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Optimized Algorithm for Particle Swarm
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Abstract—Particle swarm optimization (PSO) is becoming one of
the most important swarm intelligent paradigms for solving global
optimization problems. Although some progress has been made to
improve PSO algorithms over the last two decades, additional work
is still needed to balance parameters to achieve better numerical
properties of accuracy, efficiency, and stability. In the optimal
PSO algorithm, the optimal weightings of (

√
5 − 1)/2 and (3 −√

5)/2 are used for the cognitive factor and the social factor,
respectively. By the same token, the same optimal weightings have
been applied for intensification searches and diversification searches,
respectively. Perturbation and constriction effects are optimally
balanced. Simulations of the de Jong, the Rosenbrock, and the
Griewank functions show that the optimal PSO algorithm indeed
achieves better numerical properties and outperforms the canonical
PSO algorithm.
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I. INTRODUCTION

PARTICLE SWARM OPTIMIZATION (PSO), originally

proposed by Kennedy and Eberhart [1], [2] in 1995,

is becoming one of the most important swarm intelligence

paradigms [3]. PSO adopted the cognitive and social behaviors

of a swarm of birds looking for food to intelligently conduct

searches for global optimization.

Most global optimization problems can be converted to

global minimization problems. The minimization problem

considered herein is to find a global minimizer, X∗, in

a bounded D-dimensional searching space, S, which is a

nonempty compact subset of RD, to minimize the real valued

objective function, f : S → R such that

f(X∗) ≤ f(X), ∀X ∈ S ⊂ RD, (1)

in which

S =
D∏

d=1

[ad, bd] , (2)

where ad and bd stands for the lower and upper constant limits

of a searching space in d-dimension, respectively.

In searching a D-dimensional space for problems defined

in (1) and (2) by PSO, particle i of a swarm can be described

by a position vector, Xi = (xi1, xi2, · · · , xiD)T and a velocity

vector Vi = (vi1, vi2, · · · , viD)T . The cognitive behavior of

a swarm is transformed into tracking the previously visited

positions of particles with the smallest values of an objective

function by Pi = (pi1, pi2, · · · , piD)T . The social behavior of

a swarm is interpreted by defining g as the index of the best
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particle in the swarm and by choosing the global best particle

with the smallest value of the objective function among the

individually visited best positions. For commonly used PSO

algorithms, velocities and positions of a swarm are updated

by the following two equations

vn+1
id = wvnid + c1r

n
1 (p

n
id − xn

id) + c2r
n
2 (p

n
gd − xn

id), (3)

xn+1
id = xn

id + vn+1
id , (4)

where the inertia weight, w, was proposed by Shi and

Eberhart [4], the dimensional index, d = 1, 2, · · · , D, the

particle index, i = 1, 2, · · · ,M , the iteration number, n =
1, 2, · · · , N , c1 and c2 are positive acceleration constants, and

r1 and r2 are uniformly distributed random numbers within [0,

1]. In the diversification search, the weighted inertia velocity

looks for new solutions and locates regions with potentially the

best solutions. In the intensification search, the remaining two

positional difference terms perturbed with random numbers

explores the previous solutions and finds the best solution of

a given region. Similarly, to use the inertia weight to control

the maximum velocity of a swarm, a constriction factor has

been introduced in analyzing the PSO convergence behavior

by Clerc and Kennedy [5]. The velocities are iterated by

vn+1
id = χ

[
vnid + c1r

n
1 (p

n
id − xn

id) + c2r
n
2 (p

n
gd − xn

id)
]
, (5)

where

χ =
2

φ− 2 +
√
φ2 − 4φ

, c1 + c2 = φ > 4.0. (6)

When typical values of c1 = c2 = 2.05 are used, the

constriction constant has the value of χ = 0.72984. This is

the canonical PSO algorithm [6].

Although some progress has been made to improve PSO

algorithms and to expand their applications over the last two

decades [7]-[10], additional work is still needed to balance

parameters to achieve better numerical properties of accuracy,

efficiency, and stability for PSO algorithms. An optimal PSO

algorithm will be introduced in detail in the following section.

II. OPTIMAL PSO ALGORITHM

In order to develop the optimal PSO algorithm with

better numerical properties including accuracy, efficiency, and

stability, optimizations are applied between the cognitive and

social components, between the perturbation and constriction

factors, and between the intensification and diversification

searches.

First, the intensification search includes a cognitive

component and a social component weighted by the constants,
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c1 and c2, respectively. When a c1 greater than c2 is used, each

particle approaches its previous individual best position. When

a c2 greater than c1 is used, each particle moves closer to the

previous global best position. The cognitive constant c1 and

the social constant c2 need to be optimally balanced. For an

optimal balance, the golden ratio is applied to the ratio of a

cognitive constant to a social constant. Thus, we have the ratio

of c1/c2 = (1 +
√
5)/2.

Second, let us define the summation, φ = c1 + c2, as

a perturbation constant. When the perturbation constant, φ,

increases, the depth of an intensification search increases but

the constriction constant, χ, decreases based on (6), resulting

in more stability but narrower diversification searches and vise

versa. Equation (6) can be rearranged as

χ =
1

1 + (φ− 4 +
√

φ2 − 4φ)/2
. (7)

Balance between the perturbation constant and the

constriction constant can be achieved by equating the two

dimensionless groups of χ and (φ−4+
√
φ2 − 4φ)/2. Solving

gives the optimal perturbation constant of φo = 2 +
√
5 and

the optimal constriction constant of χo = (
√
5− 1)/2.

Third, in the diversification search, if the velocity is

weighted low, the mobility of particles will be constrained

and the search for potential new regions will be limited but if

the velocity is weighted high, the oscillation of particles will

be magnified and the efficiency of the PSO algorithm will be

reduced. In the intensification search, perturbation effects due

to random numbers will increase with large constants c1 and

c2. The diversification term is the accumulation of previous

intensification terms. As such, the diversification search will

update and renew the intensification search. When constants

c1 and c2, and the inertia velocity are too large, however, the

stability of the PSO algorithm will deteriorate, resulting in

divergent searches. For an optimal balance, the diversification

search is weighted with (1−χo) and the intensification search

is weighted by χo.

Combining the three aspects of optimizations, with co1 =
(
√
5 − 1)/2 and co2 = (3 − √

5)/2, the velocity recursion

equation, along with the position recursion equation (4),

establishes the optimal PSO algorithm

vn+1
id = (1− χo)v

n
id + χoco1φor

n
1id (p

n
id − xn

id)

+ χoco2φor
n
2id

(
pngd − xn

id

)
,

(8)

where the resulting optimal parameters are 1 − χo = (3 −√
5)/2, χoco1φo = (1+

√
5)/2, χoco2φo = 1, and the iteration

process will not stop until the Euclidean norms, η, of position

changes between two consecutive iterations per a swarm size,

M , satisfies a designated allowable tolerance, ηa, by

η =
‖Xn+1 −Xn‖

M
=

1

M

√√√√ M∑
i=1

D∑
d=1

(xn+1
id − xn

id)
2 ≤ ηa,

(9)

or a selected maximum iteration number, N , is reached. The

Euclidean distance averaged by a swarm size measures swarm

convergent behaviors. In addition, one of the most important

values to be monitored is best fitness, in which a minimized

Fig. 1 Comparisons of swarm convergency between canonical and optimal
PSO algorithms for the de Jong function

value of an objective function is evaluated at the global best

location during iterations.

III. VALIDATION OF ALGORITHMS

To validate the optimal PSO algorithm, three benchmark

functions have been selected. They are the de Jong, the

Rosenbrock, and the Griewank functions. Initial positions of

particles are all generated within selected search domains

by the uniform probability distribution function (PDF). The

precision of decimal places, total iteration numbers, swarm

convergent behaviors, and best fitness are collected, compared

and discussed in the following section.

A. The de Jong Function

The de Jong function, f1(x), is given by

f1(x) =
D∑

d=1

x2
d ∀x ∈ RD, (10)

where the global minimum is f1(x
∗) = 0 at the minimizer of

x∗ = (0, · · · , 0)T .

The de Jong function is the simplest test function. It is

continuous, convex, and unimodal. The optimal and canonical

PSO algorithms with the swarm size of M = 6 × 6 = 36
and the allowable swarm convergent tolerance of ηa = 10−8

have been used to search within the two-dimensional space of

[−20, 20]2 for the only minimum of the de Jong function.

Simulations of both the canonical and the optimal PSO

algorithms have been conducted at least 10 times each. The

canonical PSO algorithm yields an average precision of 12

decimal places through an average of 272 iterations while the

optimal PSO algorithm produces an average precision of 9

decimal places through an average of 57 iterations. Typical

simulation results for swarm convergency and best fitness are

shown in Figs. 1 and 2, respectively. The canonical PSO

algorithm obtains a precision of 12 decimal places through 271

iterations while the optimal algorithm produces a precision of

9 decimal places through a total of 56 iterations. When the

ratio of the precision of decimal places to the total number
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Fig. 2 Comparisons of best fitness between canonical and optimal PSO
algorithms for the de Jong function

of iterations is used to evaluate an algorithm, the canonical

algorithm has a value of 0.04525 while the optimal algorithm

possesses a value of 0.16056. Thus, the optimal PSO algorithm

is almost 4 times as efficient and accurate as the canonical PSO

algorithm.

B. The Rosenbrock Function

The Rosenbrock function, f2(x), is given by

f2(x) =
D−1∑
d=1

[
100(x2

d − xd+1)
2 + (1− xd)

2
] ∀x ∈ RD,

(11)

where the global minimum is f2(x
∗) = 0 at the minimizer of

x∗ = (1, · · · , 1)T .

The Rosenbrock valley is a classic optimization problem,

also known as the Banana function. The global optimum

is inside a long, narrow, and parabolic shaped flat valley.

To find the valley is trivial, convergence to the global

optimum, however, is difficult and hence this problem has been

repeatedly used in assessing the performance of optimization

algorithms.

The canonical and optimal PSO algorithms with the swarm

size of M = 8× 8 = 64 and the allowable swarm convergent

tolerance of ηa = 10−5 have been used to search within the

two-dimensional space of [−3, 3]2 for the global minimum of

the Rosenbrock function.

Simulations of both the canonical and the optimal PSO

algorithms have been conducted at least 10 times each. The

canonical PSO algorithm generates an average precision of

10 decimal places through an average of 478 iterations while

the optimal PSO algorithm produces an average precision of

10 decimal places through only 228 iterations. Representative

simulation results for swarm convergency and best fitness are

shown in Figs. 3 and 4, respectively. The canonical PSO

algorithm obtains a precision of 10 decimal places through

479 iterations while the optimal algorithm produces the same

precision of 10 decimal places through 236 iterations. Thus,

the optimal PSO algorithm is twice as efficient as the canonical

PSO algorithm.

Fig. 3 Comparisons of swarm convergency between canonical and optimal
PSO algorithms for the Rosenbrock function

Fig. 4 Comparisons of best fitness between canonical and optimal PSO
algorithms for the Rosenbrock function

C. The Griewank Function

The Griewank function, f3(x), is given by

f3(x) =
1

4000

D∑
d=1

x2
d−

D∏
d=1

cos

(
xd√
d

)
+1 ∀x ∈ RD, (12)

where the global minimum is f3(x
∗) = 0 and the minimizer

is x∗ = (0, · · · , 0)T .

The Griewank function has many widespread and regularly

distributed local minima. Thus, the test function is highly

multimodal. Function values at local minima are very close

to those at neighborhoods of the global minimum, making it

one of the most difficult test functions.

The canonical and optimal PSO algorithms with the swarm

size of M = 5 × 5 × 5 = 125 and the allowable swarm

convergent tolerance of ηa = 10−5 have been used to search

within the three-dimensional space of [−5, 5]3 for the global

minimum of the Griewank function.

Simulations of both the canonical and the optimal PSO

algorithms have been conducted at least 10 times each.

Numerical test results are typically classified into two
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Fig. 5 Comparisons of swarm convergency between canonical and optimal
PSO algorithms for the Griewank function

Fig. 6 Comparisons of best fitness between canonical and optimal PSO
algorithms for the Griewank function

categories: not initially trapped in local minima and initially

trapped in local minima. For not initially trapped-type of

simulation results, only one result from each algorithm has

been selected since most results are initially trapped in local

minima. The optimal PSO algorithm yields the accurate results

of x1 = x2 = x3 = 0.00000000 within 43 iterations while the

canonical algorithm takes 161 iterations to obtain the same

precision of 8 decimal places.

For initially trapped-type of numerical results, the canonical

PSO algorithm gives only two correct solutions with an

average precision of 7 decimal places through an average

total of 485 iterations, seven results remain trapped in local

minima after 1000 iterations, and one result is totally trapped

in local minima at 714 iterations. The optimal PSO algorithm

produces all ten correct solutions with an average precision

of 7 decimal places through an average 169 total iterations.

For initially trapped-type of simulations, selected results for

swarm convergency and best fitness are shown in Figs. 5

and 6, respectively. The canonical PSO algorithm escapes

from local minima at iteration 315 and reaches the solution

of x1 = 0.0000000, x2 = 0.0000000, and x3 = 0.0000000 at

iteration 487 while the optimal PSO algorithm escapes from

local minima at iteration 83 and obtains the same result at

iteration 131. Thus, the optimal PSO algorithm is more capable

at solving optimization problems as difficult as the Griewank

function than is the canonical PSO algorithm.

IV. DISCUSSION

The Fibonacci sequence is the following series of

numbers: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, · · · . Ratios of

the Fibonacci sequence sequentially define the commonly

used weightings. They are 0/1, 1/1, 1/2, 2/3, · · · , and

(
√
5 − 1)/2, which correspond to F0/F1 (the Euler

forward weighting), F1/F2 (the Euler backward weighting),

F2/F3 (the Crank-Nicolson weighting), F3/F4 (the Galerkin

weighting), · · · , and Fk−1/Fk as k approaches infinity (the

optimal weighting). In the canonical PSO algorithm, the

constants of c1 = c2 = 2.05 and χ = 0.72984 are used.

Thus, the canonical PSO algorithm used the Crank-Nicolson

weightings between cognitive and social behaviors and

between intensification searches and diversification searches.

In the optimal PSO algorithm, the optimal weightings of

co1 = (
√
5 − 1)/2 and co2 = 1 − co1 have been used for

the cognitive factor and the social factor, respectively. By the

same token, the optimal weightings of χo = (
√
5 − 1)/2

and 1− χo have been applied for intensification searches and

diversification searches, respectively.

The working principle of the optimal PSO algorithm can be

demonstrated by the expected value of the position occupied

by particle i at iteration n+1 updated from iteration n in

two-dimensional scenarios shown in Fig. 7. At iteration n,

the three positions Xn
i , Pn

i , and Pn
g and a velocity vector

Vn
i are known. In the optimal PSO algorithm, the vector

summation of 80.9% of the distance from Xn
i to Pn

i and

50.0% of the distance from Xn
i to Pn

g are expected to

determine the intensification search vector and 38.2% of

the magnitude from Vn
i constructs the diversification search

vector. The expected intensification distance is calculated by

its deterministic distance divided by 2 since the expectation

of the uniform PDF is 0.5. The vector constructed from

Fig. 7 Search mechanism for optimal PSO algorithm
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Xn
i to Xn+1

i is determined by the vector summation of the

intensification search vector and the diversification search

vector shown in Fig. 7.
The optimal PSO algorithm is particularly accurate for cases

in which particles of a swarm need to escape from local

minima. Take, for example, the Griewank function. Particles

for the two algorithms were initially trapped in local minima,

the optimal particles escaped from local minima and found

the global minimum location in all ten numerical simulations

while the canonical PSO algorithm obtained the same accurate

results in two out of ten numerical simulations. Because more

weight is put on the cognitive behavior rather than the social

behavior so that particles are moving toward individual best

ever rather than the global best position in the optimal PSO

algorithm. When trapped into local minima, on one hand, if

more particles are moving toward the global best and the

global best is also trapped at local minima, the particles tend

to remain there. On the other hand, however, if more particles

are moving toward their individual best positions, even though

the global best is also trapped at local minima, more particles

are still out of local minima to explore and the particles tend

to help the global best escape from local minima. In general,

because more weight is put on the intensification search over

the diversification search so as to fine-tune solutions and to

produce more accurate results in the optimal PSO algorithm.
The optimal PSO algorithm, compared to the canonical PSO

algorithm, exhibits more stable swarm convergent behaviors

in all three benchmark simulations shown in Figs. 1, 3, and 5

and more stable best fitness behaviors in all three benchmark

simulations shown in Figs. 2, 4, and 6 since the canonical

PSO algorithm generates more oscillation on both the swarm

convergency and best fitness. The optimal PSO algorithm is

more stable since the perturbation constant and the constriction

constant are optimally balanced. Nevertheless, the factor for

the diversification term in the optimal PSO algorithm is smaller

than the constriction constant, which is used as a weight for

both the diversification and the intensification terms in the

canonical PSO algorithm.
For the de Jong function, the optimal PSO algorithm

produces an average precision of 9 decimal places through

an average of 57 total iterations while the canonical PSO

algorithm needs an average of 202 total iterations. For the

Rosenbrock function, the optimal PSO algorithm produces an

average precision of 10 decimal places through an average of

228 total iterations while the canonical PSO algorithm needs

an average of 478 total iterations. For the Griewank function,

the optimal PSO algorithm produces an average precision of 7

decimal places through an average of 169 total iterations while

the canonical PSO algorithm needs an average of 485 total

iterations and they are calculated from two available results

without considering the other 8 trapped results over 1000

iterations. Through all three bench mark functions, numerical

results demonstrate that the optimal PSO algorithm is more

efficient than the canonical PSO algorithm.

V. CONCLUSION

Ratios of the Fibonacci sequence systematically define

commonly used weightings. The two asymptotic ratios of the

Fibonacci sequence, Fk−1/Fk as k approaches infinity and

Fk−2/Fk as k approaches infinity, are herein defined as the

optimal weightings.

In the optimal PSO algorithm, the optimal weightings

of co1 = (
√
5 − 1)/2 and co2 = (3 − √

5)/2 have

been used for the cognitive factor and the social factor,

respectively. Similarly, χo = (
√
5 − 1)/2 and 1 − χo have

been applied for intensification searches and diversification

searches, respectively. Nevertheless, the optimal perturbation

constant of φo = 2 +
√
5 has been derived.

Through numerical simulations of the de Jong, the

Rosenbrock, and the Griewank functions, the optimal

PSO algorithm indeed achieves better numerical properties

including accuracy, stability, and efficiency, and outperforms

the canonical PSO algorithm.
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