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 
Abstract—The purpose of this article is to optimize the 

Equivalent Electric Circuit Model (EECM) of different orders to 
obtain greater precision in the modeling of Li-ion battery packs. 
Optimization includes considering circuits based on 1RC, 2RC and 
3RC networks, with a dependent voltage source and a series resistor. 
The parameters are obtained experimentally using tests in the time 
domain and in the frequency domain. Due to the high non-linearity of 
the behavior of the battery pack, Genetic Algorithm (GA) was used to 
solve and optimize the parameters of each EECM considered (1RC, 
2RC and 3RC). The objective of the estimation is to minimize the 
mean square error between the measured impedance in the real 
battery pack and those generated by the simulation of different 
proposed circuit models. The results have been verified by comparing 
the Nyquist graphs of the estimation of the complex impedance of the 
pack. As a result of the optimization, the 2RC and 3RC circuit 
alternatives are considered as viable to represent the battery behavior. 
These battery pack models are experimentally validated using a 
hardware-in-the-loop (HIL) simulation platform that reproduces the 
well-known New York City cycle (NYCC) and Federal Test 
Procedure (FTP) driving cycles for electric vehicles. The results show 
that using GA optimization allows obtaining EECs with 2RC or 3RC 
networks, with high precision to represent the dynamic behavior of a 
battery pack in vehicular applications. 
 

Keywords—Li-ion battery packs modeling optimized, EECM, 
GA, electric vehicle applications.  

I. INTRODUCTION 

I-ION batteries have a higher energy density, higher 
discharge rate, smaller size and weight, among other 

advantages compared to other energy storage solutions 
currently available in the market [1]. That is the reason that in 
recent years, Li-ion batteries have emerged as a solution for 
storing energy, particularly in electric mobility transportation. 
The Li-ion battery is very difficult to control because of great 
complexity in the electrochemical reactions that govern its 
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behavior. Therefore, system manufacturers that use this type 
of batteries in their applications require finding a model under 
different operating conditions to somehow control the 
performance of the battery and monitor its state in the short 
and long term [2].  

Different techniques have been used to model a Li-ion 
battery in the literature, which can be classified into three 
main techniques: physical models, electrochemical ones and 
other alternative techniques for modeling [3], [4]. Of these 
latest techniques, EECMs are the most used since they are 
simple and practical, allowing a complex electrochemical 
process to be replaced by a simple electrical circuit. In 
addition, the EECM allows representing the behavior in stable 
and dynamic state of the battery. The battery model can be 
characterized for different secondary conditions, such as the 
temperature, state-of-charge (SoC), aging, loss of capacity, 
current, etc. [5]-[7]. In this way, a more complex model is 
obtained what improve the accuracy.  

A simple EECM, which represents the battery behavior, 
consists of a circuit with zero time constant, containing a 
voltage dependent source in series with a resistor [8]. The 
voltage source corresponds to the battery open circuit voltage 
(OCV) and it is usually higher when the battery is fully 
charged and it is smaller when the battery is discharged. Thus, 
the OCV has a high dependence on SoC and lower degree of 
dependence with the temperature [5]. To determine the OCV 
values, time domain tests are frequently used [9]. The series 
resistance can represent the voltage drop of the battery when it 
is under load. This situation implies that the power is 
dissipated in the form of heat through the resistance; therefore, 
the energy efficiency is not perfect. This simple model is 
useful for applications that do not interest the dynamic 
behavior of the battery, because they only required knowing 
the static behavior of the system. 

More complex EECMs have been used in the literature, 
containing one or more additional time constants, provided by 
the inclusion of additional RC networks. This RC component 
describes the transient response during charge/discharge of the 
battery [10], [11]. In [12], EECM with two RC networks was 
proposed. The first RC network modelled the battery 
resistance, load transfer and double layer effect. The second 
RC network was used to capture the diffusion effect of the 
battery that occurs at a very high time scale, about tens or 
hundreds of seconds. This model was used to estimate the SoC 
of a Li-ion cell; the results show that the model has an 
important role in the accuracy of the estimation of the battery 
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states. 
Modeling in the frequency domain has been widely used to 

identify and find an equivalent circuit model for a battery. 
Electrochemical impedance spectroscopy (EIS) is a technique 
that allows finding the impedance spectrum based on the 
frequency of a li-ion cell or battery [9], [13]. From the EIS 
test, it has been shown that a Li-ion battery has fractional 
properties, which at a low frequency (> 1 Hz) produces a 
straight line in the Nyquist graph. This behavior is represented 
in the circuit by a non-linear element known as a constant 
phase element (CPE). A particular case of a CPE is known as 
Warburg impedance when the straight line forms an angle of 
45° [14]. This element has been used in the literature to model 
the diffusion of lithium ions in the electrodes of a Li-ion 
battery. Warburg impedance presence in the circuit implies 
that differential equations of the model are difficult to solve, 
which increases the complexity of simulating the circuit. To 
find an approximation of this element, n-RC circuits 
connected in series can be used. The decision of the number of 
RC component depends on the required accuracy and the 
available computation speed [6], [15]. However, a large 
number of RC circuits mean a greater computational load in 
the simulations of a battery, therefore different algorithms 
have been proposed to identify and optimize the parameters of 
an EECM, containing from 3RC to 8RC. The complexity of 
the model and the processing time increase with the amount of 
RC circuits used, which implies that some authors have to 
reduce the model to one or two 2RC networks, reducing the 
accuracy of the battery model. In [16], a Bayesian Network 
(BN) is proposed to determine the parameters of an EECM. 
The values proposed by this BN are compared with the 
parameters obtained by an impedance analyzer using a circuit 
with 2RC, 3RC and 8RC. The results show that using the 
adjustment with BN provides an error of 3.5% and 4.6% for 
the circuit of 2RC and 3RC components, respectively. On the 
other hand, the lowest error obtained with the impedance 
analyzer was 3.3% for a circuit with 8RC components. 
Therefore, the adjustment with BN achieves greater precision 
with few RC circuits. As a conclusion, a good parameter 
identification algorithm of an EECM can achieve high model 
accuracy with a smaller number of circuit elements. 

This paper proposes a technique based on GA to identify 
the parameters of an EECM associated with different 
frequencies and that represents the electrical behavior of a 
lithium-ion battery pack. Experimental tests are developed in 
the time domain, to obtain the OCV-SoC ratio, and also in the 
frequency domain by means of EIS tests, from which the 
battery frequency spectrum at different SoC is obtained. From 
these experimental tests, the impedance spectrum is obtained 
the parameters of the impedance of the EECM are obtained by 
means of GA minimizing the mean square error between the 
measured and estimated impedance. To compare GA accuracy 
when using low and high order EECM models, three circuits 
with an incremental number of RC networks (from 1RC, 2RC 
to 3RC components) are tested. Each EECM is experimentally 
validated using a HIL platform that reproduces the NYCC and 
FTP urban driving cycles of an electric vehicle. The results 

show that it is possible to obtain an EECM with 2RC or 3RC 
with high precision to represent the dynamic behavior of a 
battery packs in vehicular applications using GA. 

II. EXPERIMENTAL TESTS 

This section presents the experimental tests developed to 
obtain the model of a commercial Li-ion battery pack 
composed of four parallel cell strings and a battery 
management system (BMS) which controls cell voltage, 
temperature and current of each serial connection, cell balance 
function, protection functions and charging and discharging 
process. A schematic battery pack layout is shown in Fig. 1 
and Table I shows the main electrical characteristics. 
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+
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Fig. 1 Schematic battery layout 
 

TABLE I 
BATTERY PACKS CHARACTERISTICS. 

Cell reference MP176065int 

Pack rated voltage 25.9 V 

Pack maximum voltage 29.4 V (4.2 V/cell) 

Pack minimum cut-off voltage 20.3 V (2.9 V/cell) 

Pack Capacity 50 Ah 

Pack maximum current 50 A 

Range of temperature (charge) -20°C to 60°C 

Range of temperature (discharge) -30°C to 55°C 

 

Frequency domain tests are preformed to evaluate the 
complex impedance by EIS. To determine the OCV-SoC ratio, 
time domain tests are carried out.  

A. Frequency Domain Tests 

EIS is a technique that allows electrochemical systems to be 
characterized, such as batteries, supercapacitors, etc. This 
technique consists of an experimental test in the frequency 
domain that allows modeling electrochemical systems by 
calculating the impedance in a given frequency range (from 
about mile-Hertz to Megahertz). Therefore, it is a useful tool 
to investigate the chemical reactions that occur inside a Li-ion 
battery pack [17]. In an EIS test, the current and voltage are 
measured at each test frequency and the impedance at each 
point is calculated. The resulting current has the same 
frequency as the applied voltage but different in magnitude 
and phase, in this way the impedance of this dipole can be 
determined with the ratio between the applied voltage and the 
injected current [18]. Once the spectrum is obtained, an 
equivalent circuit can be found to represent the behavior of a 
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Li-ion battery. 
In this work, the typical EIS test has been modified to test 

the Li-ion battery pack. To do so, the frequency sweep signal 
generated by a commercial impedance analyzer is amplified 
using the experimental structure proposed in [19]. The 
impedance of the battery pack is measured for a frequency 
range from 1 mHz to 5 kHz and it has been evaluated under 
five different SoCs (20%, 40%, 60%, 80% and 90%). Fig. 2 
shows the results obtained from the EIS tests, plotted in a 
Nyquist graph at different SoCs. These plots show that 
variations of SoC affect the impedance of the battery at low 
and medium-low frequencies. Above medium frequencies, 
battery impedance parameters are not affected by changes in 
SoC.  

 

 

Fig. 2 Impedance spectrum at different SoC 
 

Four different zones can be identified from the impedance 
spectrum plot of Fig. 2, where each zone is related with 
different electrochemical processes that occur inside the 
battery pack and can be represented with one or more 
elements in an electric equivalent circuit. The low frequency 
zone can be related the diffusion process on state solid of 
lithium ion in the electrodes of the battery and can be 
represented in a circuit with a CPE or n-RC components. The 
medium-low and medium frequency zones are associated with 
the slow migration of lithium ions through the different SEI 
layers that cover the active mass and can be represented in a 
circuit with 1RC or 2RC components. The high frequency 
zone can be related at inductive reactance effect attributed to 
the porosity of the electrodes and the conductors connected 
between the instrument and the battery. This zone can be 
represented in a circuit with an inductance. Finally, the 
intersection with x-axis can be associated with electrolyte of 
the battery and can be represented with a resistance in the 
circuit [20]-[22].  

B. Time Domain Tests  

The OCV-SoC characteristic is obtained by means of the 
voltage and current analysis of experimental time domain tests 
[23], [24]. These experimental tests consist of applying a 
series of current pulses to charge or discharge the battery over 
the entire SoC range.  

The procedure to obtain the relationship OCV-SoC 
beginning with the battery pack charging at 100%, which is 
when the battery voltage reaches 29.4 V (pack maximum 
voltage). Next, the battery is discharged in pulses of 10 A 
(constant current) during 30 min followed by 90 min of 
relaxation time. The OCV correspond the voltage measured at 
the end of each relaxation period. After the discharge has 
concluded, the battery pack is charged again in pulses of 10 A 
(current constant) during 30 min each, followed by 90 min 
relaxation time. The upper voltage level in the charging 
process is imposed at 29.4 V. In both charging/discharging 
process it is not possible to reach 100% and 0% of SoC 
because the BMS limits the current to protect the battery pack. 
For this situation the maximum voltage and minimum cut-off 
voltage is considered as 100% and 0% of the SoC, 
respectively. Results of the discharge and charge tests do not 
have a representative deviation because Li-ion cells have low 
hysteresis. For this reason, average values have been used to 
calculate the OCV-SoC relationship. Fig. 3 shows the 
experimental average OCV and the OCV adjusted with a 
polynomial of order five of (1): 

 

  5 4 3

2

27.58 50.00 3.476

50.00 33.01 20.52

OCV SOC SOC SOC SOC

SOC SOC

       

    
 (1) 

 

 

Fig. 3 OCV-SoC curve. 

III. BATTERY PACK MODEL 

 

Fig. 4 EEC model 
 

In this section, the experimental data obtained from both 
frequency and time domain tests in Section II are used to 
model battery pack. The electrical dynamics are represented 
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by an EECM consisting of a dependent voltage source, a 
resistance and a network of different order composed of a 
capacitor in parallel with a resistance (RC network). To 
evaluate the accuracy of this battery modeling, three EEC 
alternatives with 1RC, 2RC and 3RC components are 
considered, respectively. The topology of the EECM is shown 
in Fig. 4.  

The general expression of the input impedance of the 
electrical circuit in Fig. 4 can be defined by (2): 
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 (2) 

 
In addition, (3) shows the general expression the output 

voltage ratio of the circuit of Fig. 4: 
 

        0 1 ....bat nU t OCV SOC R i v t v t      (3) 

 
where n is the order of the ECCM, vn(t) is the voltage in the 
resistance n of the RC networks, i(t) is the current of the 
circuit in a clockwise direction.  

A. GA Models 

In this work, a methodology that allows optimizing of the 
parameters of the EECM is used. Considering the problem of 
determining the parameters of an electric circuit, where the 
circuit topology is known but not the value of their 
parameters. Further, it is possible obtained experimentally the 
input impedance of the circuit at different frequency 
(frequency domain tests). Then, the optimization model shown 
in (4) can be raised to solve this problem: 

 

   

 

2
  med   calmin Z ‐Z (v)k k k

min maxs.t.      v v v

              (4) 

 
where Zk

med is the sample k of the magnitude of the measured 
impedance in the experiment, Zk

cal is the calculated impedance 
for the sample k. The design variables were v = [Rs, R1, C1, 
R2, C2, R3, C3]. The EECM parameters obtained through (4) 
are calculated for the different values of SoC. 

In many applications, different algorithms have been 
implemented to optimize non-linear process models. 
Considering the high non-linearity presented by this type of 
adjustment, the evolutionary technique GA was selected 
among different methodologies, since it was the test that 
produced the smallest adjustment error [5]. Fig. 5 shows a 
comparison in the impedance spectrum setting for SoC = 90%. 
The root mean square relative error (RMSE) of the EECM 
with 1RC, 2RC and 3RC components were: 6.26%, 1.07% and 
1.05%, respectively. Therefore, the EECM with 2RC and 3RC 
components has greater precision to represent the frequency 
response of the battery pack. 

 

 

Fig. 5 Accuracy of impedance estimation at 90% SoC 

IV. EXPERIMENTAL MODEL VALIDATION 

The resulting battery pack model accuracy has been tested 
by means of two different experimental tests. Both EECMs 
with 2RC and 3RC networks were experimentally validated 
using a HIL platform that reproduces the NYCC and FTP 
urban driving cycles of an electric vehicle. The HIL platform 
proposed in [25] was used for these experimental tests. This 
platform consists of an electronic load and a power source to 
simulate the dynamic behavior of an electric vehicle, which 
are controlled by mean of a dSpace® system in 
synchronization to simulate the vehicle power demand during 
acceleration and braking. The current profiles associated to 
each driving cycle were used as the input of the proposed 
battery pack model implemented in a MATLAB®/Simulink 
environment.  

During the HIL simulation, the data of the current and 
voltage of the battery pack at each driving cycle are recorded. 
To determine the accuracy of each model, the voltage 
response of the battery pack model has been compared with 
the real voltage measurements at battery pack terminals. Figs. 
6 and 7 show the current profiles of each driving cycle. 

 

 

Fig. 6 NYCC current profile 
 

Figs. 8 and 9 show the comparison of the measured pack 
voltage and the simulated voltage for each model (with 2RC 
and 3RC components). Results show that both models with 
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2RC and 3RC networks present high accuracy to reproduce 
the voltage response of the battery pack. The RMSE of the 
voltage response were: 0.21% and 0.25% for the NYCC 
driving cycle, respectively. For the FTP driving cycle, the 
RMSE were 0.61% and 0.61%, respectively. The RMSE in 
this case of FTP can be produced because the faster 
acceleration/breaking cycle in comparison of the NYCC.  

 

 

Fig. 7 FTP current profile 
 

 
Fig. 8 Simulation NYCC cycle 

 

 
Fig. 9 Simulation FTP cycle 

V. CONCLUSION 

In this research, different EECMs for the battery pack are 
optimized. The proposed EECM consists of a dependent 
voltage source, a resistance and RC networks of different 
order. The voltage source, representing the OCV-SoC 
relationship, is performed in the time domain by means of 
pulsed current tests. The modeling of the internal impedance is 
performed in the domain frequency, by impedance 
spectroscopy technique. The accuracy of different EECMs 
with 1RC, 2RC and 3RC networks is analyzed to represent the 
behavior of the real battery pack. The parameters of each EEC 
model considered in this work are optimized by means of a 
GA, which solves the optimization problem that minimizes the 
mean square error between the measured impedance in the 
experimental battery pack and the impedance simulated by 
each circuit. Results show that the EECMs with 2RC and 3RC 
components have greater precision to represent the frequency 
response of the battery pack comparted to the EECM with a 
single RC network. Therefore, these two EECMs are used to 
represent the behavior of the battery pack.  

Both EECMs with 2RC and 3RC networks are 
experimentally validated using a HIL simulation platform that 
reproduces the well-known NYCC and FTP urban driving 
cycles for electric vehicles. Results show that maximum error 
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of the voltage response of each EECM is less than 0.7% for 
each cycle analyzed.  

As main conclusion, in this research work a low-order 
EECMs are obtained to represent with high accuracy the 
dynamic behavior of a real battery pack.  
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