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Algorithm 1: Mel-Frequency Cepstral Coefficients 

1: Obtain a frame of audio signal and apply hamming window 
to the frame. The windowed frame is denoted as ( )x n  

2: Obtain the Fourier Transform of ( )x n and denote the result 
by ( )X n , i.e. ( ) [ ( )]X n FFT x n= . 

3: Calculate the power spectrum of ( )X n , i.e. 
2( ) ( )P n X n= . 

4: Filter ( )P n with a series of triangle filters. The frequency 
response of the filers are defined as follows: 

( )
( )( )

( ) ( )( ) ( ) ( )( )
( ) ( )

( )( )
( ) ( )( ) ( ) ( )( )
( ) ( )
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H K

f m k
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where ( )
1

0

1
M

m
m

H k
−

=

=∑  

5: Take the logarithm of the filtered results, i.e. 

( ) ( ) ( )
1 2

0
ln ,0

N

m
k

S m X k H k m M
−

=

⎛ ⎞
= ≤ <⎜ ⎟

⎝ ⎠
∑ . 

6: Calculate  the MFCC, i.e. 

( ) ( )
1

0

( 0.5)cos ,0
N

m

n mC n S m n M
M

π−

=

−⎛ ⎞= ≤ <⎜ ⎟
⎝ ⎠

∑ . 

where n indicates the scale of the MFCC 

 
MFCC is widely used as a kind of audio feature, however, 

most algorithms use 13 scales of MFCCs, which can lead to 
relatively high computational complexity. To reduce the 
complexity, in this paper, we use only 3 scales of MFCCs. 

B. Classification 
To reduce the computation complexity of the algorithm, we 

choose ID3 decision tree. ID3 is a kind of learning method to 
generate a decision tree. It has long been studied. The algorithm 
can be studied from [17], thus in this paper, we won’t introduce 
the algorithm in details. 

In the proposed orchestra/percussion classification algorithm, 
we extract the MFCCs from training set where the audio signals 
have been classified manually (thus the MFCCs are classified 
as well). Afterwards, ID3 algorithm obtains a set of classified 
MFCCs and generates a learned ID3 decision tree. 

C. The Orchestra/Percussion Algorithm 
The orchestra/percussion algorithm is the combination of 

MFCC extraction and ID3 tree decision. For ID3 tree is off-line, 
training files are needed to generate the decision tree. The 
training files are framed, windowed and MFCCs extracted. In 
the training, there are two attributes: orchestra and percussion. 
The MFCCs of the training files are labeled with the two 

attributes. We apply the ID3 algorithm to the MFCCs and get a 
trained tree. The algorithm is described in Algorithm 2. 

 
Algorithm 2: Orchestra/Percussion Classification Algorithm 
Training: 
1: Initialization:  

Obtain audio signals and denote them by _sig data  
Initialize the MFCCs set, i.e. 

1{ ,..., } 0= =frame frameNM MFCC MFCC  
Initialize the attributes set, i.e. 

1 2{ , }= = =A a orchestra a percussion  
Initialize an empty decision tree, i.e. =T NULL  

2: Extract the MFCCs of _sig data using and store the MFCCs 
in to set M  

3: Label the MFCCs in M with attributes in A  and generate 
the decision tree T  

 
Testing: 
1: Initialization:  

Obtain a frame of audio signal, and denote it by x  
Obtain trained tree into _Trained T  
Initialize MFCC variable, i.e. 0MFCC =  

2: Apply hamming window to x 
3: Extract the MFCCs of  x and store it into MFCC  
4: Apply the trained tree _Trained T to MFCC and get the 

decision results, i.e. 1_Trained R a orchestra= =  
5: Post-processing, which is described in Fig. 4 
 

The algorithm has two parts including training part and 
testing part. The training part is mainly to train the ID3 decision 
tree, and the testing part is to apply the trained decision tree to 
extracted MFCC thus get the attribute (orchestra or 
percussion).  

Do to the short comings of the USAC system, frequent 
changes of attributes.The post-processing is toeliminate the 
frequent changes of attributes thus the post-processing is 
actually a smooth algorithm. The smooth algorithm isdescribed 
in Algorithm 3. 
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Algorithm 3: Smooth Algorithm 
1: Initialization:  

Obtain a frame of audio signal and denote it by x  
Initialize 0=Energy  
Initialize 2 empty FIFO arrays buffer_teandbuffer_mo, i.e. 

_ [ , , , , ]=buffer te NULL NULL NULL NULL NULL  
_ [ , , , , ]=buffer mo NULL NULL NULL NULL NULL  

Obtain the attribute of present frame and denote it by PA , 
i.e. 2PA a percussion= =  
Initialize attribute of previous frame 1LA a orchestra= =  

2: Store PA into the end of _buffer te and _buffer mo and 
calculate the energy of the frame and store it to Energy , i.e. 

2
Energy x=  

3: If two FIFO arrays are not full 
Do 2 

Else if two FIFO arrays are full 
Do 5 

End if 
4: If <Energy ET (where ET is a threshold) 

=PA LA  
Modify the latest atoms of buffers into attribute in PA  

End if 
5: If the number of some attribute is larger than 3 

=PA LA  
Modify the latest atom in _buffer te into attribute in PA  

End if 
6: If the attributes in _buffer te change more than 2 times 

=PA LA  
Modify the latest atoms of buffers into attribute in PA  

End if 
7: If not EOF 

Do 2 
End if 

   
In Algorithm 3, the sizes of buffer_teandbuffer_mo, the 

threshold of the number of some attribute (in this paper, the 
threshold is 3) and the threshold of the change times of 
attributes in buffer_te (in this paper, the threshold is 2) are 
determined after many times of experiments to ensure the 
smooth algorithm can reach the best performance.  

III. EXPERIMENTS 
In this section, we present a serious of experiments to show 

the effectiveness of the proposed strategies by 1) using different 
number of MFCC scales, 2) using different MFCC scales and 3) 
removing the post-processing module to test and evaluate the 
accuracy of the algorithm. Training audio files (16bit, 48kHz) 
and testing audio files (16bit, 48kHz) are provided by Huawei, 
embracing 8 training and 15 testing audio files, with 4 training 
orchestra files, 4 training percussion files and others testing 
files.  

Fig. 4 is the test result of the accuracy rate comparison of 
three pieces of different .wav files. In this test, we choose one 

percussion file; one orchestra file and one speech file to test the 
effect of the classification effect without smoothing. We can 
see from Fig. 4 that the classification performs well on 
percussion files. To enhance the effect of the classification 
algorithm, we are focused on enhancing the classification effect 
on orchestra files. 

To determine which scales of MFCC and how many decision 
tree levels are to choose, we make some tests. Fig. 5 shows the 
accurate rates of the classification using MFCCs with different 
numbers of scales. It is obvious that larger number of scales and 
tree levels lead to better performance of the classification. 

However, Fig. 5 shows the lower scales of MFCCs. How 
about using higher scales? Fig. 6 shows the accurate rates of the 
classification using merely 3 scales of MFCC. The legend 
shows which three scales are used. 

 

 
Fig. 4 Accurate rate comparison of percussion, orchestra and speech 

 

 
Fig. 5 Accurate rate using 13 scales of MFCC without smoothing 

 

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

80

90

100

Level of the Decision Tree

A
cc

ur
ac

y 
R

at
e

 

 
percussion
orchestra
speech

0 20 40 60 80 100 120 140 160 180
0

10

20

30

40

50

60

70

80

90

100

Level of the Decision Tree

A
cc

ur
at

e 
R

at
e

 

 
1-3
1-4
1-5
1-6
1-7
1-8
1-9
1-10
1-11
1-12
1-13



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:7, No:8, 2013

965

 

 

 
Fig. 6 Accurate rate using 3 scales of MFCC without smoothing 

 
It is obvious in Fig. 6 that using higher scales of MFCCs can 

reach better performance than using lower ones. Compared to 
Fig. 5, the results of the decision become stable using 
remarkable fewer tree levels than those using more scales of 
MFCCs. 

The experiments above indicate that fewer scales of MFCCs 
and decision tree levels can be used to classify percussion and 
orchestra. Based on the conclusion, we use merely 3 scales of 
MFCCs (from scale 11 to scale 13) and 15 levels of decision 
tree. The decision tree is described in Fig. 7, where MFCC_1, 
MFCC_2 and MFCC_3 are 3 different scales of MFCCs, 
T1~T5 are different thresholds.We use small numbers of 
MFCCs and tree levels so that the computation complexity is 
reduced and the delay of the classification can be ignored. 

 

 
Fig. 7 Generated ID3 decision tree 

 
The tests above optimize the classification algorithm but 

ignoring the effect of the smoothing part. For the reason that 

common audio files have little chance that the attributes of 
orchestra and percussion change frequently, smooth algorithm 
can not only reduce the appearance of switching noise but also 
improve the decision accuracy. Fig. 8 shows that the smoothing 
improves the accuracy by about 10%. 

 

 
Fig. 8 Accurate rates of orchestra decision with and without smoothing 

 
TABLE I 

ACCURATE RATE OF CLASSIFICATION ALGORITHM 

“.wav” file names Accurate rate Description 

RefM_tel5 97.75% percussion 
RefM_twinkle_ff51 97.83% percussion & orchestra
RefM_SpeechOverMusic_4 97.60% percussion 
RefM_phi7 99.74% orchestra 

 
At last, results of several test files are given in Table I. These 

files are provided by HUAWEI and are widely used in the 
cooperation as the test audio files. Table I indicates that the 
classification algorithm is well performed and can reach an 
accurate rate of more than 95%. 

IV. CONCLUSION 
In this paper, we propose an orchestra/percussion 

classification algorithm which uses MFCCs and ID3 decision 
tree to classify audio signals, and a post-processing procedure 
to further adjust the results. Compared to existing audio 
classification algorithms, this orchestra/percussion 
classification algorithm reduces the amount of MFCCs from 13 
or more to 3, and retains merely 15 levels of decision tree, thus 
can reduce the computation complexity by at least 70%.The 
fast and simple classification algorithm can reach an accurate of 
more than 97%.Even when the results of classification are 
unsatisfying, the post-processing module adjusts the results to 
enhance the accurate rate and at the same time reduce the 
sensitivity of sudden changing of attributes.  

Future works may include further improving of the accuracy 
rate of classification module by making the decision tree better 
and faster and may include using more efficient features 
because FFT is only fit for linear and stationary signals while 
audio signal are in fact nonlinear and non-stationary signals. 
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