
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:10, 2012

1282

Abstract—The current Hadoop block placement policy do not

fairly and evenly distributes replicas of blocks written to datanodes in

a Hadoop cluster.

This paper presents a new solution that helps to keep the cluster in

a balanced state while an HDFS client is writing data to a file in

Hadoop cluster. The solution had been implemented, and test had

been conducted to evaluate its contribution to Hadoop distributed file

system.

It has been found that, the solution has lowered global execution

time taken by Hadoop balancer to 22 percent. It also has been found

that, Hadoop balancer respectively over replicate 1.75 and 3.3 percent

of all re-distributed blocks in the modified and original Hadoop

clusters.

The feature that keeps the cluster in a balanced state works as a

core part to Hadoop system and not just as a utility like traditional

balancer. This is one of the significant achievements and uniqueness

of the solution developed during the course of this research work.

Keywords—Balancer, Datanode, Distributed file system,

Hadoop, Replicas.

I. INTRODUCTION

ADOOP distributed data storage management and

analytic framework is arguably the best large scale data

processing solution available in today’s distributed computing

world. Although Hadoop system offers a wide range of

solutions pertaining to distributed computing and huge data

management problems, the system does not fairly and evenly

distributes replicas of blocks across a cluster, such that once

data are written to the cluster, a balancer has to be executed to

keep the cluster in a balanced state.

When an HDFS client is writing data to a file, HDFS places

the first replica on the node where the writer is located. The

second and the third replicas are placed on two different nodes

in a different rack. The rest are placed on random nodes with

restrictions that no more than one replica is placed at any one

node and no more than two replicas are placed in the same

rack, if possible [1].

Over time the distribution of blocks across datanodes can

Nchimbi Edward Pius is pursuing a final academic year of Masters Degree

in School of Software Engineering at School of Software Engineering, Tongji
University, 201804, P.R China (phone: +86-150-007-285-70; fax: +86-21-

695-898-40; e-mail: nchimbi2@yahoo.co.uk).

Prof. Liu Qin is Dean of School of Software Engineering with Tongji
University, 201804, P.R China (e-mail: qin.liu@ tongji.edu.cn).

Fion Yang is Director for International students office with Tongji

University, School of Software Engineering, Tongji University, 201804, P.R
China (e-mail: fionyang2004@gmail.com).

Zhu Hong Ming is Lecturer with Tongji University, School of Software

Engineering, Tongji University, 201804, P.R China (e-mail: hongming.zhu@
gmail.com).

become unbalanced. An unbalanced cluster can affect locality

for MapReduce, and it puts a greater strain on the highly

utilized datanodes, so it’s best avoided [2]. Unfortunately the

block placement strategy has not yet succeeded to put a fair

and even distribution of blocks across the cluster. The HDFS

block placement strategy does not take into account DataNode

disk space utilization, therefore data might not always be

placed fairly and uniformly to the DataNodes. Imbalance also

occurs when new nodes are added to the cluster.

Fig. 1 Unbalanced Hadoop cluster

When we add new racks full of servers and network to an

existing Hadoop cluster we can end up in a situation where the

cluster is unbalanced. In this case (shown in Fig. 1), Racks 1

& 2 were our existing racks containing File.txt and running

our Map Reduce jobs on that data. When we added two new

racks to the cluster, our File.txt data did not automatically start

spreading over to the new racks. All the data stays where it is

[3]. The new servers were sitting idle with no data, until we

start loading new data into the cluster. Furthermore, if the

servers in Racks 1 & 2 are really busy, the Job Tracker may

have no other choice but to assign Map tasks on File.txt to the

new servers which have no local data. The new servers need to

go grab the data over the network. As result you may see more

network traffic and slower job completion times [3].

To overcome uneven block distribution scenario across the

cluster, a utility program called balancer has to be explicitly

executed by human being to re-distribute blocks in the cluster.

The balancer is a tool that balances disk space usage on an

HDFS cluster [1]. Balancer looks at the difference in available

storage between nodes and attempts to provide balance to a

certain threshold. New nodes with lots of free disk space will

Optimizing Hadoop Block Placement Policy &

Cluster Blocks Distribution
Nchimbi Edward Pius, Liu Qin, Fion Yang, Zhu Hong Ming

H

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:10, 2012

1283

be detected and balancer can begin copying block data off

nodes with less available space to the new nodes [3].

In a real world cluster like Amazon EC2, it may cost a lot of

resource such as time and energy to run a balancer across such

huge cluster to make it balanced. It would be better to have a

solution that keeps track of and estimates utilization of a

datanode prior to every attempt that puts a replica of block on

the datanode. Some parts of the logic designed in this research

work adapt approximate the same concept and impact of

Hadoop balancer, but the effects take place in a dynamic, real-

time and an incrementally fashion.

A. Proposed Solution

To keep a fair and an even block distribution across the

cluster, a new logic that tracks and estimate utilization of both

datanodes and cluster is needed. When a file read operation is

in progress, the feature will evaluate utilization of a cluster,

datanodes and threshold value (default to ten percent);

thereafter the datanode whose utililization differs from that of

cluster by lesser of threshold value will be selected as one of

the best datanode onto which a block will be placed.

Otherwise (if the datanode is over utilized) the logic discards

it and proceeds to other datanodes.

B. Solution Flow Chart

Fig. 2 Modified HDFS replication target chooser execution flow

C. Mathematical Analysis

This part analyses the proposed solution in a mathematical

standpoint as follows:

Assumptions

• Ui and Ti are Used space and Total capacity of a datanode,

respectively.

• βi and βc are Datanode and Cluster utilization,

respectively.

• Uc and Tc are Used space and Total capacity of cluster,

respectively.

• ∆ is Threshold value.

Datanode and cluster utilization can respectively be

expressed as follows:

�� � �� � �� �1

�� � �� � �� �2

A datanode is said to be over utilized if and only if the

following inequality holds:

 ��
 �� � ∆ �3

The proposed solution will only replicates blocks to the

datanode whose utilization value (βi) causes inequality (3)

above to return false. This will ensure that a datanode do not

get over utilized compared to other datanodes on a cluster.

D. Solution Class Diagram

Fig. 3 Class diagram for some of additional features to existing

Hadoop block placement policy

Classes that appear in blue in Fig. 3, represent new features

that have been added to the existing Hadoop distributed file

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:10, 2012

1284

system. Those in green represent classes that previously

existed but some methods and variables have been added onto

them to accomplish the whole modified system business logic.

Some of the methods that have been added in both

Namenode class and ClientProtocol interface include

getClusterSize() and getDatanodeReport() which return size of

cluster and datanodes available in a cluster respectively. The

methods, isOverUtilized() and getUtilization() respectively

return true if a datanode is over utilized and a double value

that contains utilization of a datanode. Method isGoodTarget()

returns a value whose type is of StateCause, a utility class.

The variables in StateCause utility class includes a state

variable (either false or true) that indicates whether a datanode

is bad(false) or good(true) target, and cause variable that

defines a reason that causes the datanode to be good or bad

target. These reasons include a datanode being in

decommissioning, has less remaining space, is over utilized,

has too much communication traffics and its rack’s datanodes

have been chosen for many times compared to other racks’

datanodes in the cluster. The two helper classes

ValueComparator and SignatureInteger have been internally

used to compare datanodes utilization values and for

identification purpose. Detailed information and functionality

of all classes can be obtained in source code files (not included

in this paper) that make up the whole system.

II. EXPERIMENT DESIGN & EVALUATION

A. Aim of Evaluation

• To verify that the modified HDFS system realizes the

features defined in requirement section, in a practical

standpoint.

• To collect and present blocks distribution data in each

datanode across the cluster based on original and

modified HDFS system respectively.

• To collect and present in a visual form used space in each

datanode in a cluster based on original and modified

HDFS systems respectively.

• To evaluate global time taken for a client to write a file in

both original and modified HDFS system.

• To evaluate global time taken for a client to read a file in

both original and modified HDFS system.

B. Experiment Setup

To achieve five evaluation objectives stated above, a cluster

of three datanodes was setup as shown below. The cluster is

made up of one designated namenode (that also serves as a

datanode) identified by private IP address number

10.60.36.139 and two slaves datanodes whose private IP

addresses are 10.60.36.140 and 10.60.36.77. User codes that

write files to and read blocks of data from the cluster were all

local to a datanode whose private IP address is 10.60.36.87 as

it has been indicated in the Fig. 4.

Fig. 4 A client writing files to and reading blocks of data from HDFS

cluster

C. Evaluation Procedures

1. Install a modified version of HDFS system

2. Write files of different size to the cluster, by running a

user program (implemented during the course of this

research work) code that creates and writes data to a file.

3. Record time taken to write each file to the cluster

4. Record and visualize block distribution across the nodes

that make up the cluster.

5. Record and visualize used space in each datanode that

make up the cluster.

6. Uninstall the system installed in step 1 above.

7. Install an original (unmodified version) HDFS system.

Repeat steps 2 through 5.

III. RESULTS & DISCUSSION

The data recorded for the two hadoop systems were

visualized and presented in the following diagrams.

A. Cluster Initial View

Initially the two clusters’ datanode R1:139 had a lowest

capacity of 38.45 GB and datanode R1:77 had largest capacity

of 144.83 GB. The replica factor of 2 was used throughout the

course of this experiment. Hardware limitation (three nodes)

was among the factors used to choose replication factor of

two. In addition to that the value of 2 was chosen so as to

observe behavior of the two systems when choosing two

datanodes out of three datanodes onto which to replicate

blocks of file. Detailed initial clusters’ states can be seen from

Figs. 5 and 6.

Fig. 5 Modified Hadoop system cluster’s initial information

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:10, 2012

1285

Fig. 6 Original Hadoop system cluster’s initial information

B. Blocks versus File Size

Fig. 7 Block distribution across the modified Hadoop cluster

Fig. 7 reveals that the newly developed system’s block

placement logic distributes replicas by considering utilization

of both datanode and cluster. The datanode that was

previously highly utilized e.g. R1:139 does not frequently get

replicas compared to those datanodes that were previously

underutilized e.g. R1:77.

The interval that starts from init to 3000 on horizontal axis

shows that datanode R1:139 have been chosen most frequently

compared to datanode R1:77. When file size become large,

from 4000 to 8000 interval on horizontal axis, the highly

utilized datanode R1:139 starts to get less number of replicas

compared to other datanodes R1:140 and R1:77 whose

capacity was relatively higher than that of datanode R1:139. It

should be noted that datanode R1:139 was not completely

ignored by the system, but it (datanode R1:139) was less often

selected due to its tendency of getting to an over utilized state

once few number of blocks were placed on it.

Fig. 8 reveals that the original system’s block placement

logic distributes replicas by randomly selecting datanodes and

it also put into account the remaining space of a datanode in a

cluster.

The datanodes that were previously more or less utilized are

not considered. The datanode (R1:139) that was previously

highly utilized continues to be over utilized while datanode

(R1:77) that was previously underutilized continues to be

underutilized.

A sharp fall horizontal red line implies that datanode

R1:139 have reached to the extremely over utilized point

beyond which only few blocks can be placed on the datanode.

Fig. 8 Block distribution across the original Hadoop system’s cluster

C. Used Space versus File Size

Fig. 9 Nodes used space in modified Hadoop cluster

Fig. 9 shows that the newly developed Hadoop cluster uses

init
100

0

200

0

300

0

400

0

500

0

600

0

700

0

800

0

R1:140 3 22 51 97 163 246 350 466 578

R1:139 4 15 48 89 129 161 200 246 305

R1:77 1 15 39 80 144 243 356 490 661

0

100

200

300

400

500

600

700

B
lo

ck
s

Blocks vs file size

init 1000 2000 3000 4000 5000 6000 7000 8000

R1:140 2 18 48 91 155 224 306 399 569

R1:139 3 13 42 89 148 213 305 409 409

R1:77 3 21 48 86 133 213 295 396 566

0

100

200

300

400

500

600

B
lo

ck
s

Blocks vs file size

init
100

0

200

0

300

0

400

0

500

0

600

0

700

0

800

0

R1:140 0 115 295 583 100 151 217 289 360

R1:139 1 65 275 535 782 983 123 153 189

R1:77 1 88 238 499 900 151 222 306 413

0

500

1000

1500

2000

2500

3000

3500

4000

4500

U
se

d
 s

p
a

ce
 *

 1
0

0
 G

B

Node's used space vs file size

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:10, 2012

1286

more space of nodes with little utilization value. Nodes with

more free space are chosen most often compared to those with

little free space. The newly implemented solution works in a

way that do don’t violate original Hadoop block placement

policy.

Fig. 10 Nodes used space in original Hadoop cluster

Fig. 10 above shows that, current hadoop system randomly

chooses datanodes such that node’s previously used space is

less or even not considered. Regardless of nodes and cluster

utilization, the current system has consumed approximately

equal space from all datanodes. Very trivial evidence can be

seen from Fig. 10 where by all datanodes’ lines are

approaching and crossing (with little deviation) to each other,

at 3000, 5000 and 7000 points on horizontal axis. A tendency

by which the lines lagging and crossing each other as it has

been shown in Fig. 10 portrays that the original hadoop system

do so (distributes blocks that way) to keep a little difference in

datanodes’ cumulative sum of used space. At point 7000 on

horizontal axis it can be seen that all nodes attain

approximately the same cumulative sum of used space, whose

value rounds off to 2500 or 25 Gigabytes (during data

collection phase every collected value for datanode’s used

space was multiplied by 100 for clarity reason and

presentation purpose). Point above 7000 seems to be an

extreme condition to datanode R1:139, red in color, since at

this point it was less used compared to other datanodes, results

to a relatively low cumulative sum of used space, about 2539

or 25.39 Gigabytes, compared to other datanodes whose

values round off to 3500 or 35 Gigabytes.

D. Write Time Comparison

Fig. 11 Write time comparisons between new and original replication

target chooser logic in HDFS system

Fig. 11 above shows that, the global time taken for a client

to write blocks of data to the two file systems seem to have

minor difference from each other. A sharp rise in time from

1000 to 2000 on horizontal axis, for a blue line (original

system) might be due to environment factors such as network

and communication traffics across the cluster.

From Fig. 11, it can be revealed that, the newly

implemented Hadoop system takes less cumulative global time

for an HDFS client to write blocks of data to the cluster

compared to the time taken for the HDFS client to write

blocks of data on datanodes in original Hadoop cluster.

E. Impact of Balancer Utility

The following data in visual presentation were collected

after running hadoop balancer utility on modified hadoop

cluster. A bout 1544 blocks was written, as shown in Fig. 12.

Fig. 12 Unbalanced modified Hadoop cluster

After running Hadoop balancer about 1581blocks were

found, as shown in Fig. 13. It implies that about 27 blocks

were over replicated by the balancer.

init
100

0

200

0

300

0

400

0

500

0

600

0

700

0

800

0

R1:140 0 96 286 561 958 139 190 249 355

R1:139 0 58 238 538 904 130 188 253 253

R1:77 0 114 280 520 816 131 183 247 353

0

500

1000

1500

2000

2500

3000

3500

4000

U
se

d
 s

p
a

ce
 *

 1
0

0
 G

B

Node's used space vs file size

1 2 1000 2000 3000 4000 5000 6000 7000 8000

CURRENT 149 310 2E+ 5E+ 4E+ 6E+ 7E+ 1E+ 2E+ 3E+

MODIFIED 442 237 1E+ 3E+ 4E+ 5E+ 7E+ 1E+ 1E+ 1E+

0

5000000

10000000

15000000

20000000

25000000

30000000

T
im

e
 i

n

m

il
li
se

co
n

d
s

Write time vs file size

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:10, 2012

1287

Fig. 13 Modified Hadoop cluster after executing the balancer

Few minutes later, a total number of 1544 blocks were

found, as presented in Fig. 14. It provides vivid evidence that

implies that over replicated blocks were implicitly removed.

Fig. 14 Balanced modified Hadoop system’s cluster

After Hadoop balancer executed completely, the time taken

for execution process to complete was captured and visualized

as shown in Fig. 15. It can be seen that time required to

execute Hadoop balancer on the newly implemented Hadoop

cluster is about 43.5180 minutes.

Fig. 15 Balancer global time taken in modified Hadoop cluster

The following data in visual presentation were collected

after running hadoop balancer utility on original (unmodified)

Hadoop cluster. A total number of 1544 blocks were written,

as shown in Fig. 16.

Fig.16 Unbalanced original Hadoop cluster

After running Hadoop balancer a total number of 1595

blocks were found, as shown in Fig. 17. It implies that about

51 blocks were over replicated by the balancer.

Fig. 17 Original Hadoop cluster after executing the balancer

The global time taken by Hadoop balancer to redistribute

blocks in original Hadoop cluster was captured and presented

in visual aid as shown in Fig. 18. It can be seen that about

3.3450 hours elapsed for the balancer to execute successfully.

Comparing this value to one obtained in Fig. 15, it implies

that the newly (modified) implemented Hadoop cluster fairly

and evenly distributes replicas of blocks to the extent that

Hadoop balancer doesn’t consume much time in redistributing

blocks from over utilized datanodes to underutilized

datanodes.

Fig. 18 Balancer output in original Hadoop cluster

With respect to Figs. 13 and 14 it can be seen that the

modified system has over replicated about 27 (approximately

to 1.75 percent) blocks, while Figs. 16 and 17 reveal that the

original system has over replicated about 51 (approximately to

3.3 percent) blocks. Both systems’ over replication states were

immediately corrected by the two systems implicitly, in few

minutes.

From Figs. 15 and 18 it can be seen that the modified

system has been lowered the traditional balancer global

execution time to 22 percent.

IV. CONCLUSION

The primary objectives of this research work have been

successfully achieved. Our newly implemented solution fairly

and evenly distributes replicas of blocks to datanodes by

considering datanode and cluster utilization. Global time to

execute hadoop balancer has been lowered to almost 22

percent; this value portrays the significance of our solution in

time sensitive applications that take place in distributed

computing world. Decline in number of re-replicated blocks

from 51 to 27 after running hadoop balancer on modified

hadoop cluster, indicates suitability and effectiveness of our

modified system.

Further improvements to the solutions presented in this

research work are needed to help the system achieve better

performance with little system resources usage. To minimize

delay in the system, caching of live blocks report requested by

dynamic balancer from namenode is worth implemented.

Information about cluster size and total load on the cluster

must be cached for a reasonable amount of time so as to avoid

similar requests for same information from the name node

which incurs too much delay that degrades overall system

performance. We reserved these features to be implemented

later in next releases.

APPENDIX: GLOSSARY TERMS

HDFS: Hadoop Distributed File System

Replicas: Redundant copies of a block

Cluster: A network of computers formally known as

Namenode and Datanodes

Balancer: Hadoop utility program used to keep cluster in a

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:10, 2012

1288

balanced state.

Amazon EC2: Amazon Elastic Compute Cloud allows users

to rent virtual computers on which to run their own computer

applications.

Namenode: A computer or server that is dedicated to provide

metadata services and manage hadoop cluster file system

consistency.

Datanode: A computer or server that is dedicated to store data

and perform cluster tasks under the governance of Namenode.

MapReduce: Hadoop framework developed in Java, which

offers developers, distributed programming environment or

services.

HDFS Client: Client program developed in Java or other

language, which writes and reads files to and fro hadoop

cluster.

R1:139: DataNode whose local IP address is 10.60.36.139 in

the first rack, limited to the context of this project.

R1:140: DataNode whose local IP address is 10.60.36.140 in

the first rack, limited to the context of this project.

R1:77: DataNode whose local IP address is 10.60.36.77 in the

first rack, limited to the context of this project.

Original: Unmodified Hadoop system, part for the input of

this project work

Current: Modified Hadoop system, the output of this project

work

ACKNOWLEDGMENT

We express our sincere gratitude to School of software

engineering, Tongji University and Shanghai Municipal

government for financing our study in China, without which

this work could not be accomplished.

REFERENCES

[1] http://www.aosabook.org/en/hdfs.html

[2] Tom White, “Hadoop: The definitive guide”, 2nd ed., O’REILLY, pp.

304.
[3] Brad Hedlund, “Understanding Hadoop Cluster and the Network”,

www.bradhedlund.com

Nchimbi, Edward Pius, is currently pursuing a final academic year of
Masters Degree in Software Engineering, in Tongji University, P.R China.

Academically, He has completed four years (2006-2010) Bachelor degree

studies in Telecommunication Engineering in Huazhong University of Science
& Technology, P.R China. In 2005/2006 he did Chinese Language

programme in Shandong University, Jinan, and P.R China. From 2003 to

2005, he pursued Advanced Level studies, in Physics, Chemistry and
Advanced Mathematics in Ilboru Secondary School, Arusha, Tanzania.

Technically, he had worked for SAP China Labs, as intern, from 2011 to

May, 2012.

