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 
Abstract—It is known that residual welding deformations give 

negative effect to processability and operational quality of welded 
structures, complicating their assembly and reducing strength. 
Therefore, selection of optimal technology, ensuring minimum 
welding deformations, is one of the main goals in developing a 
technology for manufacturing of welded structures. 

Through years, JSC SSTC has been developing a theory for 
estimation of welding deformations and practical activities for 
reducing and compensating such deformations during welding 
process. During long time a methodology was used, based on analytic 
dependence. This methodology allowed defining volumetric changes 
of metal due to welding heating and subsequent cooling. However, 
dependences for definition of structures deformations, arising as a 
result of volumetric changes of metal in the weld area, allowed 
performing calculations only for simple structures, such as units, flat 
sections and sections with small curvature. In case of complex 3D 
structures, estimations on the base of analytic dependences gave 
significant errors. 

To eliminate this shortage, it was suggested to use finite elements 
method for resolving of deformation problem. Here, one shall first 
calculate volumes of longitudinal and transversal shortenings of 
welding joints using method of analytic dependences and further, 
with obtained shortenings, calculate forces, which action is 
equivalent to the action of active welding stresses. Further, a finite-
elements model of the structure is developed and equivalent forces 
are added to this model. Having results of calculations, an optimal 
sequence of assembly and welding is selected and special measures to 
reduce and compensate welding deformations are developed and 
taken.  

 
Keywords—Finite elements method, modeling, expected welding 

deformations, welding, assembling. 

I. INTRODUCTION 

T is known that residual welding deformations give 
negative effect to processability and operational quality of 

welded structures [1], [4]-[6]. Therefore, selection of optimal 
technology, ensuring minimum welding deformations is one 
of the main goals in developing a technology for 
manufacturing of welded hull structures. To resolve this issue 
it is required to know mechanisms and rules of welding 
deformations appearance as well as to have calculation 
procedures to define the same.  

Through years, JSC SSTC has been developing a theory for 
estimation of welding deformations. In the second half of 20th 
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century, the procedure for calculation of expected welding 
deformations, based on analytic dependences, was developed 
[1]. The above procedure consists of two tasks: 
thermomechanical task and deformational task. Solution of 
thermomechanical task lies in definition of volumetric changes 
of metal in the weld area due to welding heating and 
subsequent cooling. Deformational task is to define structures 
deformations, such as changes in length, width and curvatures, 
arising due to volumetric changes of metal, calculated when 
solving thermomechanical task.  

The procedure, developed in JSC SSTC, allows resolution 
of thermomechanical task with high accuracy. At that, wide 
range of factors is considered: structural rigidity, initial stress 
state, heat loss, mechanical and thermophysical properties of 
material etc. However, dependencies, used in this procedure 
for deformational task resolution allowed performing 
calculations only for simple structures, such as units, flat 
sections and sections with small curvature. This limits 
significantly the area of procedure application; also the above 
procedure can’t be used for estimation of complicated 3D 
structures deformation.  

In order to resolve this problem it was proposed to use 
additionally the finite elements method [2]. At that 
thermomechanical task is resolved as before – with use of 
analytic dependencies, and to resolve deformational task finite 
elements method is applied.  

II. METHOD OF EXPECTED WELDING DEFORMATION 

CALCULATION WITH USE OF FINITE ELEMENTS METHOD  

Resolution of deformational task with use of finite elements 
method looks as follows. In the beginning, finite elements 
model for specified technological stage of welding structure 
manufacturing is developed. Then, forces, equivalent to 
residual welding stresses are introduced in finite elements 
model. They are applied to longitudinal and transversal 
directions of plastic deformation area in accordance with 
diagram, shown on Fig. 1. 
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Fig. 4 Stresses and movements, appearing in insert portion when it is 
welded-in as a complete module.  

 

 

Fig. 5 Stresses and movements, appearing in insert portion when it is 
welded-in as separate parts. 

 
As you can see, when welding-in insert portion as separate 

parts, much less stresses and deformations are observed. So, 
we chose second variant of described works. 

Basing on approved internal joint welding procedure, we 
estimated changes in relative position of superblocks to be 
joined using finite elements method. For that, we shaped a 
complete finite element model of a pontoon. Model is shown 
on Fig. 6. As you see, near the joint finite element grid is 
rather small, because welding deformation appears in this 
area. In order to decrease rationally calculation time and 
required memory, finite elements, located on some distance 
from joint, are of bigger size.  
 

 
Fig. 6 Finite elements model of Pontoon of ice resistant fixed 

platform Prirazlomnaya 
 

When calculating deformations, appearing as result of 
superblocks joint welding, we applied following sequence of 
works: 
1) Welding of deck joint; 
2) Welding of board insert portions above water line;  
3) Welding of longitudinal cofferdams insert portions above 

water line; 
4) Welding of structures below waterline. 

In accordance with calculation results, expected shortening 
of each joint will be about 6 mm and one superblock will turn 
relatively to other one on angle of  = 1,32 ang. min. 
Increasing of mounting spacing and joining of superblocks 
with predicting incline between them allowed to compensate 
those deformations. Pontoon vertical shifts values are shown 
on Fig. 7.     
 

 
Fig. 7 Distribution of pontoon vertical shifts after welding 

IV. CONCLUSION 

Thanks to combined procedure, allowed to calculate 
welding deformations of large-scaled structures, optimal 
procedure for welding of pontoon of ice-resistant fixed 
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platform Prirazlomnaya was chosen, and for chosen welding 
sequence expected deviation values were received. 

In accordance with received results, measures for 
supporting required accuracy of pontoon construction were 
worked out. 
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