ISSN: 2517-9950 Vol:2, No:8, 2008 # Optimal Policy for a Deteriorating Inventory Model with Finite Replenishment Rate and with Price Dependant Demand Rate and Cycle Length Dependant Price Hamed Sabahno Abstract—In this paper, an inventory model with finite and constant replenishment rate, price dependant demand rate, time value of money and inflation, finite time horizon, lead time and exponential deterioration rate and with the objective of maximizing the present worth of the total system profit is developed. Using a dynamic programming based solution algorithm, the optimal sequence of the cycles can be found and also different optimal selling prices, optimal order quantities and optimal maximum inventories can be obtained for the cycles with unequal lengths, which have never been done before for this model. Also, a numerical example is used to show accuracy of the solution procedure. **Keywords**—Deteriorating items, Dynamic programming, Finite replenishment rate, Inventory control, Operation Research. ### I. INTRODUCTION INVENTORIES generally can be classified into three meta-categories based on: 1-obsolecence 2-deterioration 3-no obsolescence/deterioration. Obsolescence refers to inventories that become obsolete at a certain time, for instance because of rapid changes in technology or introduction of a new product. Deterioration refers to damage, spoilage, dryness, vaporization, etc. The products like fresh food (meat, fish, fruits, and vegetables), photographic films, batteries, human blood, photographic films, etc having a maximum usable lifetime are known as perishable products and the products like alcohol, gasoline, radioactive substances, lubricants, glues, paints, chemical ingredients, etc having no shelf-life at all are known as decaying products. No obsolescence/deterioration refers to inventories that their shelf life can be indefinite and hence they would fall under no obsolescence/deterioration category. In this paper the deteriorating inventories are considered. There are many classifications for the deterioration. The deteriorating properties of inventory are classified by Ghare and Schrader [3] into three categories: 1-direct spoilage, e.g., vegetable, fruit and fresh food etc.; 2-physical depletion, e.g., gasoline and alcohol etc.; 3-deterioration such as radiation change, negative spoiling and loss of efficacy in inventory, e.g., electronic components and medicine. From another point of view, deterioration can Hamed Sabahno is with the Industrial Engineering Department, National Iranian Oil Refining and Distribution Company (NIORDC), Tehran, Iran (phone:00989126216681; e-mail:hamed_sabahno@yahoo.com). also be classified by the time-value or the items' life of inventory. Deterioration is categorized by Raafat [6] by the time-value of inventory: 1-utility constant: its utility does not change significantly as time passes within its valid usage period, e.g., liquid medicine; 2-utility increasing: its utility increases as time passes, e.g., some alcoholic drinks; 3- utility decreasing: its utility decreases as time passes, e.g., vegetables, fruits and fresh foods, etc. On the other hand, deterioration is classified by Nahmias [5] by the items' life of inventory: 1-fixed lifetime: items' lifetime is pre-specified and its lifetime is independent of the deteriorating factors; therefore, it is called time independent deterioration. In fact, the utility of these items decreases during their lifetime, and when passing their lifetime, the item will perish completely and become of no value, e.g., milk, inventory in a blood bank, and food, etc. 2-random lifetime: there is no specified lifetime for these items. The lifetime for these items is assumed as a random variable, and its probability distribution could be gamma, weibull, exponential, etc. These Items are called time dependent deteriorating items, e.g., electronic components, chemicals, and medicine, etc. The scope of this study covers those deteriorating items which are classified as utility decreasing (as regards as their time-value) and also as random lifetime (as regard as their lifetime). Research in this area started with the work of Whitin [10] who considered fashion goods deteriorating at the end of prescribed storage period. An exponentially decaying inventory was first developed by Ghare and Schrader [3]. The certain commodities were observed to shrink with time by a proportion which can be approximated by a negative exponential function of time. The concept of inflation and time value of money was employed by Wee and Law [7] into a model where the demand is price dependent and shortage is allowed. A production environment with a finite replenishment rate was considered in the model. An optimization framework was presented to derive optimal production and pricing policies when the total net present value is maximized. A production–inventory system for deteriorating items with time varying demands and completely backlogged shortages was modeled by Wee and Wang [9]. The production schedules for this system were constructed using the traditional scheduling strategy in which each cycle starts with replenishment and ends with shortages. A deteriorating inventory model under time value of money and a deterministic inventory system with the price-dependent demand was considered by Wee and Law ISSN: 2517-9950 for problem analysis. A heuristic approach was presented to derive the near optimal replenishment and pricing policy that tries to maximize the total net present value profit. The work of Wee and Wang [9] was extended by Zhou et al [11] by permitting part of the backlogged shortages to turn into lost sales, which is assumed to be a function of currently backlogged amount. Also, an alternative scheduling strategy was considered in which each cycle of a schedule starts with a period of shortages and then followed by continuous replenishment. By examining the profit performance of the two scheduling strategies (i.e., "start with replenishment" versus "start with shortages"), they showed that their alternative strategy produces schedules with superior cost and profit values. The dynamic programming method was used by Chen [1], [2] in order to find the optimal sequence of the cycles for his inventory models with the objective of minimizing the present worth of the total system cost and with time dependant demand rate, complete backlogging shortages and without considering the selling price and the revenue. His procedure is changed and modified by us in order to find the optimal sequence of the cycles for the current model. Most of the researchers who worked in this area, assumed that selling price, order quantity, maximum inventory and cycle length are constant over the planning horizon (finite or infinite). In the present research, a deteriorating inventory model with constant replenishment rate, price dependant demand rate, time value of money and inflation, finite time horizon, lead time and exponential deterioration rate with the objective of maximizing the present worth of the total system profit is presented. Using a dynamic programming based solution algorithm, the optimal sequence of the cycles can be found and also different optimal selling prices, optimal order quantities and optimal maximum inventories can be obtained for the cycles with unequal lengths, which have never been done before for this model. Also, a numerical example is used to show accuracy of the solution procedure. # II. MODEL DEVELOPMENT The assumptions and the notations used in this model are: 1-The replenishment starts with zero inventory level at time i. The replenishment stops at time j, where the inventory attains its maximum level. During the period [i, j], the inventory level is affected by replenishment, demand and deterioration of items. Due to reasons of demand and deterioration of items, the inventory level gradually diminishes during the period [i, k] and ultimately falls to zero at time k. 2-The demand rate, D(s) is a linear, non-negative, continuous, convex, decreasing function of the selling price, s. D(s) = a - bs, where a and b are both positive constants. 3-A single item is considered, whose time to deterioration is distributed as exponential. $f(t) = \lambda e^{-\lambda t}$, where λ is a positive constant (deterioration rate) and t > 0. 4-The inflation rate (denoted by m) and the discount rate (denoted by r) representing the time value of money are constant. Therefore, the net discount rate of inflation is constant: R = r - m. The present worth of X_{i} is: [8]. The discounted cash flows (DCF) approach was applied:2, Novel $X_t e^{-Rt}$, $t \ge 0$, where X_t is the value of X at time t. Notice that both the internal (company) inflation rate and the external (general economy) inflation rate can be estimated by a unique inflation rate. > 5-The replenishment rate is finite and constant, P, where P > D(s). > 6-Lead time (Lt) is constant but it is limited to $0 \le Lt \le (k-i)$, because of the inequality of the cycle 7-Holding cost applies to good units only. 8-Deterioration of units occurs only when the item is effectively in stock, and there is no repair or replacement of deteriorated units during planning horizon. 9-Shortages are not allowed. In addition, the following notations are used in this paper: $I_1(t)$: inventory level at time t, where $i \le t \le j$. $I_{2}(t)$: inventory level at time t, where $j \le t \le k$. Q: ordering quantity per cycle. A: ordering cost per cycle at time zero. C: unit purchasing cost at time zero, where C < S. h: unit holding cost per unit of time at time zero. *H*: planning horizon. The inventory level can be described by the following differential equations: $$i \le t \le j \quad \frac{\delta I_1(t)}{\delta t} + \lambda I_1(t) = P - D(s)$$ (1) $$\frac{\partial I_2(t)}{\partial t} + \lambda I_2(t) = -D(s) \qquad j \le t \le k \tag{2}$$ By applying the boundary conditions, multiplying $e^{\int
\lambda du}$ the both sides of (1), (2) and integrating by part, we have: $$I_1(t) = (P - D(s))e^{-\lambda(t-i)} \int_{i}^{\infty} e^{\lambda(u-i)} du =$$ $$(P-D(s))e^{-\lambda t}\int_{s}^{t}e^{\lambda u}du \qquad i\leq t\leq j$$ $$I_2(t) = D(s)e^{-\lambda(t-i)}\int_{t}^{k} e^{\lambda(u-i)}du = D(s)e^{-\lambda t}\int_{t}^{k} e^{\lambda u}du \qquad j \le t \le k$$ Because the maximum inventory takes place at time j, we $$I_{\max} = (P - D(s))e^{-\lambda j} \int_{i}^{j} e^{\lambda u} du = D(s)e^{-\lambda j} \int_{j}^{k} e^{\lambda u} du$$ (3) After simplification, we have: $$P \cdot e^{-\lambda j} \int_{0}^{j} e^{\lambda u} du = D(s) e^{-\lambda j} \int_{0}^{k} e^{\lambda u} du$$ By solving the above equation with respect to j, we have: $$j = \frac{Ln[\lambda \frac{D(s)}{P} \int_{i}^{k} e^{\lambda u} du + e^{\lambda i}]}{\lambda} = \frac{Ln[\frac{D(s)}{P} (e^{\lambda k} - e^{\lambda i}) + e^{\lambda i}]}{\lambda}$$ Ordering quantity for each cycle can be obtained as follows: $$Q = D(s) \int_{1}^{k} du + \int_{1}^{k} \lambda J_{1}(t)dt + \int_{1}^{k} \lambda J_{2}(t)dt =$$ $$D(s)(k-i) + (P-D(s)).\lambda \int_{i}^{j} \int_{i}^{t} e^{\lambda(u-t)} du dt + D(s).\lambda \int_{j}^{k} \int_{i}^{k} e^{\lambda(u-t)} du dt$$ (5) ISSN: 2517-9950 Reorder point in each cycle is (obviously, the order quantity:2, Ng?8=2008 would be the next cycle's need): If $$0 \le Lt \le (k-j)$$ then $RoP = \int_{t}^{k} D(s)e^{\lambda(u-(k-Lt))} du$ (6) If $$(k-i) \ge Lt \ge (k-j)$$ then $$RoP = \int_{-\infty}^{k-Lt} (P - D(s))e^{\lambda(u - (k-Lt))} du$$ (7) Notice that if Lt = (k - j) then either one is usable. The present worth of the relevant costs and the revenue for each cycle are as follows: The Present worth of the holding cost: $$\begin{aligned} Hc &= h \int_{i}^{j} e^{-Rt} I_{1}(t) dt + h \int_{j}^{k} e^{-Rt} I_{2}(t) dt = \\ h.(P - D(s)) \int_{j}^{j} e^{-Rt} e^{-\lambda t} \int_{j}^{t} e^{\lambda u} du dt + h.D(s) \int_{j}^{k} e^{-Rt} e^{-\lambda t} \int_{j}^{k} e^{\lambda u} du dt \end{aligned}$$ The present worth of the purchasing cost: $Pc = \int_{0}^{1} P.c.e^{-Ru} du$ The present worth of the ordering cost: $Oc = A.e^{-R(i-lt)}$ The present worth of the revenue: $R = s \int_{1}^{k} D(s)e^{-Ru} du$ Now we can compute the present worth of the total system profit as follows: $$TP = R - HC - PC - OC$$ $$TP = s.D(s) \int_{i}^{k} e^{-Ru} du - h.(P - D(s)) \int_{i}^{j} e^{-Rt} e^{-\lambda t} \int_{i}^{r} e^{\lambda u} du dt - h.(S) \int_{i}^{k} e^{-Rt} e^{-\lambda t} \int_{i}^{k} e^{\lambda u} du dt - c.P \int_{i}^{j} e^{-Ru} du - A.e^{-R(i-lt)}$$ (8) In order to determine the optimal selling price for each cycle we differentiate (8) with respect to s and we set the result equal to zero. Then, we have: $$\frac{\partial TP}{\partial s} = (a - 2b.s) \int_{i}^{k} e^{-Ru} du + b[-h] \int_{i}^{j} e^{-Rt} e^{-\lambda t} \int_{i}^{t} e^{\lambda u} du dt + h \int_{j}^{k} e^{-Rt} e^{-\lambda t} \int_{i}^{k} e^{\lambda u} du dt + h \int_{j}^{k} e^{-Rt} e^{-\lambda t} \int_{i}^{k} e^{\lambda u} du dt + h \int_{i}^{k} e^{-Rt} e^{-\lambda t} \int_{i}^{t} e^{\lambda u} du dt + h \int_{i}^{k} e^{-Rt} e^{-\lambda t} \int_{i}^{k} e^{\lambda u} du dt + h \int_{i}^{k} e^{-Rt} e^{-\lambda t} \int_{i}^{k} e^{\lambda u} du dt + h \int_{i}^{k} e^{-Rt} e^{-\lambda t} \int_{i}^{k} e^{\lambda u} du dt \right] / 2b \int_{i}^{k} e^{-Ru} du$$ (9) To satisfy the optimally condition we must have $\frac{\partial^2 TP}{\partial^2 c} < 0$. $$\frac{\partial^2 TP}{\partial^2 s} = -2b \int_0^1 e^{-Ru} du < 0.$$ Then, the optimally condition is strongly satisfied, and the obtained s will maximize the present worth of the total system profit and also TP is concave with respect to s. # III. SOLUTION PROCEDURE For obtaining the optimal sequence of the cycles, as mentioned in the introduction section, dynamic programming model and algorithm used by Chen [1], [2] are modifies and changed for current model, as follows: $$TP_{k} = \underset{0 \le i < j < k \le H}{Max} \{ TP_{i} + W(i, s^{*}, j^{*}, k) \}$$ This recursive procedure works in a forward fashion to determine the maximal present worth of the total profit over the time horizon, H. Where, $0 \le i < j < k \le H$, TP_k is the optimal present worth of the profit until time k so that TP_H is the optimal present worth of the total system profit and $W(i,s^*,j^*,k)$ is the optimal present worth of the profit in cycle [i,k] knowing s^* which is the optimal s in cycle [i,k] and j^* which is the optimal point where the replenishment ends in cycle [i,k]. The dynamic programming based solution algorithm to solve this model is: Step 1: Enter parameters: $P, c, H, h, \lambda, a, b, R, lt, A$. Step 2: Let $$i = 0, TP_0 = 0$$ For $K = 1$: H Obtain j , S from (4), (9); (solve together) Obtain $W(i, s^*, j^*, k)$ from (8) Let $TP_k = W(i, s^*, j^*, k), s^*_{i,k} = s, j^*_{i,k} = j, T_k = i$ End Step 3: For k = 2: H For i = 1: k-1Obtain j, S from (4), (9); (solve together) Obtain $W(i, s^*, j^*, k)$ from (8) If $TP_k < TP_i + W(i, s^*, j^*, k)$ Then $TP_k = TP_i + W(i, s^*, j^*, k)$, $s^*_{i,k} = s$, $j^*_{i,k} = j$, $T_k = i$ End End Step 4: Let k = HWhile k > 0Cycle time = $[T_k, k]$ Optimal price = $s^*_{T_k, k}$ Replenishment ending time= $j^*_{T_k,k}$ Optimal maximum inventory= $I_{\max T_{i},k}^{*}$, (from (3)) Optimal order quantity = $Q^*(T_i, s^*, j^*, k)$, (from (5)) $$0 \le Lt \le (k-j)$$ (if, $RoP_{T_i,k}$ Optimal reorder point: from (7) and $(k-i) \ge Lt > (k-j)$ from (6), if if $Lt > (k-i)$) then 'Lead time not acceptable') Cumulated total profit $= TP_k$ Let $k = T_k$ End End Where, T_k is the starting point of the last replenishment cycle from time zero to time k (i.e., $[T_k,k]$) $T_k = 0,1,2,...,k-1$ and k = 1,2,...,H, $s^*_{T_i,k}$ is the optimal selling price in cycle $[T_k,k]$, $j^*_{T_i,k}$ is the time in cycle $[T_k,k]$ where the replenishment ends, $Q^*(T_j,s^*,j^*,k)$ is the optimal order quantity in cycle $[T_k,k]$ knowing $s^*_{T_i,k}$ and $j^*_{T_i,k}$, and $RoP_{T_i,k}$ is the optimal reorder point in cycle $[T_k,k]$. ISSN: 2517-9950 ## IV. NUMERICAL EXAMPLE In this section, a numerical example is tested to show accuracy of the model and the solution procedure. The parameters' quantities are: $$a = 50, b = 0.9, R = 0.1, \lambda = 0.05, h = 0.5, c = 8, A = 100,$$ $H = 10, P = 95, Lt = 0.5.$ The model is solved by MATLAB 7.1 to obtain the necessary results and they can be seen in Table I. Then, the proposed algorithm is used to obtain the optimal sequence of the cycles. After running the algorithm by MATLAB 7.1, there is two cycles with lengths of 2 and two cycles with Vol:2, Norgth20083, with the present worth of the total system profit equal to 2565.4, as follows: $$TP_{10} = W(8, s^*, j^*, 10) + W(6, s^*, j^*, 8) + W(3, s^*, j^*, 6) + W(0, s^*, j^*, 3) = 2565.4$$ The optimal price and the optimal order quantity for the optimal cycles are (for optimal maximum inventory, optimal reorder point, optimal replenishment ending time and more details refer to Table I): $$s_{6,8}^* = s_{8,10}^* = 27.8936, s_{0,3}^* = s_{3,6}^* = 27.9491$$ $Q_{6,8}^* = Q_{8,10}^* = 51.6576, Q_{0,3}^* = Q_{3,6}^* = 78.7628$ TABLE I SOFTWARE OUTPUT FOR THE NUMERICAL EXAMPLE | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | , | •* | | TITE -* :* 1- | | | D D* | |--|---|----|---------------|---------------|------------------|----------------------|----------|---------| | 0 2 0.5438 27.8936 734.2736 37.6066 51.6576 12.6048 1 2 1.2675 27.8364 317.3127 18.6131 25.4108 12.6309 3 0.8291 27.9491 1.0527e+003 56.9745 87.628 12.5795 1 3 1.5438 27.8936 664.3982 37.6066 51.6576 12.6048 0 4 1.1237 28.0024 1.3123e+003 76.7101 106.7502 12.5552 1 4 1.8291 27.9491 952.5110 56.9745 78.7628 12.5795 2 4 2.5438 27.8936 601.1724 37.6066 51.6576 12.6048 3 4 3.2675 27.8364 259.7937 18.6131 25.4108 12.6309 0 5 1.4278 28.0534 1.5191e+003 96.8060 135.6444 12.5320 0 5 1.4278 28.0024 1.1875e+003 76.7101 106.7502
12.5552 2 5 2.8291 27.9491 861.8676 56.9745 78.7628 12.5795 3 5 3.5438 27.8936 543.9632 37.6066 51.6576 12.6048 4 5 4.2675 27.8364 25.97937 18.6131 25.4108 12.6309 6 6 1.7418 28.1015 1.6782e+003 117.2538 165.4713 12.5100 0 6 1.7418 28.1015 1.6782e+003 117.2538 165.4713 12.5100 0 6 1.7418 28.1015 1.6782e+003 96.8060 135.6444 12.5320 1 6 2.4278 28.0534 1.3745e+003 96.8060 135.6444 12.5320 2 6 3.1237 28.0024 1.10745e+003 96.8060 135.6444 12.5320 3 6 3.8291 27.9491 779.8500 56.9745 78.7628 12.5795 3 6 3.8291 27.9491 779.8500 56.9745 78.7628 12.5795 3 6 3.8291 27.9491 779.8500 56.9745 78.7628 12.5795 4 6 4.5438 27.8936 42.1983 37.6066 51.6576 12.6048 5 6 5.2675 27.8364 212.7011 18.6131 25.4108 12.6309 7 2.0659 28.1465 1.7946e+003 138.0444 196.2578 12.4895 5 7 5.5438 27.8936 42.2958 31.8944 37.6066 51.6576 12.6048 6 7 6.2675 27.8364 21.7010 18.6131 25.4108 12.6309 7 2.0659 28.1465 1.7946e+003 138.0444 196.2578 12.4895 8 7 3.4278 28.0534 1.2437e+003 96.8060 135.6444 12.5320 8 2.4003 28.1881 1.6946e+003 1 | i | k | $\int T_k, k$ | $S^{*}_{i,k}$ | $W(i,s^*,j^*,k)$ | I^*_{max} | Q^* | RoP^* | | 1 | _ | | 0.2675 | 27.8364 | 350.6848 | | 25.4108 | 12.6309 | | 0 3 0.8291 27.9491 1.0527e+003 56.9745 78.7628 12.5795 1 3 1.5438 27.8936 664.3982 37.6066 51.6576 12.6048 2 3 2.2675 27.8364 287.1164 18.6131 25.4108 12.6592 0 4 1.1237 28.0024 1.3123e+003 76.7101 106.7502 12.5552 1 4 1.8291 27.9491 952.5110 56.9745 78.7628 12.5795 2 4 2.5438 27.8936 601.1724 37.6066 51.6576 12.6049 3 4 3.2675 27.8364 259.7937 18.6131 25.4108 12.6309 0 5 1.4278 28.0534 1.5191e+003 96.8060 135.6444 12.5320 1 5 2.1237 28.0024 1.1875e+003 76.7101 106.7502 12.5795 3 5 3.5438 27.8936 433.9632 37.6066 51.5676 | | | | | | | | | | 1 3 1.5438 27.8936 664.3982 37.6066 51.6576 12.6048 2 3 2.2675 27.8364 287.1164 18.6131 25.4108 12.6309 0 4 1.1237 28.0024 1.3123e+003 76.7101 106.7502 12.5575 1 4 1.8291 27.9491 952.5110 56.9745 78.7628 12.5795 2 4 2.5438 27.8936 601.1724 37.6066 51.6576 12.6048 3 4 3.2675 27.8364 259.7937 18.6131 25.4108 12.6048 0 5 1.4278 28.0534 1.5191e+003 96.8060 135.6444 12.5320 1 5 2.1237 28.0024 1.1875e+003 76.7101 106.7502 12.5552 3 5 3.5438 27.8936 543.9632 37.6066 51.6576 12.6048 4 5 4.2675 27.8364 235.0710 18.6131 25.4108 <td>1</td> <td></td> <td>1.2675</td> <td></td> <td>317.3127</td> <td>18.6131</td> <td>25.4108</td> <td></td> | 1 | | 1.2675 | | 317.3127 | 18.6131 | 25.4108 | | | 2 3 2.2675 27.8364 287.1164 18.6131 25.4108 12.6309 0 4 1.1237 28.0024 1.3123e+003 76.7101 106.7502 12.5552 1 4 1.8291 27.9491 952.5110 56.9745 78.7628 12.5795 2 4 2.5438 27.8936 601.1724 37.6066 51.6576 12.6048 3 4 3.2675 27.8364 259.7937 18.6131 25.4108 12.6309 0 5 1.4278 28.0534 1.5191e003 76.7101 106.7502 12.5552 2 5 2.8291 27.9491 861.8676 56.9745 78.7628 12.57552 2 5 2.8291 27.9491 861.8676 56.9745 78.7628 12.5795 3 5 3.533 3.78364 235.0710 18.6131 25.4108 12.6399 0 6 1.7418 28.1015 1.6782e+003 117.2538 165.4713 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> | | | | | | | | | | 0 4 1.1237 28.0024 1.3123e+003 76.7101 106.7502 12.5552 1 4 1.8291 27.9491 952.5110 56.9745 78.7628 12.5795 2 4 2.5438 27.8364 259.7937 18.6131 25.4108 12.6309 0 5 1.4278 28.0534 1.5191e+003 96.8060 135.6444 12.5320 1 5 2.1237 28.0024 1.1875e+003 76.7101 106.7502 12.5575 2 5 2.8291 27.9491 861.8676 56.9745 78.7628 12.5795 3 5 3.5438 27.8936 543.9632 37.6066 51.6576 12.6048 4 5 4.2675 27.8364 235.0710 18.6131 25.4148 12.5795 3 5 3.5438 27.89364 235.0710 18.6131 25.4048 12.5795 3 6 3.6271 27.9364 23.5003 76.7101 106.7502 </td <td></td> <td></td> <td>1.5438</td> <td></td> <td>664.3982</td> <td>37.6066</td> <td></td> <td>12.6048</td> | | | 1.5438 | | 664.3982 | 37.6066 | | 12.6048 | | 1 | 2 | 3 | 2.2675 | 27.8364 | | 18.6131 | | | | 2 4 2.5438 27.8364 259.7937 18.6131 25.4108 12.6309 3 4 3.2675 27.8364 259.7937 18.6131 25.4108 12.6309 0 5 1.4278 28.0534 1.5191e+003 96.8060 135.6444 12.5302 1 5 2.1237 28.0024 1.1875e+003 76.7101 106.7502 12.5552 2 5 2.8291 27.9491 861.8676 56.9745 78.7628 12.5795 3 5 3.5438 27.8936 543.9632 37.6066 51.6576 12.6089 4 5 4.2675 27.8364 235.0710 18.6131 25.4108 12.6309 0 6 1.7418 28.1015 1.6782e+003 117.2538 165.4713 12.5100 1 6 2.4278 28.0534 1.3745e+003 117.2538 165.4713 12.5552 3 6 3.8291 27.9491 77.98500 56.9745 78.7 | | 4 | 1.1237 | 28.0024 | | 76.7101 | 106.7502 | 12.5552 | | 3 4 3.2675 27.8364 259.7937 18.6131 25.4108 12.6309 0 5 1.4278 28.0534 1.5191e+003 96.8060 135.6444 12.5320 1 5 2.1237 28.0024 1.1875e+003 76.7101 106.7502 12.5525 2 5 2.8291 27.9491 861.8676 56.9745 78.7628 12.5795 3 5 3.3438 27.8936 543.9632 37.6066 51.6576 12.6048 4 5 4.2675 27.8364 235.0710 18.6131 25.4108 12.6048 4 5 4.2675 27.8364 235.0710 18.6131 25.4108 12.6048 4 5 4.2675 27.8364 235.0710 18.6131 25.4108 12.6048 4 6 2.4278 28.0534 1.3745e+003 96.8060 135.6444 12.5320 2 6 3.1237 28.0534 12.27011 18.6131 25.4108 <td></td> <td></td> <td></td> <td></td> <td></td> <td>56.9745</td> <td>78.7628</td> <td></td> | | | | | | 56.9745 | 78.7628 | | | 0 5 1.4278 28.0534 1.5191e+003 96.8060 135.6444 12.5320 1 5 2.1237 28.0024 1.1875e+003 76.7101 106.7502 12.5552 2 5 2.8291 12.79491 861.8676 56.9745 78.7628 12.5552 3 5 3.5438 27.8936 543.9632 37.6066 51.6576 12.6048 4 5 4.2675 27.8364 235.0710 18.6131 25.4108 12.6048 1 6 2.4278 28.0534 1.3745e+003 96.8060 135.6444 12.5320 2 6 3.1237 28.0024 1.0745e+003 76.7101 106.7502 12.5552 3 6 3.8291 27.9491 779.8500 56.9745 78.7628 12.5795 3 6 3.8291 27.9491 779.8500 56.9745 78.7628 12.5795 3 6 3.8291 27.9491 779.8500 56.9745 78.76 | | 4 | 2.5438 | 27.8936 | | 37.6066 | 51.6576 | | | 1 5 2.1237 28.0024 1.1875e+003 76.7101 106.7502 12.5552 2 5 2.8291 27.9491 861.8676 56.9745 78.7628 12.5795 3 5 3.5438 27.8936 543.9632 37.6066 51.6576 12.6048 4 5 4.2675 27.8364 235.0710 18.6131 25.4108 12.6309 0 6 1.7418 28.1015 1.6782e+003 117.2538 165.4713 12.5100 1 6 2.4278 28.0534 1.3745e+003 96.8060 315.6444 12.5320 2 6 3.1237 28.0024 1.0745e+003 76.7101 106.7502 12.5552 3 6 3.8291 27.9491 779.8500 56.9745 78.7628 12.5795 3 6 3.8291 27.9491 779.8500 56.9745 78.7628 12.5795 3 6 4.5438 27.8936 492.1983 37.6066 51.6576 12.6048 2 2 2 2 2 2 2 2 2 | | | | | | | | | | 2 5 2.8291 27.9491 861.8676 56.9745 78.7628 12.5795 3 5 3.5438 27.8936 543.9632 37.6066 51.6576 12.6048 4 5 4.2675 27.8364 235.0710 18.6131 25.4108 12.6309 0 6 1.7418 28.1015 1.6782+003 117.2538 165.4713 12.5100 1 6 2.4278 28.0534 1.3745e+003 96.8060 135.6444 12.5320 2 6 3.1237 28.0024 1.0745e+003 76.7101 106.7502 12.5552 4 6 4.5438 27.8936 492.1983 37.6066 51.6576 12.6048 5 6 5.2675 27.8364 212.7011 18.6131 25.4108 12.6048 5 6 5.2675 27.8364 212.7011 18.6131 25.4108 12.6399 0 7 2.0659 28.1465 1.7946e+003 138.0444 196.25 | | | 1.4278 | 28.0534 | 1.5191e+003 | 96.8060 | 135.6444 | | | 3 5 3.5438 27.8936 543.9632 37.6066 51.6576 12.6048 4 5 4.2675 27.8364 235.0710 18.6131 25.4108 12.6309 0 6 1.7418 28.1015 1.6782e+003 117.2538 165.4713 12.5100 1 6 2.4278 28.0534 1.3745e+003 96.8060 135.6444 12.5320 2 6 3.1237 28.0024 1.0745e+003 76.7101 106.7502 12.5552 3 6 3.8291 27.9491 779.8500 56.9745 78.7628 12.5795 4 6 4.5438 27.89491 779.8500 56.9745 78.7628 12.5795 5 6 5.2675 27.8364 212.7011 18.6131 25.4108 12.6048 5 6 5.2675 27.8364 212.7011 18.6131 25.4108 12.6098 1 7 2.7418 28.1015 1.5185e+003 117.2538 165. | | | 2.1237 | | | 76.7101 | | | | 4 5 4.2675 27.8364 235.0710 18.6131 25.4108 12.6309 0 6 1.7418 28.1015 1.6782e+003 117.2538 165.4713 12.5100 1 6 2.4278 28.0534 1.3745e+003 96.8060 135.6444 12.5320 2 6 3.1237 28.0024 1.0745e+003 76.7101 106.7502 12.5552 3 6 3.8291 27.9491 779.8500 56.9745 78.7628 12.5795 4 6 4.5438 27.8936 492.1983 37.6066 51.6576 12.6048 5 6 5.2675 27.8364 212.7011 18.6131 25.4108 12.6309 0 7 2.0659 28.1465 1.7946e+003 138.0444 196.2578 12.4895 1 7 2.7418 28.1015 1.5185e+003 117.2538 165.4713 12.5100 2 7 3.4278 28.0024 972.2056 76.7101 <td< td=""><td>2</td><td></td><td></td><td>27.9491</td><td>861.8676</td><td>56.9745</td><td>78.7628</td><td>12.5795</td></td<> | 2 | | | 27.9491 | 861.8676 | 56.9745 | 78.7628 | 12.5795 | | 0 6 1.7418 28.1015 1.6782e+003 117.2538 165.4713 12.5100 1 6 2.4278 28.0534 1.3745e+003 96.8060 135.6444 12.5320 2 6 3.1237 28.0024 1.0745e+003 76.7101 106.7502 12.5552 3 6 3.8291 27.9491 779.8500 56.9745 78.7628 12.5795 4 6 4.5438 27.8936 492.1983 37.6066 51.6576 12.6048 5 6 5.2675 27.8364 212.7011 18.6131 25.4108 12.6309 0 7 2.0659 28.1465 1.7946e+003 138.0444 196.2578 12.4895 1 7 2.7148 28.1015 1.5185e+003 117.2538 165.4713 12.5100 2 7 3.4278 28.0024 972.2056 76.7101 106.7502 12.5552 4 7 4.8291 27.9491 705.6375 56.9745 <t< td=""><td></td><td></td><td>3.5438</td><td>27.8936</td><td></td><td>37.6066</td><td>51.6576</td><td>12.6048</td></t<> | | | 3.5438 | 27.8936 | | 37.6066 | 51.6576 | 12.6048 | | 1 6 2.4278 28.0534 1.3745e+003 96.8060 135.6444 12.5320 2 6 3.1237 28.0024 1.0745e+003 76.7101 106.7502 12.5552 3 6 3.8291 27.9491 779.8500 56.9745 78.7628 12.5552 4 6 4.5438 27.8364 492.1983 37.6066 51.6576 12.6048 5 6 5.2675 27.8364 212.7011 18.6131 25.4108 12.6309 0 7 2.0659 28.1465 1.7946e+003 138.0444 196.2578 12.4895 1 7 2.7418 28.1015 1.5185e+003 117.2538 165.4713 12.5309 2 7 3.4278 28.0024 972.2056 76.7101 106.7502 12.5552 4 7 4.8291 27.9491 705.6375 56.9745 78.7628 12.5795 5 7 5.5438 27.8936 445.3594 37.6066 51. | 4 | 5 | 4.2675 | 27.8364 | 235.0710 | 18.6131 | 25.4108 | 12.6309 | | 2 6 3.1237 28.0024 1.0745e+003 76.7101 106.7502 12.5552 3 6 3.8291 27.9491 779.8500 56.9745 78.7628 12.5795 4 6 4.5438 27.8936 492.1983 37.6066 51.6576 12.6048 5 6 5.2675 27.8364 212.7011 18.6131 25.4108 12.6309 0 7 2.0659 28.1465 1.7946e+003 138.0444 196.2578 12.4895 1 7 2.7418 28.1015 1.5185e+003 117.2538 165.4713 12.5100 2 7 3.4278 28.0534 1.2437e+003 96.8060 135.6444 12.5320 3 7 4.1237 28.0024 972.2056 76.7101 106.7502 12.5552 4 7 4.8291 27.9491 705.6375 56.9745 78.7628 12.5795 5 7 5.5438 27.8936 445.3594 37.6066 51. | 0 | 6 | 1.7418 | 28.1015 | 1.6782e+003 | 117.2538 | 165.4713 | | | 3 6 3.8291 27.9491 779.8500 56.9745 78.7628
12.5795 4 6 4.5438 27.8936 492.1983 37.6066 51.6576 12.6048 5 6 5.2675 27.8364 212.7011 18.6131 25.4108 12.6048 5 6 5.2675 27.8364 212.7011 18.6131 25.4108 12.6048 5 6 5.2675 27.8364 122.7011 18.6131 25.4108 12.4895 1 7 2.7418 28.1015 1.5185e+003 117.2538 165.4713 12.5100 2 7 3.4278 28.0534 1.2437e+003 96.8060 135.6444 12.5320 3 7 4.1237 28.0024 972.2056 76.7101 106.7502 12.5552 4 7 4.8291 27.9491 705.6375 56.9745 78.7628 12.5795 5 7 5.5438 27.8364 192.4599 18.6131 25.4108 | | | | 28.0534 | | | | | | 4 6 4.5438 27.8936 492.1983 37.6066 51.6576 12.6048 5 6 5.2675 27.8364 212.7011 18.6131 25.4108 12.6309 0 7 2.0659 28.1465 1.7946e+003 138.0444 196.2578 12.4895 1 7 2.7418 28.1015 1.5185e+003 117.2538 165.4713 12.5100 2 7 3.4278 28.0024 972.2056 76.7101 106.7502 12.5552 3 7 4.1237 28.0024 972.2056 76.7101 106.7502 12.5552 4 7 4.8291 27.9491 705.6375 56.9745 78.7628 12.5795 5 7 5.5438 27.8936 445.3594 37.6066 51.6576 12.6049 0 8 2.4003 28.1881 1.8727e+003 159.1675 228.0320 12.4706 1 8 3.0659 28.1465 1.6238e+003 138.0444 1 | | 6 | 3.1237 | 28.0024 | 1.0745e+003 | 76.7101 | 106.7502 | 12.5552 | | 5 6 5.2675 27.8364 212.7011 18.6131 25.4108 12.6309 0 7 2.0659 28.1465 1.7946e+003 138.0444 196.2578 12.4895 1 7 2.7418 28.1015 1.5185e+003 117.2538 165.4713 12.5100 2 7 3.4278 28.0534 1.2437e+003 96.8060 135.6444 12.5320 3 7 4.1237 28.0024 972.2056 76.7101 106.7502 12.5552 4 7 4.8291 27.9491 705.6375 56.9745 78.7628 12.5795 5 7 5.5438 27.8936 445.3594 37.6066 51.6576 12.6048 6 7 6.2675 27.8364 192.4599 18.6131 25.4108 12.6309 0 8 2.4003 28.1881 1.8727e+003 159.1675 228.0320 12.4706 1 8 3.0659 28.1465 1.6238e+003 138.0444 <t< td=""><td></td><td>6</td><td>3.8291</td><td></td><td>779.8500</td><td>56.9745</td><td>78.7628</td><td></td></t<> | | 6 | 3.8291 | | 779.8500 | 56.9745 | 78.7628 | | | 0 7 2.0659 28.1465 1.7946e+003 138.0444 196.2578 12.4895 1 7 2.7418 28.1015 1.5185e+003 117.2538 165.4713 12.5100 2 7 3.4278 28.0534 1.2437e+003 96.8060 135.6444 12.5320 3 7 4.1237 28.0024 972.2056 76.7101 106.7502 12.5552 4 7 4.8291 27.9491 705.6375 56.9745 78.7628 12.5795 5 7 5.5438 27.8936 445.3594 37.6066 51.6576 12.6048 6 7 6.2675 27.8364 192.4599 18.6131 25.4108 12.6309 0 8 2.4003 28.1881 1.8727e+003 159.1675 228.0320 12.4706 1 8 3.0659 28.1465 1.6238e+003 117.2538 165.4713 12.5100 3 8 4.4278 28.0534 1.1254e+003 96.8060 | | 6 | | | | 37.6066 | 51.6576 | | | 1 7 2.7418 28.1015 1.5185e+003 117.2538 165.4713 12.5100 2 7 3.4278 28.0534 1.2437e+003 96.8060 135.6444 12.5320 3 7 4.1237 28.0024 972.2056 76.7101 106.7502 12.5752 4 7 4.8291 27.9491 705.6375 56.9745 78.7628 12.5795 5 7 5.5438 27.8936 445.3594 37.6066 51.6576 12.6048 6 7 6.2675 27.8364 192.4599 18.6131 25.4108 12.6049 0 8 2.4003 28.1881 1.8727e+003 159.1675 228.0320 12.4706 1 8 3.0659 28.1465 1.6238e+003 138.0444 196.2578 12.4895 2 8 3.7418 28.1015 1.3740e+003 117.2538 165.4713 12.5100 3 8 4.4278 28.0534 1.1254e+003 96.8060 | 5 | 6 | 5.2675 | 27.8364 | | 18.6131 | | 12.6309 | | 2 7 3.4278 28.0534 1.2437e+003 96.8060 135.6444 12.5320 3 7 4.1237 28.0024 972.2056 76.7101 106.7502 12.5552 4 7 4.8291 27.9491 705.6375 56.9745 78.7628 12.5795 5 7 5.5438 27.8936 445.3594 37.6066 51.6576 12.6048 6 7 6.2675 27.8364 192.4599 18.6131 25.4108 12.6309 0 8 2.4003 28.1881 1.8727e+003 159.1675 228.0320 12.4706 1 8 3.0659 28.1465 1.6238e+003 138.0444 196.2578 12.4895 2 8 3.7418 28.1015 1.3740e+003 117.2538 165.4713 12.5100 3 8 4.4278 28.0534 1.1254e+003 96.8060 135.6444 12.5320 4 8 5.1237 28.00534 1.741449 18.6131 < | 0 | 7 | | 28.1465 | 1.7946e+003 | 138.0444 | 196.2578 | | | 3 7 4.1237 28.0024 972.2056 76.7101 106.7502 12.5552 4 7 4.8291 27.9491 705.6375 56.9745 78.7628 12.5795 5 7 5.5438 27.8936 445.3594 37.6066 51.6576 12.6048 6 7 6.2675 27.8364 192.4599 18.6131 25.4108 12.6309 0 8 2.4003 28.1881 1.8727e+003 159.1675 228.0320 12.4706 1 8 3.0659 28.1465 1.6238e+003 138.0444 196.2578 12.4895 2 8 3.7418 28.1015 1.3740e+003 117.2538 165.4713 12.5100 3 8 4.4278 28.0534 1.1254e+003 96.8060 135.6444 12.5320 4 8 5.1237 28.0024 879.6880 76.7101 106.7502 12.5552 5 8 5.8291 27.9491 638.4872 56.9745 7 | | | 2.7418 | 28.1015 | 1.5185e+003 | 117.2538 | 165.4713 | 12.5100 | | 4 7 4.8291 27.9491 705.6375 56.9745 78.7628 12.5795 5 7 5.5438 27.8936 445.3594 37.6066 51.6576 12.6048 6 7 6.2675 27.8364 192.4599 18.6131 25.4108 12.6309 0 8 2.4003 28.1881 1.8727e+003 159.1675 228.0320 12.4706 1 8 3.0659 28.1465 1.6238e+003 138.0444 196.2578 12.4895 2 8 3.7418 28.1015 1.3740e+003 117.2538 165.4713 12.5100 3 8 4.4278 28.0534 1.1254e+003 96.8060 135.6444 12.5320 4 8 5.1237 28.0024 879.6880 76.7101 106.7502 12.5552 5 8 5.8291 27.9491 638.4872 56.9745 78.7628 12.5795 6 8 6.5438 27.8936 402.9779 37.6066 51 | 2 | 7 | 3.4278 | 28.0534 | 1.2437e+003 | 96.8060 | 135.6444 | 12.5320 | | 5 7 5.5438 27.8936 445.3594 37.6066 51.6576 12.6048 6 7 6.2675 27.8364 192.4599 18.6131 25.4108 12.6309 0 8 2.4003 28.1881 1.8727e+003 159.1675 228.0320 12.4706 1 8 3.0659 28.1465 1.6238e+003 138.0444 196.2578 12.4895 2 8 3.7418 28.1015 1.3740e+003 117.2538 165.4713 12.5100 3 8 4.4278 28.0534 1.1254e+003 96.8060 135.6444 12.5320 4 8 5.1237 28.0024 879.6880 76.7101 106.7502 12.5552 5 8 5.8291 27.9491 638.4872 56.9745 78.7628 12.5795 6 8 6.5438 27.8936 402.9779 37.6066 51.6576 12.6048 7 8 7.2675 27.8364 174.1449 18.6131 25 | 3 | 7 | 4.1237 | 28.0024 | 972.2056 | 76.7101 | | 12.5552 | | 6 7 6.2675 27.8364 192.4599 18.6131 25.4108 12.6309 0 8 2.4003 28.1881 1.8727e+003 159.1675 228.0320 12.4706 1 8 3.0659 28.1465 1.6238e+003 138.0444 196.2578 12.4895 2 8 3.7418 28.1015 1.3740e+003 117.2538 165.4713 12.5100 3 8 4.4278 28.0534 1.1254e+003 96.8060 135.6444 12.5320 4 8 5.1237 28.0024 879.6880 76.7101 106.7502 12.5552 5 8 5.8291 27.9491 638.4872 56.9745 78.7628 12.5795 6 8 6.5438 27.8936 402.9779 37.6066 51.6576 12.6048 7 8 7.2675 27.8364 174.1449 18.6131 25.4108 12.6309 0 9 2.7455 28.2258 1.9165e+003 180.6120 <t< td=""><td></td><td>7</td><td>4.8291</td><td>27.9491</td><td>705.6375</td><td>56.9745</td><td>78.7628</td><td>12.5795</td></t<> | | 7 | 4.8291 | 27.9491 | 705.6375 | 56.9745 | 78.7628 | 12.5795 | | 0 8 2.4003 28.1881 1.8727e+003 159.1675 228.0320 12.4706 1 8 3.0659 28.1465 1.6238e+003 138.0444 196.2578 12.4895 2 8 3.7418 28.1015 1.3740e+003 117.2538 165.4713 12.5100 3 8 4.4278 28.0534 1.1254e+003 96.8060 135.6444 12.5320 4 8 5.1237 28.0024 879.6880 76.7101 106.7502 12.5552 5 8 5.8291 27.9491 638.4872 56.9745 78.7628 12.5795 6 8 6.5438 27.8936 402.9779 37.6066 51.6576 12.6048 7 8 7.2675 27.8364 174.1449 18.6131 25.4108 12.6309 0 9 2.7455 28.2258 1.9165e+003 180.6120 260.8229 12.4534 1 9 3.4003 28.1881 1.6945e+003 159.1675 | 5 | 7 | 5.5438 | 27.8936 | 445.3594 | 37.6066 | 51.6576 | 12.6048 | | 1 8 3.0659 28.1465 1.6238e+003 138.0444 196.2578 12.4895 2 8 3.7418 28.1015 1.3740e+003 117.2538 165.4713 12.5100 3 8 4.4278 28.0534 1.1254e+003 96.8060 135.6444 12.5320 4 8 5.1237 28.0024 879.6880 76.7101 106.7502 12.5552 5 8 5.8291 27.9491 638.4872 56.9745 78.7628 12.5795 6 8 6.5438 27.8936 402.9779 37.6066 51.6576 12.6048 7 8 7.2675 27.8364 174.1449 18.6131 25.4108 12.6048 1 9 3.4003 28.1881 1.6945e+003 180.6120 260.8229 12.4534 1 9 3.4003 28.1465 1.4693e+003 138.0444 196.2578 12.4895 3 9 4.7418 28.1015 1.2432e+003 117.2538 | 6 | 7 | 6.2675 | 27.8364 | 192.4599 | 18.6131 | 25.4108 | 12.6309 | | 2 8 3.7418 28.1015 1.3740e+003 117.2538 165.4713 12.5100 3 8 4.4278 28.0534 1.1254e+003 96.8060 135.6444 12.5320 4 8 5.1237 28.0024 879.6880 76.7101 106.7502 12.5552 5 8 5.8291 27.9491 638.4872 56.9745 78.7628 12.5795 6 8 6.5438 27.8936 402.9779 37.6066 51.6576 12.6048 7 8 7.2675 27.8364 174.1449 18.6131 25.4108 12.6309 0 9 2.7455 28.2258 1.9165e+003 180.6120 260.8229 12.4534 1 9 3.4003 28.1865 1.4693e+003 159.1675 228.0320 12.4706 2 9 4.0659 28.1465 1.4693e+003 138.0444 196.2578 12.4895 3 9 4.7418 28.1015 1.2432e+003 117.2538 | 0 | 8 | 2.4003 | 28.1881 | 1.8727e+003 | 159.1675 | 228.0320 | 12.4706 | | 3 8 4.4278 28.0534 1.1254e+003 96.8060 135.6444 12.5320 4 8 5.1237 28.0024 879.6880 76.7101 106.7502 12.5552 5 8 5.8291 27.9491 638.4872 56.9745 78.7628 12.5795 6 8 6.5438 27.8936 402.9779 37.6066 51.6576 12.6048 7 8 7.2675 27.8364 174.1449 18.6131 25.4108 12.6048 0 9 2.7455 28.2258 1.9165e+003 180.6120 260.8229 12.4534 1 9 3.4003 28.1881 1.6945e+003 159.1675 228.0320 12.4706 2 9 4.0659 28.1465 1.4693e+003 138.0444 196.2578 12.4895 3 9 4.7418 28.1015 1.2432e+003 117.2538 165.4713 12.5100 4 9 5.4278 28.0534 1.0183e+003 96.8060 | | 8 | 3.0659 | 28.1465 | 1.6238e+003 | 138.0444 | 196.2578 | | | 4 8 5.1237 28.0024 879.6880 76.7101 106.7502 12.5552 5 8 5.8291 27.9491 638.4872 56.9745 78.7628 12.5795 6 8 6.5438 27.8936 402.9779 37.6066 51.6576 12.6048 7 8 7.2675 27.8364 174.1449 18.6131 25.4108 12.6309 0 9 2.7455 28.2258 1.9165e+003 180.6120 260.8229 12.4534 1 9 3.4003 28.1881 1.6945e+003 159.1675 228.0320 12.4706 2 9 4.0659 28.1465 1.4693e+003 159.1675 228.0320 12.4706 2 9 4.0659 28.1465 1.4693e+003 118.0444 196.2578 12.4895 3 9 4.7418 28.1015 1.2432e+003 117.2538 165.4713 12.5100 4 9 5.4278 28.0534 1.0183e+003 96.8060 | 2 | 8 | 3.7418 | 28.1015 | 1.3740e+003 | 117.2538 | 165.4713 | 12.5100 | | 5 8 5.8291 27.9491 638.4872 56.9745 78.7628 12.5795 6 8 6.5438 27.8936 402.9779 37.6066 51.6576 12.6048 7 8 7.2675 27.8364 174.1449 18.6131 25.4108 12.6309 0 9 2.7455 28.2258 1.9165e+003 180.6120 260.8229 12.4534 1 9 3.4003 28.1881 1.6945e+003 159.1675 228.0320 12.4706 2 9 4.0659 28.1465 1.4693e+003 138.0444 196.2578 12.4895 3 9 4.7418 28.1015 1.2432e+003 117.2538 165.4713 12.5100 4 9 5.4278 28.0534 1.0183e+003 96.8060 135.6444 12.5320 5 9 6.1237 28.0024 795.9746 76.7101 106.7502 12.5552 6 9 6.8291 27.9491 577.7271 56.9745 < | 3 | 8 | 4.4278 | 28.0534 | 1.1254e+003 | 96.8060 | 135.6444 | | | 6 8 6.5438 27.8936 402.9779 37.6066 51.6576 12.6048 7 8 7.2675 27.8364 174.1449 18.6131 25.4108 12.6309 0 9 2.7455 28.2258 1.9165e+003 180.6120 260.8229 12.4534 1 9 3.4003 28.1881 1.6945e+003 159.1675 228.0320 12.4706 2 9 4.0659 28.1465 1.4693e+003 138.0444 196.2578 12.4895 3 9 4.7418
28.1015 1.2432e+003 117.2538 165.4713 12.5100 4 9 5.4278 28.0534 1.0183e+003 96.8060 135.6444 12.5320 5 9 6.1237 28.0024 795.9746 76.7101 106.7502 12.5552 6 9 6.8291 27.9491 577.7271 56.9745 78.7628 12.5795 7 9 7.5438 27.8936 364.6295 37.6066 < | 4 | 8 | 5.1237 | 28.0024 | 879.6880 | 76.7101 | 106.7502 | 12.5552 | | 7 8 7.2675 27.8364 174.1449 18.6131 25.4108 12.6309 0 9 2.7455 28.2258 1.9165e+003 180.6120 260.8229 12.4534 1 9 3.4003 28.1881 1.6945e+003 159.1675 228.0320 12.4706 2 9 4.0659 28.1465 1.4693e+003 138.0444 196.2578 12.4895 3 9 4.7418 28.1015 1.2432e+003 117.2538 165.4713 12.5100 4 9 5.4278 28.0534 1.0183e+003 96.8060 135.6444 12.5320 5 9 6.1237 28.0024 795.9746 76.7101 106.7502 12.5552 6 9 6.8291 27.9491 577.7271 56.9745 78.7628 12.5795 7 9 7.5438 27.8936 364.6295 37.6066 51.6576 12.6048 8 9 8.2675 27.8364 157.5728 18.6131 < | 5 | 8 | 5.8291 | 27.9491 | 638.4872 | 56.9745 | 78.7628 | 12.5795 | | 0 9 2.7455 28.2258 1.9165e+003 180.6120 260.8229 12.4534 1 9 3.4003 28.1881 1.6945e+003 159.1675 228.0320 12.4706 2 9 4.0659 28.1465 1.4693e+003 138.0444 196.2578 12.4895 3 9 4.7418 28.1015 1.2432e+003 117.2538 165.4713 12.5100 4 9 5.4278 28.0534 1.0183e+003 96.8060 135.6444 12.5320 5 9 6.1237 28.0024 795.9746 76.7101 106.7502 12.5552 6 9 6.8291 27.9491 577.7271 56.9745 78.7628 12.5795 7 9 7.5438 27.8936 364.6295 37.6066 51.6576 12.6048 8 9 8.2675 27.8364 157.5728 18.6131 25.4108 12.6048 1 10 3.7455 28.25258 1.7341e+003 180.6120 | 6 | 8 | 6.5438 | 27.8936 | 402.9779 | 37.6066 | 51.6576 | 12.6048 | | 1 9 3.4003 28.1881 1.6945e+003 159.1675 228.0320 12.4706 2 9 4.0659 28.1465 1.4693e+003 138.0444 196.2578 12.4895 3 9 4.7418 28.1015 1.2432e+003 117.2538 165.4713 12.5100 4 9 5.4278 28.0534 1.0183e+003 96.8060 135.6444 12.5320 5 9 6.1237 28.0024 795.9746 76.7101 106.7502 12.5552 6 9 6.8291 27.9491 577.7271 56.9745 78.7628 12.5795 7 9 7.5438 27.8936 364.6295 37.6066 51.6576 12.6048 8 9 8.2675 27.8364 157.5728 18.6131 25.4108 12.6048 8 9 8.2675 27.8364 157.5728 18.6131 25.4108 12.6048 1 10 3.7455 28.2558 1.7341e+003 180.6120 < | | | | 27.8364 | 174.1449 | 18.6131 | 25.4108 | 12.6309 | | 2 9 4.0659 28.1465 1.4693e+003 138.0444 196.2578 12.4895 3 9 4.7418 28.1015 1.2432e+003 117.2538 165.4713 12.5100 4 9 5.4278 28.0534 1.0183e+003 96.8060 135.6444 12.5320 5 9 6.1237 28.0024 795.9746 76.7101 106.7502 12.5552 6 9 6.8291 27.9491 577.7271 56.9745 78.7628 12.5795 7 9 7.5438 27.8936 364.6295 37.6066 51.6576 12.6048 8 9 8.2675 27.8364 157.5728 18.6131 25.4108 12.6048 8 9 8.2675 27.8364 157.5728 18.6131 25.4108 12.6048 8 9 8.2675 28.2583 1.7341e+003 180.6120 260.8229 1 10 3.7455 28.2258 1.7341e+003 180.6120 | 0 | _ | | 28.2258 | | 180.6120 | | | | 3 9 4.7418 28.1015 1.2432e+003 117.2538 165.4713 12.5100 4 9 5.4278 28.0534 1.0183e+003 96.8060 135.6444 12.5320 5 9 6.1237 28.0024 795.9746 76.7101 106.7502 12.5552 6 9 6.8291 27.9491 577.7271 56.9745 78.7628 12.5795 7 9 7.5438 27.8936 364.6295 37.6066 51.6576 12.6048 8 9 8.2675 27.8364 157.5728 18.6131 25.4108 12.6309 0 10 3.1017 28.2593 1.9297e+003 202.3652 294.6604 1 10 3.7455 28.2258 1.7341e+003 180.6120 260.8229 2 10 4.4003 28.1881 1.5332e+003 159.1675 228.0320 3 10 5.0659 28.1465 1.3295e+003 138.0444 1 | | | | 28.1881 | | 159.1675 | | | | 4 9 5.4278 28.0534 1.0183e+003 96.8060 135.6444 12.5320 5 9 6.1237 28.0024 795.9746 76.7101 106.7502 12.5552 6 9 6.8291 27.9491 577.7271 56.9745 78.7628 12.5795 7 9 7.5438 27.8936 364.6295 37.6066 51.6576 12.6048 8 9 8.2675 27.8364 157.5728 18.6131 25.4108 12.6309 0 10 3.1017 28.2593 1.9297e+003 202.3652 294.6604 1 10 3.7455 28.2258 1.7341e+003 180.6120 260.8229 2 10 4.4003 28.1881 1.5332e+003 159.1675 228.0320 3 10 5.0659 28.1465 1.3295e+003 138.0444 196.2578 4 10 5.7418 28.1015 1.1249e+003 117.2538 165. | | | | | | | | | | 5 9 6.1237 28.0024 795.9746 76.7101 106.7502 12.5552 6 9 6.8291 27.9491 577.7271 56.9745 78.7628 12.5795 7 9 7.5438 27.8936 364.6295 37.6066 51.6576 12.6048 8 9 8.2675 27.8364 157.5728 18.6131 25.4108 12.6309 0 10 3.1017 28.2593 1.9297e+003 202.3652 294.6604 1 10 3.7455 28.2258 1.7341e+003 180.6120 260.8229 2 10 4.4003 28.1881 1.5332e+003 159.1675 228.0320 3 10 5.0659 28.1465 1.3295e+003 138.0444 196.2578 4 10 5.7418 28.1015 1.1249e+003 117.2538 165.4713 5 10 6.4278 28.0534 921.3642 96.8060 135.6444 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> | | | | | | | | | | 6 9 6.8291 27.9491 577.7271 56.9745 78.7628 12.5795 7 9 7.5438 27.8936 364.6295 37.6066 51.6576 12.6048 8 9 8.2675 27.8364 157.5728 18.6131 25.4108 12.6309 0 10 3.1017 28.2593 1.9297e+003 202.3652 294.6604 1 10 3.7455 28.2258 1.7341e+003 180.6120 260.8229 2 10 4.4003 28.1881 1.5332e+003 159.1675 228.0320 3 10 5.0659 28.1465 1.3295e+003 138.0444 196.2578 4 10 5.7418 28.1015 1.1249e+003 117.2538 165.4713 5 10 6.4278 28.0534 921.3642 96.8060 135.6444 6 10 7.1237 28.0024 720.2276 76.7101 106.7502 | | | | | | | | | | 7 9 7.5438 27.8936 364.6295 37.6066 51.6576 12.6048 8 9 8.2675 27.8364 157.5728 18.6131 25.4108 12.6309 0 10 3.1017 28.2593 1.9297e+003 202.3652 294.6604 1 10 3.7455 28.2258 1.7341e+003 180.6120 260.8229 2 10 4.4003 28.1881 1.5332e+003 159.1675 228.0320 3 10 5.0659 28.1465 1.3295e+003 138.0444 196.2578 4 10 5.7418 28.1015 1.1249e+003 117.2538 165.4713 5 10 6.4278 28.0534 921.3642 96.8060 135.6444 6 10 7.1237 28.0024 720.2276 76.7101 106.7502 7 10 7.8291 27.9491 522.7491 56.9745 78.7628 | | | | | | | | | | 8 9 8.2675 27.8364 157.5728 18.6131 25.4108 12.6309 0 10 3.1017 28.2593 1.9297e+003 202.3652 294.6604 1 10 3.7455 28.2258 1.7341e+003 180.6120 260.8229 2 10 4.4003 28.1881 1.5332e+003 159.1675 228.0320 3 10 5.0659 28.1465 1.3295e+003 138.0444 196.2578 4 10 5.7418 28.1015 1.1249e+003 117.2538 165.4713 5 10 6.4278 28.0534 921.3642 96.8060 135.6444 6 10 7.1237 28.0024 720.2276 76.7101 106.7502 7 10 7.8291 27.9491 522.7491 56.9745 78.7628 8 10 8.5438 27.8936 329.9304 37.6066 51.6576 | | | | | | | | | | 0 10 3.1017 28.2593 1.9297e+003 202.3652 294.6604 1 10 3.7455 28.2258 1.7341e+003 180.6120 260.8229 2 10 4.4003 28.1881 1.5332e+003 159.1675 228.0320 3 10 5.0659 28.1465 1.3295e+003 138.0444 196.2578 4 10 5.7418 28.1015 1.1249e+003 117.2538 165.4713 5 10 6.4278 28.0534 921.3642 96.8060 135.6444 6 10 7.1237 28.0024 720.2276 76.7101 106.7502 7 10 7.8291 27.9491 522.7491 56.9745 78.7628 8 10 8.5438 27.8936 329.9304 37.6066 51.6576 | | | | | | | | | | 1 10 3.7455 28.2258 1.7341e+003 180.6120 260.8229 2 10 4.4003 28.1881 1.5332e+003 159.1675 228.0320 3 10 5.0659 28.1465 1.3295e+003 138.0444 196.2578 4 10 5.7418 28.1015 1.1249e+003 117.2538 165.4713 5 10 6.4278 28.0534 921.3642 96.8060 135.6444 6 10 7.1237 28.0024 720.2276 76.7101 106.7502 7 10 7.8291 27.9491 522.7491 56.9745 78.7628 8 10 8.5438 27.8936 329.9304 37.6066 51.6576 | | | | | | | | 12.6309 | | 2 10 4.4003 28.1881 1.5332e+003 159.1675 228.0320 3 10 5.0659 28.1465 1.3295e+003 138.0444 196.2578 4 10 5.7418 28.1015 1.1249e+003 117.2538 165.4713 5 10 6.4278 28.0534 921.3642 96.8060 135.6444 6 10 7.1237 28.0024 720.2276 76.7101 106.7502 7 10 7.8291 27.9491 522.7491 56.9745 78.7628 8 10 8.5438 27.8936 329.9304 37.6066 51.6576 | 0 | 10 | 3.1017 | 28.2593 | 1.9297e+003 | 202.3652 | 294.6604 | | | 3 10 5.0659 28.1465 1.3295e+003 138.0444 196.2578 4 10 5.7418 28.1015 1.1249e+003 117.2538 165.4713 5 10 6.4278 28.0534 921.3642 96.8060 135.6444 6 10 7.1237 28.0024 720.2276 76.7101 106.7502 7 10 7.8291 27.9491 522.7491 56.9745 78.7628 8 10 8.5438 27.8936 329.9304 37.6066 51.6576 | | 10 | 3.7455 | | 1.7341e+003 | | 260.8229 | | | 4 10 5.7418 28.1015 1.1249e+003 117.2538 165.4713 5 10 6.4278 28.0534 921.3642 96.8060 135.6444 6 10 7.1237 28.0024 720.2276 76.7101 106.7502 7 10 7.8291 27.9491 522.7491 56.9745 78.7628 8 10 8.5438 27.8936 329.9304 37.6066 51.6576 | 2 | | | | | 159.1675 | | | | 5 10 6.4278 28.0534 921.3642 96.8060 135.6444 6 10 7.1237 28.0024 720.2276 76.7101 106.7502 7 10 7.8291 27.9491 522.7491 56.9745 78.7628 8 10 8.5438 27.8936 329.9304 37.6066 51.6576 | | | | | | | | | | 6 10 7.1237 28.0024 720.2276 76.7101 106.7502 7 10 7.8291 27.9491 522.7491 56.9745 78.7628 8 10 8.5438 27.8936 329.9304 37.6066 51.6576 | 4 | 10 | | 28.1015 | 1.1249e+003 | | 165.4713 | | | 7 10 7.8291 27.9491 522.7491 56.9745 78.7628
8 10 8.5438 27.8936 329.9304 37.6066 51.6576 | | | | | | | | | | 8 10 8.5438 27.8936 329.9304 37.6066 51.6576 | 9 10 9.2675 27.8364 142.5778 18.6131 25.4108 | | | | | | | | | | | 9 | 10 | 9.2675 | 27.8364 | 142.5778 | 18.6131 | 25.4108 | | ISSN: 2517-9950 Vol:2, No:8, 2008 V. CONCLUSION A single item inventory model with constant replenishment rate, exponential deteriorating rate, price dependant demand rate, time value of money and inflation, lead time, finite time horizon and with the objective of maximizing the present worth of the total system profit, was developed in this paper. A numerical example was used to solve the model and different optimal selling prices, optimal order quantities, optimal maximum inventories and optimal time fractions of replenishment were concluded for the cycles with unequal lengths. Then, a computerized dynamic programming based algorithm was performed to obtain the optimal sequence of the cycles and the results showed that the optimal system has two cycles with lengths of 2 and two cycles with lengths of 3. In addition, according to the numerical analysis, can be concluded that with increasing/decreasing of the cycle length; present worth of cycle profit, optimal selling price, optimal order quantity, optimal maximum inventory and optimal time fraction of replenishment will increase /decrease. Even with reasonable changes in the parameters' quantities, the above results will be still satisfied (this was tested by changing the parameters' quantities). ### REFERENCES - [1] J.M.Chen. An inventory model for deteriorating items with time-proportional demand and shortages under inflation and time discounting. Int. J. Production Economics 55 (1998) 21-30. - [2] J.M. Chen and C.S. Lin. An optimal
replenishment model for inventory items with normally distributed deterioration. Production planning and control, 2002, VOL. 13, NO. 5, 470±480. - [3] P.N. Ghare and G.F. Schrader. A model for exponentially decaying inventories. Journal of Industrial Engineering 15 (1963),pp. 238–243. - [4] S.K. Goyal, B.C.Giri. Recent trends in modeling of deteriorating inventory. European Journal of Operational Research 134 (2001),1–16. - [5] S. Nahmias. Perishable inventory theory: A review. Operations Research 30 3 (1982), pp. 680–708. - [6] F. Raafat. Survey of literature on continuously deteriorating inventory model. Journal of the Operational Research Society 42 (1991), pp. 27–37 - [7] H.M. Wee and S.T. Law. Economic production lot size for deteriorating items taking account of the time value of money. Computers & Operations Research 26 (1999), pp. 545–558. - [8] H.M. Wee, S.T. Law.Replenishment and pricing policy for deteriorating items taking into account the time-value of money.Int. J. Production Economics 71 (2001) 213-220. - [9] H.M. Wee, W.T.Wang. A variable production scheduling policy for deteriorating items with time-varying demand. Computers and Operations Research 1999;26:237–54. - [10] T.M. Whitin. Theory of Inventory Management, Princeton University Press, Princeton, NJ (1957). - [11] Yong-Wu Zhou, Hon-Shiang Lau, Shan-Lin Yang. A new variable production scheduling strategy for deteriorating items with time-varying demand and partial lost sale. Computers & Operations Research 30 (2003) 1753–1776.