
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:13, No:7, 2019

409

Abstract—In this work, a training algorithm for probabilistic

neural networks (PNN) is presented. The algorithm addresses one of
the major drawbacks of PNN, which is the size of the hidden layer in
the network. By using a cross-validation training algorithm, the
number of hidden neurons is shrunk to a smaller number consisting
of the most representative samples of the training set. This is done
without affecting the overall architecture of the network.
Performance of the network is compared against performance of
standard PNN for different databases from the UCI database
repository. Results show an important gain in network size and
performance.

Keywords—Classification, probabilistic neural networks,
network optimization, pattern recognition.

I. INTRODUCTION

N the world of pattern recognition, classification is known
to be one of the major factors which can affect directly and

dramatically the performance of any given system. PNN has
been introduced by Specht in [1]. Because of their good
classification properties, they soon became a reference in
classification as neural networks. PNNs offer many
advantages: they do not suffer from the problem of local
minimums [2] as MLPs do, the training is very fast since the
network is created after one pass through the training set [1],
[3], they can be used interactively and the principle itself has a
good mathematical basis [4] (function approximation,
interpolation and probability density functions estimation). On
the other hand, there are some important drawbacks: the
number of hidden neurons is equal to the number of training
samples. This can be very restrictive for certain problems with
a big training set which includes most of time many
redundancies (usually the training sets are created from the
same physical observation and that means the same sample is
duplicated with slight differences). Another problem is the
choice of the smoothing parameter which can reflect seriously
the generalization of the network [5].

Actually, PNN are considered good classifiers and can be
used with little knowledge of artificial intelligence techniques
[6]. This is why they were used recently for so many
classification problems. Examples of areas where PNNs were
used successfully are email security enhancement [7],
intrusion detection within computer networks [8], water
quality assessment [9], hepatitis disease diagnosis [10],

Abdelhadi Lotfi is with the National Institute of Telecommunication and

ICT (INTTIC), Oran, 31000 Algeria (corresponding author, phone:
+213541253300; e-mail: alotfi@ito.dz).

Abdelkader Benyettou is with The University of Sciences and Technology
(USTO-MB), Oran, 31000 Algeria (e-mail: a_benyettou@yahoo.fr).

detection of resistivity for antibiotics [11], speech recognition
[12], biometrics applications [13]-[16] and military
applications [5], [17], [18].

To solve the problem of generalization and parameters
choice in PNN, a lot of work has been carried out by many
researchers [19]. Kim [18] proposed a new architecture to
enhance generalization of standard PNNs. In [20], a learning
vector quantization (LVQ) algorithm was used to train a PNN
in order to make the network’s size smaller. Other examples of
PNN variants are Fuzzy PNNs [19] and Particle Swarm
Optimization stochastic algorithm for PNN parameters choice
[21]. Most of the time, solving the initial problem may cause a
change in the architecture of the PNN and makes it loose its
advantages. RKPNN (Rotated Kernel PNNs, see [22]) is an
example of such a change. These networks have good
generalization qualities which are claimed to be compared to
support vector machines (SVMs) (with a reduced number of
classes [23]) but the training is extremely slow [25]. Applying
this type of networks interactively seems impossible.

The training algorithm presented in this paper reduces
significantly the number of hidden neurons without affecting
the architecture of the network which makes adding new
samples or classes possible at any time without re-training.
The testing is, as a result, faster since it depends on the
number of neurons in the network after training. This training
algorithm can be used for a wide range of problems such as
biometrics, character recognition and speech recognition.

In the following sections, the training algorithm is presented
and tested on some benchmarking databases from the UCI
repository. Results from classical PNN training algorithm are
presented for comparison purposes.

II. STANDARD PNNS

A. Background

Unlike multi-layer perceptron (MLP) networks, radial basis
function networks (including PNN) use radial basis functions
instead of sigmoid activation functions to make a local
decision function centered on a subset of the input space [8].
The global decision function is the sum of all local functions
[6] [23]. This way, the problem of local minimums is solved.

A supervised pattern classification system operates as
follows: place the observed vector x in one of the predefined
category classes Cm; (m number classes). The accuracy of the
cluster classifier is limited by the dimension of the input space
and the number of classes. This problem is formulated by the
Bayes classifier as [24]:

Optimizing the Probabilistic Neural Network
Training Algorithm for Multi-Class Identification

Abdelhadi Lotfi, Abdelkader Benyettou

I

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:13, No:7, 2019

410

1

(|) ()
(|)

(|) ()

i i
i m

j j
j

P x C P C
P C x

P x C P C

where 𝑃 𝑥|𝐶 is the conditional probability density function
of x given the set Ci and P(Cj) is the probability of drawing
data from the class Cj.

An input vector x is classified as belonging to class Ci if:

𝑃 𝐶 |𝑥 𝑃 𝐶 |𝑥 ; ∀ 𝑗 1, 2, . . . , 𝑚; 𝑗 𝑖

The difficulty with this relationship is that the prior

probabilities P(x│Ci) (probability that the sample x comes
from a population Ci) are usually unknown. A solution to this
problem is the estimation of these probabilities from the
training dataset. This can be done using the Parzen windowing
technique for pdf estimation [6]. Parzen showed that a class of
pdf estimators asymptotically approaches the underlying
parent density provided that it is smooth and continuous [1].
The estimator used for PNN is:

/2 2

1

1 1
exp

2 2

t

m
ai

p pA
i

Xai
x

m

X X X
f

with Xai is the pattern i from class A; σ is a parameter used for
smoothing [24]. As a result, the global decision function is the
sum of small Gaussian functions centered on the training
samples. In the same context, PNN use all the training data set
to estimate probability density functions. The densities are
used then to estimate the likelihood function [1].

B. Network architecture

Fig. 1 represents the architecture of a standard PNN as
stated by Specht [1]. This is a 3-layer neural network: The
number of neurons in the input layer is the number of features
needed to describe the observation.

The pattern (hidden) layer organizes the learning set by
representing each input vector by a hidden neuron which
records the parameters of this vector. The activation function
used in this layer is the exponential function:

 2

/2
()

t

i i i iw x w xf x e

where: xi represent the variables of the model; wi represent the
weights; σ represents a smoothing parameter chosen according
to each case [24].

The computation of the output of hidden units is realized
by:

22

/2
1

2

t
i i
j jx x x x

i
j d d

x e

where xi

j is the jth training pattern vector from patterns in class

Ci and d is the dimension of the input space.
The number of neurons in the output layer is equal to the

number of classes. All neurons from the hidden layer
belonging to the same class are connected to the same output
neuron. Neurons in the output layer calculate their activations
which represent the probability of x being drawn from class i
[25]. So:

/2 2
1

1
| exp

(2) 2

i
ti iN

j j
i d d

i j

x x x x
P C x

N

Note that Ni is the number of training patterns from class Ci.

A normalization layer may be needed if the inputs are not
already normalized [3].

The classification decision for the input vector X is given in
accordance with the Bayes decision rule using:

/2 2
1,2,... 1

1ˆ () arg max exp
(2) 2

i
ti iN

j j

d d
i i j

x x x x
C x

N

where m is the number of classes presented in the training set
[1].

The training consists of creating a hidden neuron for each
training vector with a Gaussian activation function centered on
this vector.

Each neuron in the output layer is connected to all neurons
from the hidden layer representing this class [15].

The Gaussian activation function used by the hidden
neurons was shown in (4) [23].

Fig. 1 Mapping nonlinear data to a higher dimensional feature space

C. Training Algorithm

It consists of looping over all training vectors and creating
Gaussian functions centered on each one of these vectors.
After that, a summation neuron is added for each class and
connected with the hidden neurons from the same class [24].
The training algorithm is as follows:
Begin

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:13, No:7, 2019

411

Initialization
j = 0;
n = number of samples;
Do
j ← j+1 ;
Normalization:

2

jk

jk d

ji
i

x
x

x

;

Learning process:
jk jkw x ;

If
i

x w then 1
ica ;

Until j = n;
End

D. Testing Algorithm

Once the training is completed, the normalized samples are
classified using the formulae:

t

k k
xwz

The final output of the hidden neuron is given by:

 2

1kz

k
ez

The only user-defined parameter is the smoothing

parameter σ [15].
The summation neuron calculated its activation by a

normalized sum of all hidden neurons connected to it [15].
The testing algorithm is given by:

Begin

Initialization
k = 0;
x = test sample;
Do
 k ← k+1 ;

t

k kz w x

 If 1kca then
2

1kz

c cg g e

 ;

Until k = n;
Return ()arg max i

i

class g x ;

End

III. MODIFIED TRAINING ALGORITHM

The main purpose of this work is to reduce significantly the
number of hidden neurons without changing the overall
architecture which will make it as effective as the standard
PNN. To achieve this purpose, the network is trained with a
standard training algorithm. The unnecessary neurons are
removed from the hidden layer by removing a neuron at a time
from the hidden layer and measuring its contribution in the
decision of the new network. If the contribution is not
significant, the neuron is removed definitively from the
network, otherwise, it is retuned back.

After all hidden neurons are treated; the hidden layer is

reduced to a small number of neurons. This step mostly
removes noisy and redundant data.

Finally, the process is reversed to add neurons to the hidden
layer if the classification is not correct. At this stage,
classification of the training data is a 100% accurate.

 Another advantage of this new network (PNN*) is that all
boosting algorithms for standard PNNs are applicable without
major modifications.

Fig. 1 The training algorithm

The new training algorithm consists of two steps:
A. Build a standard PNN: This is achieved by

implementing the standard training algorithm. At this
stage, the number of hidden neurons is equal to the
number of training vectors.

B. B. Shrink the PNN’s hidden layer: The size of the
network is gradually reduced by applying the reduction
phase of the modified training algorithm (see Fig. 2). This
algorithm is given by:

Begin

i ← 0;
x ← first training sample;

While (i<n) Do
i ← i+1;
Delete ith node from the hidden layer
Classify the ith from the network
If the classification confidence is acceptable then

Consider this network
Else ignore the last modification;

End While;
Return

the new network;
End [23]
3rd step: network re-checking
Begin

i ← 0;
x ← first training sample;

While (i<n) do
i ← i+1 ;
If x is not correctly classified then
Add x to the hidden layer;

End While;
Return

the new network;
End [23]

Note that the testing algorithm is the same as a standard
PNN testing algorithm.

IV. SIMULATION RESULTS

A. Test of the Algorithm for a Bi-Dimensional Dataset

In this experiment three classes are represented by 33 data
points. Two networks are created to separate the plan

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:13, No:7, 2019

412

(100*100 points) using the 33 labeled samples. Each class is
represented by a color (black, grey and white).

Fig. 2 Classification of (100*100) data points with a standard PNN
algorithm (a) and a modified algorithm (b)

In Fig. 3 (a) the number of hidden neurons is equal to the

number of training samples. That is 33 hidden units. In Fig. 3
(b) the number of hidden neurons used for classification is 10
neurons. We can see that the classification is reduced to about
30% of the size of a standard PNN. This is because adjacent
data points are simply replaced by one neuron in the network.
The time for testing is proportional to the number of hidden
neurons. Thus, the network in Fig. 3 (b) is faster. In this
experiment, the dimension of the input space is small. To
validate our results, databases with higher input dimensions
are needed with more classes.

B. Databases Description

To illustrate the effectiveness of the proposed algorithm, we
used different data sets from the UCI database repository. The
data sets are chosen with different properties (number of
classes, number of inputs …) to test the new algorithm for a
wide range of situations. The databases used are:
 Letter recognition database (Letter): The database

consists of 26 capital back-and-white English alphabet
letters. There are 20,000 instances in the data set with an
input dimension of 16 features representing 26 letters for
20 different fonts. All data are numeric (in the integer
range 0-15) with no missing data [26].

 Glass identification database (Glass): Classification of
types of glass motivated by criminological investigation.
The database contains 214 samples distributed on 7
different classes of glass types [25].

 Balance scale database (Balance): The database
contains 625 instances of scale measures based on a
physiological experiment. The input vector has 4 different
features. The database was taken from the UCI machine
learning repository [25].

 Breast cancer database (Breast): This data set includes
201 instances of one class and 85 instances of another
class. The instances are described by 9 attributes, some of
which are linear and some are nominal [25].

 Iris database (Iris): This database represents data used
for iris plant classification. There are 50 instances
belonging to 3 different classes of iris plants [25].

Table I gives more details about the size and input
dimensions of all 5 databases.

TABLE I
PROPERTIES OF THE DATA SETS USED IN EXPERIMENT

Data Set Input dimension Number of samples

Letter 16 20000

Glass 9 214

Balance 4 625

Breast 9 286

Iris 4 150

C. Results

Both training algorithms (standard and modified) are
applied on the datasets separately. We focused on the
performance of the network (classification rate) and the
number of neurons created in the hidden layer. About 2/3 of
samples are used for training and the remaining (1/3) samples
are used for test. The samples in the testing set are new
(unseen before) to the network and they were chosen
randomly from the entire database to make the situation as
realistic as possible. It is not necessary to present the
classification rate for the training set since both networks can
classify all samples successfully.

TABLE II

CLASSIFICATION RATES FOR ALL DATA SETS

Data Set

samples

Standard
algorithm

New algorithm

% correct % error % correct % error

Letter 20000 95.96 4.04 93.06 6.94

Glass 214 76.59 23.40 78.72 21.27

Balance 625 94.87 5.12 91.66 8.33

Breast 286 96.18 3.81 95.03 4.96

Iris 150 96.42 3.57 100.00 0.00

TABLE III

PERFORMANCE IN TERMS NETWORK SIZE (NUMBER OF HIDDEN UNITS) AND

TIME NECESSARY FOR CLASSIFICATION

Data Set

training
samples

Standard algorithm New algorithm
hidden

units
t (s)

hidden
units

t (s)

Letter 15000 15000 9472.75 2433 1443.74

Glass 167 167 2.7767 91 1.5131

Balance 469 469 24.8078 171 8.9744

Breast 437 437 42.1040 50 4.8678

Iris 85 85 0.6776 36 0.2886

D. Discussion

Results in Table II show that for all databases,
performances of the standard and new algorithm are very
close. For instance, performance for Letter, Balance and
Breast cancer databases is better with the standard PNN. On
the other hand, performance for Glass and Iris databases is
better with the proposed algorithm. Regardless to the number
of samples or the size of the input space, both networks have
quite the same behavior and results are almost similar.

Table III gives details about the size of each network
(number of hidden units) and the time necessary for
classification of all test samples (t(s)). We can observe that
networks created with the proposed algorithm are all smaller
than those created with a standard PNN training algorithm.
For letter recognition the proposed network is more than 6
times smaller in size with almost the same performance. For

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:13, No:7, 2019

413

the glass identification database (which is a database with a lot
of perturbations), the size is reduced to 54% with better
classification rate for the proposed algorithm. The reduction
for balance and iris data sets is about 36% and 42%
respectively with a better performance in the case of iris
database. In the case of breast cancer database, there is a great
reduction in the number of hidden units only 11% of the
hidden units were created. Table III gives also information
about the time necessary to classify all test examples for both
algorithms. The gain in execution time is very clear for all
experiments. The proposed algorithm creates fewer hidden
neurons which imply a smaller time to calculate the output of
the hidden layer. The gain in processing time is proportional to
the number of hidden neurons for all cases presented. For
example: time necessary with the proposed algorithm is 11%
of the time elapsed when using a standard algorithm for the
breast cancer dataset. This is the exact proportion in the
number of hidden units.

V. CONCLUSION

The algorithm presented here apparently gives similar
classification rates as a standard PNN training algorithm for
almost all cases. However, the number of hidden neurons in
the second layer is very small and depends on the nature of the
database. Databases with many redundancies need fewer
hidden units to represent all the training samples. The
reduction of the number of neurons implies a gain in the
processing time which is proportional to it.

The algorithm presents a solution to the problem of PNN
size and keeps the same architecture and advantages of a
standard PNN. To add new classes to the new PNN, the same
process can be executed for the new training samples only. All
PNN boosting algorithms are applicable to this network
without major modifications on its structure.

REFERENCES
[1] D. F. Specht, « Probabilistic neural networks », Neural networks, vol. 3,

no. 1, p. 109–118, 1990.
[2] Y.-qun Deng and P.-ming Wang, « Predicting the shrinkage of thermal

insulation mortar by probabilistic neural networks », Journal of Zhejiang
University SCIENCE A, vol. 11, no. 3, p. 212-222, 2010.

[3] M. Bazarghan and R. Gupta, « Automated classification of sloan digital
sky survey (SDSS) stellar spectra using artificial neural networks »,
Astrophysics and Space Science, vol. 315, no. 1-4, p. 201-210, 2008.

[4] C. M. Bishop, Neural networks for pattern recognition. Oxford
University Press, 1995.

[5] Abdelhadi Lotfi and Abdelkader Benyettou. “Cross validation
probabilistic neural network based face identification”. Journal of
Information Processing Systems. Page: 1075~1086, Vol. 14, No.5, 2018.
DOI: 10.3745/JIPS.04.0085.

[6] R. O. Duda, Pattern Classification 2nd Edition with Computer Manual
2nd Edition Set. John Wiley & Sons Inc, 2004.

[7] T. P. Tran, T. T. S. Nguyen, P. Tsai, and X. Kong, « BSPNN: boosted
subspace probabilistic neural network for email security », Artificial
Intelligence Review, 2011.

[8] T. P. Tran, L. Cao, D. Tran, and C. D. Nguyen, « Novel Intrusion
Detection using Probabilistic Neural Network and Adaptive Boosting »,
0911.0485, nov. 2009.

[9] M. R. Nikoo, R. Kerachian, S. Malakpour-Estalaki, S. N. Bashi-
Azghadi, and M. M. Azimi-Ghadikolaee, « A probabilistic water quality
index for river water quality assessment: a case study », Environmental
Monitoring and Assessment, 2010.

[10] M. S. Bascil and H. Oztekin, « A Study on Hepatitis Disease Diagnosis

Using Probabilistic Neural Network », Journal of Medical Systems,
2010.

[11] F. Budak and E. D. Übeyli, « Detection of Resistivity for Antibiotics by
Probabilistic Neural Networks », Journal of Medical Systems, vol. 35,
no. 1, p. 87-91, 2009.

[12] N. Neggaz and A. Benyettou, « Hybrid models based on biological
approaches for speech recognition », Artificial Intelligence Review, vol.
32, no. 1-4, p. 45-57, 2009.

[13] M.-I. Faraj and J. Bigun, « Synergy of Lip-Motion and Acoustic
Features in Biometric Speech and Speaker Recognition », IEEE
Transactions on Computers, vol. 56, no. 9, p. 1169-1175, 2007.

[14] S. Meshoul and M. Batouche, « A novel approach for Online signature
verification using fisher based probabilistic neural network », in
Computers and Communications, IEEE Symposium on, Los Alamitos,
CA, USA, 2010, vol. 0, p. 314-319.

[15] Abdelhadi Lotfi, Abdelkader Benyettou, "Over-fitting Avoidance in
Probabilistic Neural Networks", World Congress of Information
Technology and Computer Applications, 11-13 June 2015 Hammamet
Tunisia.

[16] N. Neggaz, M. Besnassi, and A. Benyettou, « Application of Improved
AAM and Probabilistic Neural network to Facial Expression
Recognition », Journal of Applied Sciences, vol. 10, no. 15, p. 1572-
1579, 2010.

[17] L. F. Araghi, H. Khaloozade, and M. R. Arvan, « Ship Identification
Using Probabilistic Neural Networks (PNN) ».

[18] M. W. Kim et M. Arozullah, « Generalized probabilistic neural network
based classifiers », in Neural Networks, 1992. IJCNN, International
Joint Conference on, 2002, vol. 3, p. 648–653.

[19] V. Georgiou, P. Alevizos, and M. Vrahatis, « Fuzzy Evolutionary
Probabilistic Neural Networks », Artificial Neural Networks in Pattern
Recognition, p. 113–124, 2008.

[20] P. Burrascano, « Learning vector quantization for the probabilistic
neural network », IEEE Transactions on Neural Networks / a Publication
of the IEEE Neural Networks Council, vol. 2, no. 4, p. 458-461, 1991.

[21] I. De Falco, A. Della Cioppa, and E. Tarantino, « Facing classification
problems with Particle Swarm Optimization », Applied Soft Computing,
vol. 7, p. 652–658, juin. 2007.

[22] I. Galleske and J. Castellanos, « A rotated kernel probabilistic neural
network (RKPNN) for multi-class classification », in Proceedings of the
Artificial and natural neural networks 7th international conference on
Computational methods in neural modeling - Volume 1, Berlin,
Heidelberg, 2003, p. 152–157.

[23] Abdelhadi Lotfi and Abdelkader Benyettou. “A Reduced Probabilistic
Neural Network for Classification of Large Databases”. Turkish Journal
of Electrical Engeneering and Computer Science, 2014.

[24] Abdelhadi Lotfi and Abdelkader Benyettou. “Using Probabilistic Neural
Networks for Handwritten Digit Recognition”. Journal of Artificial
Intelligence, 4: 288-294. 2011.

[25] Dua, D. and Karra Taniskidou, E. (2017). UCI Machine Learning
Repository (http://archive.ics.uci.edu/ml). Irvine, CA: University of
California, School of Information and Computer Science.

[26] P. W. Frey and D. J. Slate. "Letter Recognition Using Holland-style
Adaptive Classifiers". (Machine Learning Vol 6 #2 March 91).

