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Abstract—In this study, out-of-plane free vibrations of a circular 

rods is investigated theoretically. The governing equations for 
naturally twisted and curved spatial rods are obtained using 
Timoshenko beam theory and rewritten for circular rods. Effects of 
the axial and shear deformations are considered in the formulations. 
Ordinary differential equations in scalar form are solved analytically 
by using transfer matrix method. The circular rods of the mass matrix 
are obtained by using straight rod of consistent mass matrix. Free 
vibrations frequencies obtained by solving eigenvalue problem. A 
computer program coded in MATHEMATICA language is prepared. 
Circular beams are analyzed through various examples for free 
vibrations analysis. Results are compared with ANSYS results based 
on finite element method and available in the literature.  
 

Keywords—Circular rod, Out-of-plane free vibration analysis, 
Transfer Matrix Method.  

I. INTRODUCTION 

URVED rods are important structural elements that are 
commonly used for many engineering applications. There 

are many study about analysis of static and dynamic with 
straight rod but there is not enough study about analysis of 
circular rod.  

Haktanır and Kıral [1], [2] investigated static and free 
vibration analysis of helical structures by the transfer and 
stiffness matrix method. Haktanır [3] investigated static, 
dynamic and buckling behavior of the helical systems by the 
transfer and stiffness matrix methods. Lee et al. [4] have 
presented out-of-plane free vibrations of curved beams with 
variable curvature. The effects of the rotary and torsional 
inertias and shear deformation were included. Doğruer and 
Tüfekçi [5], [6] investigated out-of-plane free vibration of a 
circular arch with uniform cross-section by using the initial 
value method. The frequency coefficients are obtained for the 
first five modes of arches with various slenderness ratios and 
opening angles. Fang [7] investigated dynamic analysis of 
structures with uncertain parameters using the transfer matrix 
method.  

Kang et al. [8] applied the differential quadrature method in 
the computation of the eigenvalues for the in-plane and out-of-
plane vibrations of circular arches. Howson and Jennah [9] 
investigated a method for finding the exact out-of-plane 
frequencies of curved Timoshenko beams is presented. The 
effects of shear deformation and rotary inertia due to both 
torsional and flexural vibrations are included in the equations. 
Irie et al. [10], investigated the transfer matrix method was 
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used to study the out-of-plane free vibration of Timoshenko 
arches of constant radius. The results for clamped-clamped 
arches with circular and square cross-sections are given. 

In this study, out-of-plane free vibrations of a circular rod 
are investigated. The governing equations for circular arch 
obtained using Timoshenko beam theory. Ordinary differential 
equations in scalar form are solved analytically by using 
transfer matrix method. The circular rods of the mass matrix 
are obtained by using straight rod of consistent mass matrix. 
The frequency coefficients are obtained for the first three 
modes of arches with various slenderness ratios and opening 
angles.  

II. FORMULATION 

The material of the rod is assumed to be homogeneous, 
linear elastic and isotropic. Principal axes of inertia of cross- 
section are always assumed coincident with n, b. The 
governing equations for circular rod can be obtained from 
[11], [12].  

The out-of-plane behavior of curved rod is formulated 
except external load by several authors [3], [11], [12]  
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where 

bbb GAC / , 
nnn EID  , 

btt GID   are the material 

properties. G and E are shear and Young moduli, A the cross-
section area, In the principal inertia moments and Ib the 
torsional constant. The six scalar quantities present at any 
section of the curved rods constitute the elements of the 
column vector. {S( )}, known as the state vector  
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The system of first-order differential as in (1) for the 

homogeneous case can be written in matrix notation as  
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where [D] is the known differential transfer matrix. 

A. Transfer Matrix Method 

For the homogeneous case, the matrix relating state vector 
from   = 0 to that of any other section defined by   is known 

as the transfer matrix [F], as given blow [11]  
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As in (14), [T] is defined as  
 

T

1 0 0 0 0 0

0 ‐Sin ϕ1 Cos ϕ1 0 0 0

0 ‐Cos ϕ1 ‐Sin ϕ1 0 0 0
0 0 0 1 0 0

0 0 0 0 ‐Sin ϕ2 Cos ϕ2

0 0 0 0 ‐Cos ϕ2 ‐Sin ϕ2

	      (15) 

 
TABLE I 

THE NON-DIMENSIONAL FREQUENCIES THE FREQUENCY PARAMETERS 

R / EI   

λ  ϴ Modes [6] [8] [9]  [10] 

20 

60 
1 16.744 16.744 16.743 16.880 

2 36.946 - 36.921 39.700 
3 40.451 - 40.449 40.900 

120 
1 4.283 4.283 4.282 4.309 
2 11.691 - 11.690 11.790 

3 22.054 - 22.045 22.500 

180 
1 1.777 1.777 1.776 1.791 

2 4.982 - 4.981 5.032 

3 10.134 - 10.133 10.230 

λ ϴ Modes Yıldırım [15] ANSYS This study 

20 

60 

1 16.744 16.874 16.832 

2 39.670 39.701 39.901 

3 40.350 40.913 41.04 

120 

1 4.300 4.306 4.419 

2 11.738 11.788 11.991 

3 22.333 22.497 22.397 

180 

1 1.789 1.789 1.862 

2 5.022 5.029 5.268 

3 10.194 10.225 10.489 

λ ϴ Modes [6] [8] [9] [10] 

100 

60 
1 19.402 19.402 19.401 19.450 
2 54.030 - 54.029 54.100 
3 105.648 - 105.650 105.690 

120 
1 4.451 4.452 4.451 4.473 
2 12.826 - 12.826 12.890 
3 25.989 - 26.988 26.080 

180 
1 1.804 1.805 1.804 1.818 
2 5.198 - 5.198 5.242 
3 10.918 - 10.917 10.990 

λ ϴ Modes [15] ANSYS This study 

100 

60 
1 19.450 19.438 19.693 
2 54.100 54.105 54.401 
3 105.690 105.776 105.685 

120 
1 4.473 4.469 4.604 
2 12.888 12.881 13.239 
3 26.069 26.059 26.489 

180 
1 1.818 1.817 1.894 
2 5.241 5.237 5.506 
3 10.987 10.980 11.374 

III. APPLICATIONS 

A. Example 1 

Circular rod of uniform cross-section with fixed at both 
ends is analyzed. The properties of the arc as follows A = 
4×10-4 m2, E = 2.11×1011 t/m2, ρ = 7850 kg/m3, ν = 0.3, αb = 
1.1, variable opening angles (ϴ= 60o, 120o, 180o) and 
slenderness ratio (λ = 20,100). 

Comparison of the results obtained here and literature has 
been presented Table I. 

d

D
 2λ            (16) 

 
where d is diameter of circular section and D is diameter of 
centroid axis of arc, respectively.  

The results are obtained here found to be in good agreement 
with those available results in the literature and ANSYS. The 
frequency coefficient increases sharply for small opening 
angle and then decreases slowly for larger opening angles. If 
the slenderness ratio increases, the frequency coefficient is 
also increases.  

B. Example 2 

Circular rod of uniform cross-section with clamped-free 
ends is treated here. The properties of the arc as follows: 
ϴ=180o, R = 0.305 m, A = 1.1718×10-4 m2, E = 68.13×109 
N/m2, ρ = 7850 kg/m3, ν = 0.33, αb = 1.2, It = 1.22×10-9 m4, In 
= 3.4882×10-9 m4, Ib = 3.75367×10-9 m4. 

Comparison of the results obtained here and literature has 
been presented Table II. 

 
TABLE II 

FREE VIBRATION FREQUENCIES (RAD/S) 
Mod

es 
 [13] 

[13] 
(Experimental) 

[14] [15] ANSYS 
This  
study 

1 59.60 56.00 54.77 54.80 54.938 54.950 

2 - - 262.63 263.93 267.42 267.49 

3 - - 946.32 953.24 963.34 963.53 

4 - - 2325.78 2341.78 2351.04 2351.17 

 
The results are obtained here found to be in good agreement 

with those available results in the literature and ANSYS. 

IV. CONCLUSION 

This paper presents the solution of free out-of-plane 
vibrations of circular rods theoretically. The effects of the 
axial and shear deformations are included in the analysis. The 
frequency coefficient increases sharply for small opening 
angle and then decreases slowly for larger opening angles. If 
the slenderness ratio increases, the frequency coefficient is 
also increases. The examples in the literature are also solved. 
The solutions are obtained by using the same assumptions in 
the literature and ANSYS a very good agreement between the 
results is observed. 
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