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Orthogonal Functions Approach to LQG Control
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Abstract—In this paper a unified approach via block-pulse func-
tions (BPFs) or shifted Legendre polynomials (SLPs) is presented to
solve the linear-quadratic-Gaussian (LQG) control problem. Also a
recursive algorithm is proposed to solve the above problem via BPFs.
By using the elegant operational properties of orthogonal functions
(BPFs or SLPs) these computationally attractive algorithms are de-
veloped. To demonstrate the validity of the proposed approaches a
numerical example is included.

Keywords—Linear quadratic Gaussian control; Linear quadratic es-
timator; Linear quadratic regulator; Time-invariant systems; Orthogo-
nal functions; Block-pulse functions; Shifted Legendre polynomials.

I. INTRODUCTION

THE LQG control problem [1] concerns linear systems
disturbed by additive white Gaussian noise, incomplete

state information and quadratic costs. The LQG controller is
simply the combination of a linear-quadratic estimator (LQE),
i.e. Kalman filter with a linear quadratic regulator (LQR). The
separation principle guarantees that these can be designed and
computed independently.

Orthogonal functions approach [8], [9] has been recognized
as an efficient and useful approach computationally to solve
variety of problems in systems and control. In [6] the so-
lution of the LQG control design problem was obtained by
employing general orthogonal polynomials. In [10] the authors
considered the problem of LQG control system and showed
its application as an information transmission problem. The
discrete time LQG problem was considered in [11] and showed
its applications over lossy data networks.

Very recently, applications of orthogonal function approach
is extended to different type of systems, i.e. systems described
by integro-differential equations [12], multi-delay systems
[13], [17], distributed parameter systems [14], delay systems
with reverse time functions [15], singular systems [16] and to
nonlinear systems [18].

In this paper, we consider linear time-invariant systems and
propose a unified approach, based on using BPFs or SLPs,
to solve LQG control problem of such systems. We call this
approach unified approach because it can be used via SLPs or
BPFs. In addition to the unified approach a recursive algorithm
is proposed using BPFs. It is very important to note that the
LQG control problem is not yet studied via BPFs.

The paper is organized as follows : The next section deals
with BPFs and SLPs, and their properties. The LQG control
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design problem is discussed in Section 3. The method of
obtaining solution of the LQG control design problem is
presented in Section 4. A numerical example is considered
in Section 5. The last section concludes the paper.

II. ORTHOGONAL FUNCTIONS AND THEIR PROPERTIES

We consider two classes of orthogonal functions, namely
BPFs and SLPs, and discuss their properties.

A. BPFs and their properties [4], [7]

A set of m BPFs, orthogonal over t ∈ [t0, tf ), is defined as

Bi(t) =

{
1, t0 + iT ≤ t < t0 + (i+ 1)T
0, otherwise (1)

for i = 0, 1, 2, . . . ,m− 1, where

T =
tf − t0
m

, the block-pulse width (2)

A square integrable function f (t) on t0 ≤ t ≤ tf can be
approximately represented in terms of BPFs as

f(t) ≈
m−1∑
i=0

fiBi(t) = fTB(t) (3)

where

f =
[
f0, f1, . . . , fm−1

]T (4)

is an m - dimensional block-pulse spectrum of f (t), and

B(t) =
[
B0(t), B1(t), . . . , Bm−1(t)

]T
(5)

an m - dimensional BPF vector. fi in Eq. (3) is given by

fi =
1

T

∫ t0+(i+1)T

t0+iT

f(t)dt (6)

which is the average value of f (t) over t0 + iT ≤ t ≤ t0 +
(i + 1)T. The product of two BPFs Bi(t) and Bj(t) can be
expressed as

Bi(t)Bj(t) =

{
0 if i �= j

Bi(t) if i = j
(7)

Operational matrix of forward integration [4] :
Integrating B(t) from t0 to t and expressing the result in m-set
of BPFs, we have∫ t

t0

B(τ)dτ ≈ PfB(t) (8)

where

Pf = T

⎡
⎢⎢⎢⎢⎢⎣

1
2 1 1 . . . 1
0 1

2 1 . . . 1
0 0 1

2 . . . 1
...

...
...

...
0 0 0 . . . 1

2

⎤
⎥⎥⎥⎥⎥⎦ (9)
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is called the operational matrix of forward integration of BPFs
and it is an m×m upper triangular matrix.
Operational matrix of backward integration [7] :
We integrate B(t) from tf to t and express the result in m-set
of BPFs to obtain∫ t

tf

B(τ)dτ ≈ Pb B(t) (10)

where

Pb = −T

⎡
⎢⎢⎢⎢⎢⎣

1
2 0 0 . . . 0
1 1

2 0 . . . 0
1 1 1

2 . . . 0
...

...
...

...
1 1 1 . . . 1

2

⎤
⎥⎥⎥⎥⎥⎦ = −PT

f (11)

We call Pb the operational matrix of backward integration of
BPFs. It is an m×m lower triangular matrix.

B. SLPs and their properties [8]

SLPs satisfy the recurrence relation

Li+1(t) =
(2i+ 1)

(i+ 1)
ϕ(t)Li(t)− i

(i+ 1)
Li−1(t) (12)

for i = 1, 2, 3, . . . . . . with

ϕ(t) =
2(t− t0)

(tf − t0)
− 1 (13)

L0(t) = 1, and L1(t) = ϕ(t) (14)

A function f (t) that is square integrable on t ∈ [t0, tf ] can be
represented in terms of SLPs as

f(t) ≈
m−1∑
i=0

fiLi(t) = fTL(t) (15)

Here f is called Legendre spectrum of f (t), given in Eq. (4)
and

L(t) =
[
L0(t), L1(t), . . . , Lm−1(t)

]T (16)

is called SLP vector. fi in Eq. (15) is given by

fi =
(2i+ 1)

(tf − t0)

∫ tf

t0

f(t)Li(t)dt (17)

The product of two SLPs Li(t) and Lj(t) can be expressed
as

Li(t)Lj(t) �
m−1∑
k=0

ψijkLk(t) (18)

where

ψijk =
(2k + 1)

(tf − t0)
πijk (19)

πijk = πikj = πjik = πjki = πkji = πkij (20)

πijk =

{
alaj−lai−j+l

ai+l

(tf−t0)
2(i+l)+1 if k = i− j + 2l

0 if k �= i− j + 2l
(21)

for i ≥ j

a0 = 1, al+1 =
(2l + 1)

(l + 1)
al (22)

for l = 0, 1, 2, . . . . . .

Operational matrix of forward integration [8] :
Integrating L(t) from t0 to t, and expressing the result in terms
of the same set of SLPs, we have∫ t

t0

L(τ)dτ ≈ PfL(t) (23)

where

Pf =
(tf − t0)

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 . . . 0
−1
3 0 1

3 0 . . . 0
0 −1

5 0 1
5 . . . 0

...
...

...
...

...
0 0 0 0 . . . 1

2m−3

0 0 0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
(24)

which is called the operational matrix of forward integration
of SLPs.
Operational matrix of backward integration [5] :
If we integrate L(t) from tf to t and express the result in
terms of the same set of SLPs, we have∫ t

tf

L(τ)dτ ≈ PbL(t) (25)

where

Pb =
(tf − t0)

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 0 . . . 0
−1
3 0 1

3 0 . . . 0
0 −1

5 0 1
5 . . . 0

...
...

...
...

...
0 0 0 0 . . . 1

2m−3

0 0 0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
(26)

which is called the operational matrix of backward integration
of SLPs.

III. THE LQG CONTROL PROBLEM

Consider the linear dynamic system

ẋ(t) = Ax(t) +Bu(t) + v(t) (27)
z(t) = Cx(t) +w(t) (28)

where x(t) is n dimensional state vector, u(t) p dimensional
control vector, and z(t) q dimensional output vector, and v(t)
and w(t) the additive zero-mean white Gaussian system noise
and measurement noise, respectively, i.e.

E
{
v(t)vT (τ)

}
= Q2 δ(t− τ) (29)

E
{
w(t)wT (τ)

}
= R2 δ(t− τ) (30)

where Q2 is positive semi-definite and R2 is positive definite
symmetric matrices. Also v(t) is uncorrelated with w(t), i.e.

E
{
v(t)wT (τ)

}
= 0 (31)

Assume that the initial condition x(t0) is Gaussian with mean
x̄(t0) and covariance matrix

P = P2(t0) = E
{
[x(t0)− x̄(t0)] [x(t0)− x̄(t0)]

T
}



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:8, 2012

994

which is symmetric positive semi-definite, and

E
{
v(t)xT

0

}
= E

{
w(t)xT

0

}
= 0 for t ≥ t0 (32)

Given this system, the objective is to find the control input
u(t) which at every time t may depend only on the past
measurements z(t1), t0 ≤ t1 < t such that the cost function

J = E
{
1

2
xT (tf )Sx(tf )

+
1

2

∫ tf

t0

[
xT (t)Q1x(t) + uT (t)R1u(t)

]
dt

}
(33)

is minimized, where the matrix R1 is positive definite sym-
metric, and S and Q1 are symmetric positive semi-definite
matrices.

The LQG controller that solves the LQG control problem
is specified by the equations

˙̂x(t) = Ax̂(t) +Bu(t) +K2(t) [z(t)− Cx̂(t)] (34)
x̂(t0) = E [x(t0)] = x̄0

u(t) = −K1(t)x̂(t) (35)

The matrix K2(t) is called the Kalman gain of the associated
Kalman filter represented by Eq. (34). At each time t this
filter generates estimates x̂(t) of the state x(t) using the past
measurements and inputs. The Kalman gain is determined
through the associated matrix Riccati differential equation

Ṗ2(t) = AP2(t) + P2(t)A
T

−P2(t)C
TR−1

2 CP2(t) +Q2 (36)
P2(t0) = P

Given the solution P2(t), t0 ≤ t ≤ tf the Kalman gain
equals

K2(t) = P2(t)C
TR−1

2 (37)

The matrix K1(t) is called the feedback gain matrix which is
determined through the associated matrix Riccati differential
equation

− Ṗ1(t) = ATP1(t) + P1(t)A

−P1(t)BR
−1
1 BTP1(t) +Q1 (38)

P1(tf ) = S

Given the solution P1(t), t0 ≤ t ≤ tf the feedback gain
equals

K1(t) = R−1
1 BTP1(t) (39)

Observe the similarity of the two matrix Riccati differential
Equations (36) and (38); the first one running forward in
time, and the second one running backward in time. The first
one solves the LQE problem and the second one solves LQR
problem. So the LQG problem separates into LQE and LQR
problems that can be solved independently.

The block diagram of the LQG problem is presented in
Figure 1.

IV. ORTHOGONAL FUNCTIONS APPROACH

Integrating the Riccati equation (38) backward in time from
tf to t, we obtain

− [P1(t)− S] =

∫ t

tf

[
ATP1(τ) + P1(τ)A

−P1(τ)FP1(τ) +Q1] dτ (40)

where F = BR−1
1 BT . Expressing P1(t), P1(t)FP1(t), Q1

and S in terms of orthogonal functions {φi(t)}, which may
be BPFs {Bi(t)} or SLPs {Li(t)}, we have

P1(t) �
m−1∑
i=0

P1iφi(t) = P̃1 (φ(t)⊗ In) (41)

where

P̃1 =
[
P10, P11, . . . , P1,m−1

]
(42)

Then

ATP1(t) � P̄1 (φ(t)⊗ In) (43)
P1(t)A � P̂1 (φ(t)⊗ In) (44)

where

P̄1 =
[
ATP10, ATP11, . . . , ATP1,m−1

]
(45)

P̂1 =
[
P10A, P11A, . . . , P1,m−1A

]
(46)

P1(t)FP1(t) �
m−1∑
i=0

P1iFP1i φi(t) (47)

if BPFs are used

�
m−1∑
i=0

m−1∑
j =0

m−1∑
k=0

P1iFP1j ψijk φk(t)(48)

if SLPs are used
� F̃ (φ(t)⊗ In) (49)

where

F̃ =
[
P10FP10, P11FP11, . . . . . . ,

. . . . . . , P1,m−1FP1,m−1

]
(50)

ifφ(t) isB(t)

=

[
m−1∑
i=0

m−1∑
j =0

ψij 0P1iFP1j , . . . . . .

. . . . . . ,
m−1∑
i=0

m−1∑
j =0

ψij,m−1P1iFP1j

]
(51)

ifφ(t) isL(t)

Q1 = Q̃1 (φ(t)⊗ In) (52)

where

Q̃1 =
[
Q1, Q1, . . . , Q1

]
ifφ(t) isB(t) (53)

=
[
Q1, 0, . . . . . . , 0

]
ifφ(t) isL(t) (54)

and

S = S̃ (φ(t)⊗ In) (55)
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Fig. 1. Optimum linear combined estimation and control

where

S̃ =
[
S, S, . . . , S

]
ifφ(t) isB(t) (56)

=
[
S, 0, . . . , 0

]
ifφ(t) isL(t) (57)

and ⊗ is the Kronecker product [3].
Substituting Eqs. (41), (43), (44), (49), (52) and (55) into

Eq. (40) and making use of the backward integration opera-
tional property in Eq. (10) or (25), we have

−P̃1 + S̃ =
[
P̄1 + P̂1 − F̃ + Q̃1

]
(Pb ⊗ In)

⇒ P̃1 +
[
P̄1 + P̂1 − F̃

]
(Pb ⊗ In) = S̃ − Q̃1 (Pb ⊗ In) (58)

which is to be solved for the spectrum of P1(t). Similarly, the
spectrum of P2(t) can also be found from the Riccati equation
(36), and is given by

P̃2 −
[
P̄2 + P̂2 − G̃

]
(Pf ⊗ In) = P̃ + Q̃2 (Pf ⊗ In) (59)

where

P̄2 =
[
AP20, AP21, . . . , AP2,m−1

]
(60)

P̂2 =
[
P20A

T , P21A
T , . . . , P2,m−1A

T
]

(61)

and G = CTR−1
2 C

Notice that both the Riccati equations are thus reduced to
the non-linear algebraic equations (58) and (59), which can
easily be solved using Newton-Raphson method.

A. Recursive algorithm via BPFs

For a scalar system it is possible to obtain a recursive
algorithm if BPFs are used. This point is discussed here.
Substituting the operational matrix of backward integration
Pb in Eq. (11) into Eq. (58) and simplifying, we obtain the
following recursive algorithm :

V. NUMERICAL EXAMPLE

Consider the linear system [2], [6]

ẋ(t) = −0.5x(t) + u(t) + v(t)

x̄(0) = 10

with the measurement

z(t) = x(t) + w(t)

and the cost function

J = E
{
0.5x2(tf )S + 0.5

∫ tf

0

[
2x2(t) + u2(t)

]
dt

}
where

E {v(t)v(τ)} = 2 δ(t− τ)

E {w(t)w(τ)} = 0.25 δ(t− τ)

E
{
[x(0)− x̄(0)]2

}
= 0

If S = 0 and tf = 1, the exact solutions of P1(t) and P2(t)
are given by

P1(t) = −0.5 + 1.5 tanh (−1.5t+ 1.8465736) and

P2(t) = −0.125 + 0.125
√
33 tanh

{
0.5

√
33 t

+tan−1
(
1/

√
33

)}
So with m = 4 and 24 the above recursive algorithm via

BPFs and with m = 4 the nonrecursive approach in Section
4 via SLPs are applied, and P1(t) and P2(t) are computed as
shown in Figs. 2 and 3. The exact solutions are also shown
in the same figures for comparison sake. The results are quite
satisfactory even with four SLPs.

VI. CONCLUSION

A unique method to determine the filter gain and the
regulator gain in LQG control problem is proposed. It is shown
that the application of orthogonal functions (BPFs and SLPs)
reduces differential calculus to algebra. A BPF based recursive
algorithm is presented to solve the LQG control problem of
linear time-invariant scalar systems. An illustrative example is
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Recursive algorithm :

P1,m−1 = − 1

F

(
1

T
−A

)
+

√[
1

F

(
1

T
−A

)]2
+
Q1

F
(62)

P1,j = − 1

F

(
1

T
−A

)
+√[

1

F

(
1

T
−A

)]2
+

2Q1

F
+

2

F

(
1

T
+A

)
P1,j+1 − P 2

1,j+1 (63)

for j = m− 2,m− 3, . . . , 1, 0.
Similarly, substituting the operational matrix of forward integration Pf in Eq. (9) into Eq. (59) we have

P2,0 = − 1

G

(
1

T
−A

)
+

√[
1

G

(
1

T
−A

)]2
+
Q2

G
(64)

P2,j = − 1

G

(
1

T
−A

)

+

√[
1

G

(
1

T
−A

)]2
+

2Q2

G
+

2

G

(
1

T
+A

)
P2,j−1 − P 2

2,j−1 (65)

for j = 1, 2, . . . ,m− 1. Such a recursive algorithm is not possible with SLPs.

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

time

P
1
(t

)

Exact
SLPs with m = 4
BPFs with m = 4
BPFs with m = 24 

P
1
(t)

Fig. 2. Exact, SLP and BPF solutions of P1(t)

included to demonstrate the usefulness of the unified approach
via SLPs and the recursive algorithm via BPFs. As can be
seen from Figs. 2 and 3, only four SLPs are good enough to
obtain the result which is almost following the exact solution.
One has to consider a large number of BPFs to improve upon
the accuracy. This is because we are using piecewise constant
functions (BPFs) to represent the smooth functions P1(t) and
P2(t) in the present context.

Every approach (SLP or BPF) has its own advantage and
disadvantage. SLP method does not require large number of
polynomials in series expansion to represent smooth functions,
but computationally it is not as much attractive as BPF

0 0.2 0.4 0.6 0.8 1
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

time

P
2
(t

)

Exact
SLPs with m = 4
BPFs with m = 4
BPFs with m = 24

P
2
(t)

Fig. 3. Exact, SLP and BPF solutions of P2(t)

method because SLPs are to be computed and used for signal
representation while it is not so in BPF method as BPFs are
all unity and disjoint.
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