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Abstract—Empirical mode decomposition (EMD), a new
data-driven of time-series decomposition, has the advantage of
supposing that a time series is non-linear or non-stationary, as
is implicitly achieved in Fourier decomposition. However, the
EMD suffers of mode mixing problem in some cases. The aim of
this paper is to present a solution for a common type of signals
causing of EMD mode mixing problem, in case a signal suffers
of an intermittency. By an artificial example, the solution shows
superior performance in terms of cope EMD mode mixing problem
comparing with the conventional EMD and Ensemble Empirical
Mode decomposition (EEMD). Furthermore, the over-sifting problem
is also completely avoided; and computation load is reduced roughly
six times compared with EEMD, an ensemble number of 50.

Keywords—Empirical mode decomposition, mode mixing, sifting
process, over-sifting.

I. INTRODUCTION

ROUGHLY a decade ago, an empirical nonlinear

analysis tool for complex, non-stationary temporal signal

variations has been introduced by N. E. Huang et al. [1].

Afterwards, such techniques are commonly referred to as

Empirical Mode Decomposition (EMD), and if combined with

Hilbert spectral analysis they are called Hilbert - Huang
Transform (HHT). They adaptively and locally decompose any

non-stationary signal in a sum of Intrinsic Mode Functions

(IMF) which represent zero-mean, amplitude and (spatial-)

frequency modulated components. EMD represents a fully

data-driven, unsupervised signal decomposition which does

not need any a priori defined basis system. Since EMD is

fully data-driven, not mathematical-based and only defined as

the extracted components of an iterative algorithm , it is an

open question to know what sort of separation can (or cannot)

be performed for two-signals or more composite signals when

using the method. Other than competing Exploratory Matrix
Factorization (EMF) techniques like Independent Component

Analysis (ICA) [2], [3], EMD also satisfies the perfect

reconstruction property, i.e. superimposing all extracted IMFs

together with the residual slowly varying trend reconstructs

the original signal without information loss or distortion.

Thus EMD lacks the scaling and permutation indeterminacy

familiar from blind source separation techniques [4]. Because

EMD operates on sequences of local extremes, and the

decomposition is carried out by direct extraction of the local

energy associated with the intrinsic time scales of the signal

itself, the method is thus similar to traditional Fourier or
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Wavelet decompositions. It differs from the wavelet-based

multi-scale analysis, however, which characterizes the scale

of a signal event using pre-specified basis functions. Owing

to this feature, EMD, and even more so its noise-assisted

variant called Ensemble Empirical Mode decomposition (

EEMD), is highly promising in dealing with other problems

of a multi-scale nature. But the interpretation of IMFs is not

straightforward, and it is still a challenging task to identify

and/or combine extracted IMFs in a proper way so as to

yield physically meaningful components. However, one can

find more details about EMD in [5]–[7].

The goal of this paper is therefore to contribute a better

method and to improve experimentally extracted modes

depend on the original method. This work shows the probable

solution for a common type of EMD mode mixing which

produces by using conventional EMD.

This paper is organized as follows: A background about

standard EMD algorithm is shortly introduced. Then the mode

mixing problem in Section II is explained. Afterwards, Section

III introduces the improvements and solutions of EMD mode

mixing problem. Finally, a short conclusion is drawn.

II. EMPIRICAL MODE DECOMPOSITION

EMD is a fully data-driven method for the different

scales analysis of complex, nonlinear and non-stationary

real-world signals. It decomposes the original signal into a

finite set of amplitude-modulated (AM) components,which

are called Intrinsic Mode Functions(IMFs). IMFs represent

zero-mean amplitude and frequency modulated components.

The EMD represents a fully data-driven, unsupervised signal

decomposition and does not need any a priori defined

basis system. EMD also assures perfect reconstruction, i.e.

superimposing all extracted IMFs together with the residual

trend reconstructs the original signal without information

loss or distortion. The empirical nature of EMD offers

the advantage over other signal decomposition techniques

like Exploratory Matrix Factorization (EMF) [8] of not

being constrained by conditions which often only apply

approximately. Especially with cognitive signal processing,

one often has only a rough idea about the underlying modes or

component images, and frequently their number is unknown.

Eventually, the original signal x(t) can be expressed as
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x(t) =
∑
j

c(j)(t) + r(t)

c(j)(t) = Re
{
aj(t) exp

(
iφ j(t)

)}
= Re

{
aj(t) exp

(
i
∫ t

−∞

ωj(t ′)dt ′
)}

(1)

where the c(j)(t) represents the IMFs and r(t) the

remaining non-oscillating trend. Furthermore, aj(t) denotes

a time-dependent amplitude, φ j(t) =
∫
ωj(t)dt represents a

time-dependent phase and ωj[rad/s] = dφ j (t)

dt denotes the

related instantaneous frequency. Plotting both amplitude aj(t)
and phase φ j(t) as a function of time for each extracted IMF

represents a Hilbert - Huang spectrogram [9].

During sifting, mode mixing as well as boundary artifacts

can be avoided by a variant called Ensemble Empirical Mode
Decomposition (EEMD) which has been introduced by [10].

It represents a noise-assisted data analysis method. First white

noise of finite amplitude is added to the data, and then the

EMD algorithm is applied. This procedure is repeated many

times, and the IMFs are calculated as the mean of an ensemble,

consisting of the signal and added white noise. With a growing

ensemble number, the IMF converges to the true IMF [10].

Adding white noise to the data can be considered a physical

experiment which is repeated many times. The added noise is

treated as random noise, which appears in the measurement.

In this case, the n − th noisy observation will be

xn(t) = x(t) + εn(t) =
∑
j

c(j)n (t) + rn(t), (2)

where x(t) is the true signal, εn(t) is the random noise and

c(j)n = c(j) + εn(t) represents the IMF obtained for the n-th

noise observation. For the sake of simplicity, following we

denote the residuum as rn(t) ≡ c(J)n (t), hence formally include

it into the summation over the IMFs.

III. SIMULATION RESULTS

A. Mode Mixing

As shown by Huang et al. [1], [10] in many times

the mode mixing is a consequence of signal intermittency.

The intermittency leaves its fingerprint in the extracted

modes which leads to a serious distortion the time-frequency

distribution. In addition, it also makes the individual IMF

entirely lacking of physical meaning. To reduce this kind of

mode mixing problem, Huang et al. [1] suggested an approach

to intermittence test, which can cope some of the difficulties.

However, the approach has some problems because of scaling

separation. Afterward, a new approach was introduced by

Wu et al. [11], which is called Ensemble Empirical Mode
Decomposition (EEMD). It represents a noise-assisted data

analysis method. First white noise of 0.1 amplitude of the

standard deviation of the original signal is added to the data,

and then the EMD algorithm is applied. This procedure is

repeated many times, and the IMFs are calculated as the

mean of an ensemble, consisting of the signal and added

white noise. With a growing ensemble number, the IMF

Fig. 1 An artificial signal obtained as the superposition of the waveforms
and an intermittent signal according to (3)

converges to the true IMF [10], [11]. Adding white noise to

the data can be considered a physical experiment which is

repeated many times. The added noise is treated as random

noise, which appears in the measurement. This technique is

based on the studies of the statistical properties of white

noise [12], [13], which showed that the EMD is effectively

an adaptive dyadic filter bank when applied to white noise.

Although this approach has been succeed to alleviate this kind

of problem, but an additional efforts must be made to choice

the meaningful modes. Furthermore, this leads to over-sifting

problem. To see the effect of EEMD, an intermittent signal is

generated as (see Fig. 1):

S = 0.1 ∗ sin(2 ∗ π. ∗ t + 5 ∗ sin(π ∗ t/100)).∗
(exp(−(t − 25).2/10) + exp(−(t − 45).2/10)

+exp(−(t − 65).2/10))
+sin(π ∗ t/10)

(3)

Separation combining of these signals using conventional

EMD has failed as presented in Fig. 2 because of relatively

small amplitude of intermittent signal compared to the pure

signal and disappearing it periodically. From Fig. 2 (a) one

can see clearly the effect of mode mixing in IMF1 and IMF2.

IMF1 is the mixture of both the low frequency fundamental

and the high frequency intermittent waves, this make it difficult

to interpret and determine the underlying physical meaning.

Beside, one can see in Fig. 2 (b) the needing to a bit effort

to recognize on the correct extracted modes by EEMD, IMF7

and IMF5, which has a physical meaning and interpretable.

B. Mode Mixing Solution

The solution for this kind of mode mixing can be done by

optimizing the sifting process as the following:

1) Normalize input signal S = [s1, s2, ...sn] → nS = (s −

min(s))/(max(s) − min(s))
2) Add a helping white noise ε(x) with a small amplitude

nS = 1
Aε(x) + nS, where A should be in the range, rule

of thumb, between 1000 and 9000
3) Initialize r1(n) = nS and set j = 1;

4) Extract jth IMF by the following sifting process (SP)

procedure:

a. Set the intermediate signal hj(n) = rj(n) and i = 0 and

k = N − j; where N represents the number of modes.

b. Extract the local extremes (maxima and minima) of

hj(n);
c. Generate upper and lower envelopes u+j (n) and u−j (n),

based on the generated extremes of hj(n);
d. Take the average of envelopes mj(n) = 1

2 (u
+
j (n)+u−j (n));
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(a) (b)

Fig. 2 (a) the intermittent signal and extracted modes by conventional EMD decomposition with 10 sift iteration. (b) the intermittent signal and extracted
modes by EEMD, an ensemble member of 50 is used, 10 sift iteration is used, and the added white noise in each ensemble member has a standard deviation

of 0.1

e. Update hj(n) = hj(n) − mj(n) and i = i + 1;

f. Repeat, steps (b) to (e) until stopping criteria (SD) is

met, SDi >= A × N and j = 1; obtain the first noisy

mode (IMF1), c1(n) := h1(n);
5) Update rj+1(n) = rj − cj(n);
6) Update stopping criteria (SD), SDi >=

round(log(k2∗k2
)) + 1 and j � 1;

7) Repeat steps from 3 to 6; obtain the rest of j IMFs; repeat

till a predined IMF index is met, i.e j = J
As shown on Fig. 2 the standard method completely failed

to extract correct components. Besides, EEMD extracted the

interesting modes but suffered of over-sifting problem, still.

Hence according to algorithm in Fig. 3, after decomposition

process with original signal we have the following: when a

white noise with a tiny amplitude is added without updating

the number of sifting iteration (step 6 of the proposed

improvements), EMD successes to estimate modes rather

correctly, but it fails to show up the added noise. Also the

over-sifting is appeared because the intermittency is repeated

in IMF1 and IMF2. While applying the whole proposed

method, see Fig. 3 (b), clearly succeed to obtain modes

perfectly matches with the original one; the added noise in

IMF1, the intermittent signal in IMF2 and the pure signal in

IMF3. So the diapason between the amplitude of the added

noise and the sifting iterations is required as we suggested to

solve this kind of problem. In addition to the performance of

this proposed improvements in coping mode mixing problem

compared to EEMD-50, the computation load is reduced

roughly six times.

IV. CONCLUSION

This paper addressed a common type of EMD mode

mixing problem and specialize existing knowledge of EMD

algorithm performance. Hence, this solution can cope such

mode mixing problem without over-sifting problem and save

much computation load as well. However, the aim of presented

method is to extend scope field for research and application.
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(a) (b)

Fig. 3 (a) the signal and extracted modes by EMD algorithm decomposition with a proposed tiny assisted noise, the added white noise has a standard
deviation of 0.0001. (b) the signal and extracted modes by proposed EMD algorithm decomposition
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