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Out-of-Plane Free Vibrations of Circular Rods
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Abstract—In this study, out-of-plane free vibrations of a circular
rods is investigated theoretically. The governing equations for
naturally twisted and curved spatial rods are obtained using
Timoshenko beam theory and rewritten for circular rods. Effects of
the axial and shear deformations are considered in the formulations.
Ordinary differential equations in scalar form are solved analytically
by using transfer matrix method. The circular rods of the mass matrix
are obtained by using straight rod of consistent mass matrix. Free
vibrations frequencies obtained by solving eigenvalue problem. A
computer program coded in MATHEMATICA language is prepared.
Circular beams are analyzed through various examples for free
vibrations analysis. Results are compared with ANSY'S results based
on finite element method and available in the literature.

Keywords—Circular rod, Out-of-plane free vibration analysis,
Transfer Matrix Method.

[. INTRODUCTION

URVED rods are important structural elements that are

commonly used for many engineering applications. There
are many study about analysis of static and dynamic with
straight rod but there is not enough study about analysis of
circular rod.

Haktanir and Kiral [1], [2] investigated static and free
vibration analysis of helical structures by the transfer and
stiffness matrix method. Haktanir [3] investigated static,
dynamic and buckling behavior of the helical systems by the
transfer and stiffness matrix methods. Lee et al. [4] have
presented out-of-plane free vibrations of curved beams with
variable curvature. The effects of the rotary and torsional
inertias and shear deformation were included. Dogruer and
Tiifekgi [5], [6] investigated out-of-plane free vibration of a
circular arch with uniform cross-section by using the initial
value method. The frequency coefficients are obtained for the
first five modes of arches with various slenderness ratios and
opening angles. Fang [7] investigated dynamic analysis of
structures with uncertain parameters using the transfer matrix
method.

Kang et al. [8] applied the differential quadrature method in
the computation of the eigenvalues for the in-plane and out-of-
plane vibrations of circular arches. Howson and Jennah [9]
investigated a method for finding the exact out-of-plane
frequencies of curved Timoshenko beams is presented. The
effects of shear deformation and rotary inertia due to both
torsional and flexural vibrations are included in the equations.
Irie et al. [10], investigated the transfer matrix method was
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used to study the out-of-plane free vibration of Timoshenko
arches of constant radius. The results for clamped-clamped
arches with circular and square cross-sections are given.

In this study, out-of-plane free vibrations of a circular rod
are investigated. The governing equations for circular arch
obtained using Timoshenko beam theory. Ordinary differential
equations in scalar form are solved analytically by using
transfer matrix method. The circular rods of the mass matrix
are obtained by using straight rod of consistent mass matrix.
The frequency coefficients are obtained for the first three
modes of arches with various slenderness ratios and opening
angles.

II. FORMULATION

The material of the rod is assumed to be homogeneous,
linear elastic and isotropic. Principal axes of inertia of cross-
section are always assumed coincident with n, b. The
governing equations for circular rod can be obtained from
[L1],[12].

The out-of-plane behavior of curved rod is formulated
except external load by several authors [3], [11], [12]

dsziRQnJrRLh AMy _ i 4RT,
de Cop do
19,_ o, Ry o, (1)
do D,, de
dQ‘:Qn+iM, dM[:Mn
do Dy do
where ¢, =GA/a,» D, -El,» D,=Gl, are the material

properties. G and E are shear and Young moduli, A the cross-
section area, |, the principal inertia moments and I, the
torsional constant. The six scalar quantities present at any
section of the curved rods constitute the elements of the
column vector. {S(¢)}, known as the state vector

8(0) =10,(0.2,0) 2@ T, @M, )M () @

The system of first-order differential as in (1) for the
homogeneous case can be written in matrix notation as

B0 _o) s ®

where [D] is the known differential transfer matrix.

A. Transfer Matrix Method
For the homogeneous case, the matrix relating state vector
from ¢ = 0 to that of any other section defined by ¢ is known

as the transfer matrix [F], as given blow [11]
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where {S(0)} is the state vector ¢ = 0 and {S(¢)} is the state
vector (¢ = ¢). If U, is selected basic variable in (1) and

other functions are expressed in terms of its derivatives, the
differential equations below which are included axial and
shear deformations,

o= R[DdSLL 2D+1d’q}

1+Ddf  1+D df (5a)
ol # (¥
RGD|\+D qui 14D RG(D,+D))df &
_1[ D d'U, 2D+1d, (5b)
" R|1+D d¢*  1+D d¢
_Db, D [dy, dvy, (5¢)
"7 R 1+D| dff d¢3
DG, [(D DD, )&, (2D+1 DD, &V, dy,
"RG,+RD,|1+D RG,(D,+D)) df '\ 1+D RG,D,+D)) 4 s
__D D, d“Uh d*U, (5d)
"TIAD R | dgt | dg
— Dﬂqb diljb
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"R’G,,+D,|\1+D RG,(D,+D,))dF | 1+D RG,D, +D,)) df

where D demonstrates Dy/D,,. The following functions have
been selected for the homogeneous parts of the solution [11].

U, =U,=C,+C, ¢+C,Sing+C, Cos g+C, ¢Sing+C, ¢Cos ¢ ()

where C; is the constant of integration. By substituting (6) in
(5a-e) with help of a computer program coded in
MATHEMATICA language was prepared, transfer matrix [F]
is obtained analytically. Hence, the relationship between initial
¢ =0, ends ¢ =
analytically. For the nonhomogeneous case, the particular
solution due to intermediate discontinuities such as single

loads and supports are added to the homogeneous solution, as
in (4)

@ section is obtained transfer matrix

)= F@)] S0)+ 3 [F6-4) IK() = [ (F-a)l K@haa

0

where n is the number of single external forces and moments
acting from the beginning up to the section of concern.
B. Free Vibration Analysis

The undamped free vibration of a linearly elastic system in
the form

[M] {&} + [K]{X} = {0} ®

where K is the system stiffness matrix, M is the system mass
matrix and X is the system node displacement. Assuming the
following harmonic solution,

{X;}={a}Sinwt )

Equation (8) is reduces to the general eigenvalue problem,
by substituting (9) in (8), the solution of the free vibration
problem is given by

(IK] = wf [M]) {a} = {0} (10)

a is the amplitude vector of nodal displacements and w is the
angular frequency. A nontrivial solution of set (10) is possible
only if the characteristic determinant of the coefficients is
vanished.

|[K] — w? [M]| =0 (11)
The values making the determinant zero are the naturel
frequencies of the circular rods.

C. Mass Matrix

The circular rods of the mass matrix are created by using
straight rod of consistent mass matrix (Fig. 1).

Fig. 1 The geometry of circular rod

The straight rod of consistent mass matrix as

156 0 2L 54 13L
0 40I/A 0 0 7OI/A
paL|-22L 0 412 -13L 3L2 12
= s [ (12
0 -13L 156 22L
o 01A 0 0 14OI/A |
3. o 312 221 o 4L2J

where A is the cross-section area, p is mass density, L is rod
length and I, is the polar moment of inertia.

In the computation of the element mass matrix, the total
length of the element L is determined approximately as (Fig.
1)

L = R(A¢) A = 0; — 0 (13)

The transformation from the local coordinate axes to the
fixed reference system (X, Y, Z) for the element stiffness and
mass matrix is

[Klxyz = [T]T[k] [T] [m]xyz = [T]T[m] [T] (14)
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As in (14), [T] is defined as

1 0 0 0 0 0 1
0 -Sin[¢;] Cos[¢4] 0 0 0
0 -Cos -Sin 0 0 0
= O[¢1] (gd)l] 0 0 : (15)
0 0 0 0 -Sin[¢,] Cos[d,]
0 0 0 0 -Cos[¢;] -Sin[¢;]
TABLE I
THE NON-DIMENSIONAL FREQUENCIES THE FREQUENCY PARAMETERS
wR?p/(EL,)
A [S) Modes [6] [8] [9] [10]
1 16.744  16.744 16.743 16.880
60 2 36.946 - 36.921 39.700
3 40.451 - 40.449 40.900
1 4.283 4.283 4.282 4.309
20 120 2 11.691 - 11.690 11.790
3 22.054 - 22.045 22.500
1 1.777 1.777 1.776 1.791
180 2 4.982 - 4.981 5.032
3 10.134 - 10.133 10.230
A O Modes Yildirim [15] ANSYS This study
1 16.744 16.874 16.832
60 2 39.670 39.701 39.901
3 40.350 40.913 41.04
1 4.300 4.306 4419
20 120 2 11.738 11.788 11.991
3 22.333 22.497 22.397
1 1.789 1.789 1.862
180 2 5.022 5.029 5.268
3 10.194 10.225 10.489
A [S) Modes [6] [8] [9] [10]
1 19.402 19.402 19.401 19.450
60 2 54.030 - 54.029 54.100
3 105.648 - 105.650 105.690
1 4451 4.452 4.451 4.473
100 120 2 12.826 - 12.826 12.890
3 25.989 - 26.988 26.080
1 1.804 1.805 1.804 1.818
180 2 5.198 - 5.198 5.242
3 10.918 - 10.917 10.990
A [S] Modes [15] ANSYS This study
1 19.450 19.438 19.693
60 2 54.100 54.105 54.401
3 105.690 105.776 105.685
1 4.473 4.469 4.604
100 120 2 12.888 12.881 13.239
3 26.069 26.059 26.489
1 1.818 1.817 1.894
180 2 5.241 5.237 5.506
3 10.987 10.980 11.374
III. APPLICATIONS
A.Example 1

Circular rod of uniform cross-section with fixed at both
ends is analyzed. The properties of the arc as follows A =
4x10* m? E = 2.11x10" t/m?, p = 7850 kg/m’, v =10.3, o, =
1.1, variable opening angles (6= 60° 120°, 180°) and
slenderness ratio (A = 20,100).

Comparison of the results obtained here and literature has
been presented Table 1.

) (16)
d

where d is diameter of circular section and D is diameter of
centroid axis of arc, respectively.

The results are obtained here found to be in good agreement
with those available results in the literature and ANSYS. The
frequency coefficient increases sharply for small opening
angle and then decreases slowly for larger opening angles. If
the slenderness ratio increases, the frequency coefficient is
also increases.

B. Example 2

Circular rod of uniform cross-section with clamped-free
ends is treated here. The properties of the arc as follows:
©=180°, R = 0.305 m, A = 1.1718x10™ m’, E = 68.13x10’
N/m?, p = 7850 kg/m®, v =033, o, = 1.2, [, = 1.22x10° m*, I,
=3.4882x10” m*, I, = 3.75367x10” m*.

Comparison of the results obtained here and literature has
been presented Table I1.

TABLE II
FREE VIBRATION FREQUENCIES (RAD/S)
"ol 1 (pimenay 04 031 ANSYS 8
1 59.60 56.00 54.77 54.80 54.938 54.950
2 - - 262.63 263.93 267.42 267.49
3 - - 946.32 953.24 963.34 963.53
4 - - 2325.78 2341.78 2351.04 2351.17

The results are obtained here found to be in good agreement
with those available results in the literature and ANSYS.

IV. CONCLUSION

This paper presents the solution of free out-of-plane
vibrations of circular rods theoretically. The effects of the
axial and shear deformations are included in the analysis. The
frequency coefficient increases sharply for small opening
angle and then decreases slowly for larger opening angles. If
the slenderness ratio increases, the frequency coefficient is
also increases. The examples in the literature are also solved.
The solutions are obtained by using the same assumptions in
the literature and ANSYS a very good agreement between the
results is observed.
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