the pemrahat finish
the computation early, will automatically take trext row.

Each process in row will need all the values in columin
Therefore, processdfy, referred as master will broadcast the

entire matrixB of sizek X j to all the slaves, p,,... R, as

needed prior to the start of the multiplicationk&aote that the
computation occurs only in the slaves while the teras
broadcast all the data needed by the slaves.

IV. NUMERICAL RESULTS
Problem 1 : Brusselator systems
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Brusselator systems is a nonlinear partial difféat@quation Ep Efficiency
WE!CE .an?r-{'hlnf the modeling of chemical reactioffudion EQN Number of equations
whichis otthe Torm TIM The execution time in seconds
E
2
%:A+u2v—(B+l)u+aa—u . . .
ot ox? The speedup of a parallel algorithm is defined as
2
Y gu-uv+a Y s =Ts
ot x> P

with xl][O,l], a =20, AandB are the constant parameters. IMvhereT. is the execution time of
. . S
this paper, we consideA = 1,B = 3,a =1/50 and boundary

conditions foru andv which are given by

u(O,t):lzu(lt), v(O,t):3:v(lt)
u(x,0)=1+sin(27x), v(x,0)=3.

By applying the method of lines, we obtain a systefn

differential equations to be solved on the intel®a x < 10.

sequential algorithrmgsi
one processor andTp is the executime time by a parallel

algorithm usingp processors. The efficiency of the parallel
algorithm denoted byE; is defined as the ratio of speedup to

the number of processors
S
p
Theoretically, the value of efficiency iD<E, <1. Table 1

Ep =

shows the speedup and efficiency for Problem 1 whermwith

% =1+u?v, —4u, +a(N +2)?(u,_; —2u; +uiy,) different number of processors.
(7)
dv; _ 2 2 TABLE |
dt Ui ~ Uy, +U(N +1) (Vi‘l — 2 +Vi+1) 2P= 2 processor, 4P=4 processor, 6P= 6 processor

8P= 8 processor

with  ug(t) =1= Uy (t), vo(t) = 3= vy (t). EQN 2P 4p 6P 8P
_ . _ _ i o S 20 0.876 2151  2.987  3.245

u (0)=1+sin(2rx ).v; (0)=3, x = Nap T keN P 60 1146 3381 5556  7.434
100 1158 3454 5712  7.259

Equation (7) is use to illustrate the performawndethe E 20 0.438 0.538 0.498  0.406
PBBDF method. For more details of this example Seelis P 60 0573 0845 0926  0.929
100 0579 0.863 0.952  0.907

and Prigogine [7] and Prigogine and Lefever [8].

Problem 2: Note that the speed up is approaching the linesedyp as
f T (e - the number of equations increased.
A A o n Table 2a and 2b shows the speedup and efficiency fo
Y2 S y2 Problem 2 when run with different number of processat
difference tolerance.
= Ce—102
TaeLE lla: £ =10
N NP
2 4 6 8
0 “N+1 30 [ 0.976] 2275 3.045 3.26P
! N-1 0] |yn] 50 [ 1.094| 3149 5.052 6.62
100 | 1.116] 3.303 5.409 6.868
S 150 | 1.124| 3.342] 5546 7.460
N = number of equations, Initial valueg(0) = (10...0)! 200 | 1.130| 3.384 5604 7.295
300 | 0.976] 2275 3.045 3.262
Interval : 0< x< 20
Source: Hull, T.Eet al. [5]. 30 | 0.488] 0.569] 0.508 0.408
50 | 0.547| 0.787] 0.842 0.82B
The numerical results are performed on Sunfire \B198C. E 128 8-222 g-gég g-gg‘i g-ggg
. . 4
Parameters evaluated are the execution time, speadd : : : -
- ; ; i 200 | 0.565| 0.846 0.934 0.912
efficiency. The notations used in the tables tdiesfollowing 300 | 0488 0569 0508 0408

meaning,

S Speedup

p
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TasLe llb: & :10_6

N NP

2 4 6 8
30 | 0.985| 2.296] 3.135 3.34
50 1.095| 3.162] 5.106 6.25
$ [ 100 | 1.116| 3.319] 5.425 6.90
150 | 1.120 | 3.343] 5549 7.19
200 | 1.130| 3.375] 5.604 7.00
300 | 0.985| 2.296| 3.135 3.34

WS OV N W

30 | 0.492| 0.574] 0523 041
50 | 0.547| 0.790] 0.851 0.78
E, | 100 | 0.558| 0.830] 0.904 0.86
150 | 0.560 | 0.836] 0.925 0.89
200 | 0.565| 0.844| 0.934 0.87
300 | 0.492| 0.574] 0523 041

OO Oy O W1V W0

V. CONCLUSION

In this paper, we have presented the parallel impigation
of the PBBDF method for solving large systems afimmary
differential equations. The parallel implementatioh the
PBBDF method show significance gains over the satiple
implementation. The resulting speed up validatesfficiency
of the PBBDF method as the number of equationgaszd.
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