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 
Abstract—This paper aims at improving the performance of the 

tableting process using statistical quality control and fuzzy goal 
programming. The tableting process was studied. Statistical control 
tools were used to characterize the existing process for three critical 
responses including the averages of a tablet’s weight, hardness, and 
thickness. At initial process factor settings, the estimated process 
capability index values for the tablet’s averages of weight, hardness, 
and thickness were 0.58, 3.36, and 0.88, respectively. The L9 array 
was utilized to provide experimentation design. Fuzzy goal 
programming was then employed to find the combination of optimal 
factor settings. Optimization results showed that the process 
capability index values for a tablet’s averages of weight, hardness, 
and thickness were improved to 1.03, 4.42, and 1.42, respectively. 
Such improvements resulted in significant savings in quality and 
production costs.  

 
Keyword—Fuzzy goal programming, control charts, process 

capability, tablet optimization. 

I. INTRODUCTION 

HE pharmaceutical industry is a vital segment of the 
health care system, which is regulated heavily as any 

mistakes in product design or production can be severe, costly 
and even fatal. The compressed tablet is the most popular 
dosage form in use today. Dolocet is a combination drug, an 
effective analgesic and antipyretic with a mild effect on the 
stomach. It is provided in tablet form. The Dolocet solid-
dosage tablets are manufactured by compressing a powder 
formulation into a die. This processing technique is known as 
direct compression. It offers simplicity, economy, and the 
potential for high-volume output.  

Typically, the tablet quality can be described by several 
quality characteristics including: (i) average weight; the 
dosage form of a drug is traditionally composed of two 
ingredients: the active pharmaceutical ingredient (API) which 
is the drug itself and is a measure of the effectiveness of a 
drug and the excipient, which is the substance of the tablet or 
the liquid the API is suspended in. API is used to measure the 
effectiveness of a drug. The upper and lower specification 
limits of the tablet weight are 617.4 mg and 642.6 mg. It is 
preferred that the average tablet weight at nominal, Nominal-
The-Best (NTB) type response, (ii) average hardness in units 
of Kilopond (Kp). An acceptable hardness is required and 
tablet strength testing is necessary for both, research and 
development of new formulations and for quality control. The 
lower specification limit for the tablet hardness is 6 Kilopond 
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(Kp), which is considered the larger-the-better (LTB) type 
response, and (iii) Average thickness, which is important for 
packaging; the uniformity of the thickness indicates that the 
tablet press is performing well. Variation in the thickness will 
affect the tablets weight and hardness. The upper and lower 
specification limits of the tablet thickness are 3.99 mg and 
4.41 mg, respectively; hence, the average tablet thickness is 
considered the nominal-the-best (NTB) type response [1]. 

The robust design proposed by Taguchi has been only 
found efficient for optimizing a single response of main 
interest [2]-[4]. Several approaches have been proposed to 
optimize process performance with multiple responses [5]-[7]. 
Nevertheless, determining precise targets for multiple quality 
responses is often a difficult activity for a process/product 
engineer [8]-[10]. Therefore, several formulations of goal 
programming (GP) models were introduced for solving the 
fuzzy GP (FGP) problems taking into account the decision-
maker's (DM's) preferences [11]-[14]. An effective FGP 
technique is the weighted additive model, which considers all 
shapes of membership functions, with the objective to 
minimize the weighted deviations from the imprecise fuzzy 
values for all quality responses and process factors [15]-[19]. 
FGP has been utilized for optimizing process performance in 
many business applications [20]-[21].  

In reality, determining the combination of optimal factor 
settings for tablet manufacturing processes to improve 
multiple quality responses is a real challenge. This paper, 
therefore, aims at optimizing the performance of direct 
compression process for multiple quality characteristics using 
statistical techniques and weighted additive model in fuzzy 
goal programming.  

II. PROCESS PERFORMANCE AT INITIAL FACTOR SETTINGS 

A. Control Charts 

A control chart is one of the primary monitoring techniques 
of Statistical Process Control (SPC). Control charts plot the 
averages of measurements of quality characteristic in samples 
taken from the process versus the sample number. The chart 
has a center line (CL) as well as upper and lower control 
limits (UCL and LCL, respectively). At initial factor settings, 
the x –s charts for averages a tablet's weight, hardness, and 
thickness are shown in Fig. 1.  

Obviously, the control charts indicate that the process is in 
statistical control for the three quality responses.  
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(c) Thickness 

Fig. 1 The x –s charts for average tablet at initial factor settings 
 
B. Process Capability Analysis 

Capability analysis is used to assess whether a process is 
statistically capable to meet a set of customer desired product 
specifications. In practice, the process standard deviation,  , 
is unknown and is frequently estimated by: 
 

4

ˆ
s

c
                                               (1) 

 
where c4 is a constant related to the sample size, while s is the 
CL value in the s chart. The actual process capability index 
(

pkC ) attempts to take the target, T, into account. The 
pkC  

estimator,  ˆ
pkC , can be expressed mathematically by: 

 

ˆ ˆˆ min ,
ˆ ˆ3 3pk

LSL USL
C

 
 

    
 

                     (2) 

 
where x  is the process mean estimated by the CL value of x  
chart. Further, the multivariate process capability (

pkMC ) is a 

criterion for selecting an optimal design is known as 
pkMC and 

is used as a capability measure for a process having multiple 
performance measures. 

pkMC is a proposed system capability 

index for the process which is the geometric mean of 
performance measure of 

pkC  values. 

 
1

1

m
m

pk pkMC C
 

  
 
                   (3) 

         
where m is the number of quality characteristics. For the 
tablet’s weight, 15 samples were taken; each of size 12. 
While, for each of the tablet’s hardness and thickness, 18 
samples were taken; each of size 10. The estimated UCLs and 
LCLs of the x  charts for average tablet weight, hardness, and 
thickness are displayed in Table I. The estimated means, 
standard deviations, and ˆ

pkC values calculated and are listed in 

Table II. 
In Table I, the ˆ

pkC values are 0.58, 3.62 and 0.88 for the 
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averages of tablet's weight, hardness, and thickness, 
respectively. As a result, the tableting process is capable 
regarding the average tablet hardness, because this value 
larger than the accepted level (1.33). However, it is found 
incapable for the averages of weight and thickness. Moreover, 
the calculated ˆ

pkMC value (= 0.333) is less than one. These 

results indicate that further process improvement is needed. 

III. PROCESS OPTIMIZATION 

Three main process factors are identified affecting the tablet 
quality, including: Feed Speed (x1); the speed where the feeder 
delivers powder from the hopper to the die table. Head 
Pressure (x2); which is the amount of force that is applied to 
compress the powder into tablets. Finally, the Turret Speed 
(x3), which is the rotational speed of the die punch. The three 
factors are assigned each at three levels. The current settings 
for the tablet dosage are: Feed Speed = 23 rpm, Pressure =15 
KN, and the Turret Speed=13 rpm. The L9 array shown in 
Table III is selected for experimental design. Twenty samples 
are selected; each of size 10, 5 and 5 are taken for the weight, 
hardness and thickness, respectively. Each experiment is 
repeated three times. The averages of averages are calculated 
for the three responses and recorded in Table III. Let y1, y2, 

and y3 denote the measured averages of weight, hardness, and 
thickness, respectively. To optimize process performance, the 
weighted additive model in fuzzy goal programming was 
utilized. The optimization procedure is described as follows:  
Step 1: Formulate the mathematical relationship between each 
quality response and process factors. 

The regression model for the average tablet weight (y1) is 
formulated as follows ( 2 98.4adjustedR  ): 

 

1

2 2 2
1 1 2 3 2 3 2 3=827+311.9x -324.6x -197.4x -6.84x +13.36x +11.1x -6.182x x  y  

 

The regression model for y2 is expressed as: ( 2 84adjustedR  ): 

 

1

2 2 2
2 1 2 3 2 3 2 3=194+64.8x -60.6x -60.3x -1.6x +1.2x +2.32x +1.06x x  y  

 
Finally, the regression model for y3 is expressed as: 

( 2 87.4adjustedR  ):   

 

3 1 2 3 1 2 1 3 2 3=2.87+0.18x +1.54x -1.83x -0.073x x -0.07x x -0.012x x  y  

 

 
TABLE I 

ESTIMATED CONTROL LIMITS AND PROCESS CAPABILITY INDICES 

Response LSL T USL Process settings LCL CL UCL LCL CL UCL ˆ
pkC

Weight 
617.4 

630 
642.6 Initial 624.3 631.14 637.93 2.7 7.65 12.59 0.58 

617.4 642.6 Optimal 628.5 632.29 635.74 1.08 3.81 6.54 1.03 

Hardness 
6 

16 
* Initial 15.43 16.71 17.98 0 0.90 1.88 3.62 

6 * Optimal 15.78 17.09 18.39 0 0.91 1.90 4.45 

Thickness 
3.99 

4.2 
4.41 Initial 4.05 4.15 4.25 0 0.07 0.14 0.88 

3.99 4.41 Optimal 4.10 4.16 4.23 0 0.04 0.09 1.42 

 
TABLE II 

 PROCESS CAPABILITY AT INITIAL SETTINGS 

Quality characteristic Mean Standard deviation ˆ
pkC  

Average weight  (mg) 631.15 8.19 0.58 

Average hardness  (Kp) 16.70 0.07 3.62 

Average thickness (mm) 4.14 1.18 0.88 

 
TABLE III 

EXPERIMENTAL DATA 

 x1 x2 x3 y1 y2 y3 

1 22 12 14 4.286 18.70 643.370 
2 22 13 15 4.228 13.64 619.727 
3 22 14 16 4.218 16.40 632.620 
4 23 13 14 4.236 17.62 641.980 
5 23 14 15 4.172 18.26 632.600 
6 23 12 16 4.284 18.96 632.350 
7 24 14 14 4.286 17.20 647.360 
8 24 12 15 4.192 17.36 628.020 
9 24 13 16 4.160 16.82 623.190 

 
Step 2: Choose the suitable membership function representing 
each response. That is:  
a) For the average tablet weight, which is of NTB type 

response, the trapezoidal membership function, 
1y , is 

represented by: 
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Let 
1y
 and

1y denote the negative and positive deviation 

from the weight target, then the corresponding constrains are: 
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 b) For the average tablet hardness, which is the LTB type, 
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the membership function, 
2y , is defined by: 

 

2
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Let 
2y
 denote the negative deviation, the y2 goal 

constraints are written as: 
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c) For the average tablet thickness, which is of NTB type, 

the membership function, 
3y , is described by:  
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Let 
3y
 and

3
 y denote the negative and positive deviation 

from the thickness target, the y3 goal constraints are then 
formulated as: 
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Step 3: Typically, the DM has no information about the exact 

values of x1, x2 and x3. Let 
jx

 and  
jx

 denote the negative 

and positive deviations. Therefore, the trapezoidal 

membership function, 
jx ; j=1,…, 3, is utilized to describe 

the three process variables as follows:  
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Step 4: Assign weights to the deviations according to their 
relative significance to the DM. Then write the complete 
model as follows: 

Minimize Z= 0.35(
1 1
-y y   ) +0.25 2y +0.15(

33 +y y   )      

                    +0.1( 1 1x x
    + 2 2 3 3x x x x

          ) 

Subject to: 
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The obtained optimal process conditions were found to be: 

Feed Speed of 24.28 (rpm), Pressure of 15.169 (KN), and a 
Turret Speed of 14.42 (rpm). The expected values for the 
weight, hardness, and thickness are calculated 630 mg, 17 Kp 
and 4.2 mm, respectively.  

IV. RESULTS   

Validation experiments are conducted at the combination of 
optimal factor settings. Then, the x –s charts are established 
for the three quality responses as shown in Fig. 2. These 
charts are found to be in-control. Table II also displays the 
estimated UCL, LCL, and process capability values at the 
combination of optimal factor settings.  

Utilizing the optimal factor settings; Feed speed = 24.28 
RPM, Pressure = 15.16 KN, and Turret speed= 14.42 RPM, 
the ˆ

pkC  values for the averages of tablet's of weight, hardness, 

and thickness are 1.03, 1.42, and 4.45, respectively. The 
calculated ˆ

pkMC is increased to 1.86. The corresponding 

improvement ratios were found to be 77.5%, 31.5%, and 
61.3%, respectively.  Such results will result in significant 
improvement in quality by reducing the percentage of 
nonconforming and thereby enhancing productivity.   
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(c) thickness 

Fig. 2 The x –s charts for average tablet at optimal factor settings 
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