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Optimal Path Planning under Priori Information in
Stochastic, Time-varying Networks
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Abstract—A novel path planning approach is presented to solve
optimal path in stochastic, time-varying networks under priori traffic
information. Most existing studies make use of dynamic program-
ming to find optimal path. However, those methods are proved to
be unable to obtain global optimal value, moreover, how to design
efficient algorithms is also another challenge.

This paper employs a decision theoretic framework for defining
optimal path: for a given source S and destination D in urban transit
network, we seek an S − D path of lowest expected travel time
where its link travel times are discrete random variables. To solve
deficiency caused by the methods of dynamic programming, such as
curse of dimensionality and violation of optimal principle, an integer
programming model is built to realize assignment of discrete travel
time variables to arcs. Simultaneously, pruning techniques are also
applied to reduce computation complexity in the algorithm. The final
experiments show the feasibility of the novel approach.

Keywords—pruning method, stochastic, time-varying networks,
optimal path planning.

I. INTRODUCTION

RECENTLY, determining optimal route in stochastic,
time-varying networks (STV networks) becomes one

of most important research topics. In STV networks, travel
times are modeled as random variables with time-varying
distributions, which often provide a better modeling tool in
transportation applications [1, 2, 3].

Hall studies for the first time about STV networks [4]. It is
shown that in a stochastic, time-varying network, the standard
shortest path algorithms (such as Dijkstra’s algorithm) aren’t
adapted to finding optimal paths in the network. The best route
from any given node to goal node depends not only on link
travel time, but also on arrival time to the node. Thus, the
optimal path planning is not simple path but a policy that
describes which node should be visited once the arrival time
to a node is realized. Hall suggests dynamic programming for
finding optimal policy. Based on the Hall’s work, many studies
([5], [6], [7], [8]) are presented on how to compute the optimal
routing policy in STV networks.

For the sake of deficient information about the distribution
of link trave time, dynamic programming(DP) is proved to be
less applicable in describing all states of link travel time. A
simple STV network is shown as Fig 1. The expected travel
time is computed as follow DP equation

E(xi+1) = E(xi) + E(xi+1/xi) (1)
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Fig. 1. A simple STV network

where E(xi+1) is expected travel time when arriving at
node ni+1. E(xi+1/xi) is expected value of link travel time
between node ni and node ni+1. In the simple network,
fi(t) = {(t, Ti, Pi,t)}, and t defines the time when arriv-
ing the node ni, Ti is the arc travel time between two
linked nodes, Pi,t is the probability of the link travel time.
For example, f1(t) = {(1, 11, 0.5), (2, 12, 0.5)}, f2(t) =
{(12, 19, 0.5), (6, 12, 0.5)}, f3(t) = {(4, 11, 1)}. According to
the optimal principle of DP, the minimum travel time of link
s− 1 is 5.5 (the routing policy is (1,11)

⋃

(node S) → node
1), and the same value as link 1− d is 5. However, the actual
of global optimal path choice is from (2,12,0.5) to (6,12,0.5).

As far as DP is concerned, the decision procedure used
in STV networks depends on a lot of state variables for its
dynamicity and time dependency, which requires enormous
computational times. The problem has been proved an NP
problem [9,10].

In this paper we focus on the presence of time-varying traffic
conditions in transportation networks, where these conditions
can greatly affect the outcomes of the planned schedule. The
major goal of this paper is to show the way that each vehicle or
traveler make decisions in order to select optimal path through
a global mathematical programming model. The numerical
results show the feasibility of the approach.

The rest of the paper is organized as follows: Section 2
describes the problem. A mathematical programming model
is presented in Section 3. In Section 4, an efficient algo-
rithm is proposed with pruning techniques. The analysis of
computation complexity is introduced in Section 5. Section
6 proves its feasibility with numerical examples. The final
section concludes the paper.

II. NETWORK DESCRIPTION AND PROBLEM DEFINITION

The optimal path planning problem is formulated as a
mathematical programming in STV networks. Let G =
(N,A, T, P ) be a directed network, N is the set of nodes,
|N | = n, and A is the set of arcs, |A| = m. On account
of priori traffic information, travel times along the arcs are
represented by discrete random variables with distribution
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functions that are time varying over the period of interest,
t0 ≤ t ≤ t0 + Iδ, referred to as the congested period
in transportation network. The network is considered at a
set of T of discrete time {t0 + iδ}, where i is an integer,
i = 1, 2, 3, ..., I , and δ is smallest increment of time. Beyond
time period T , travel times are static and deterministic. P is
the probabilistic description of link travel times. It is assumed
that travelers know the probabilistic description a priori. τk

i,j(t)
is defined as possible travel time from node i to node j at
time t, k = 1, ...,Ki,j(t), where Ki,j(t) is the number of
possible travel time values on arc (i, j) at time t. For a node
i ∈ N , the set of successor and predecessor nodes are given
by Γ+1(i) = {j|(i, j) ∈ A} and Γ−1(i) = {j|(i, j) ∈ A},
respectively. To simplify the computation, waiting at the node
is not permitted. Travel time τk

i,j(t) occurs with probability
pk

i,j(t), and
Ki,j(t)
∑

k=1

pk
i,j(t) = 1, ∀t ∈ T (2)

For a given source s and destination d, the optimal path
planning is equal to finding an optimal path visiting sequence
under multiple constraints. In the paper, the optimal object is
finding least expected travel time paths in the STV network.

III. BASIC DEFINITION AND MATHEMATICAL MODEL

Definition 1 Assume x ∈ N −{s}, then Wx(t0) is the path’s
expected travel times from node s to node x when starting at
time t0.

Wx(t0) = Es,x1,..,x[tx − t0] (3)

where E is the operator of expected value.
Definition 2 Assume x ∈ N −{s}, then F η

x means the set of
selection of possible travel time through the path between s
and x.

F η
x = {k0, k1, ..., kx} (4)

where F η
x ⊆ Fx, ki is defined as the kith selection at node i.

Definition 3 The indicator variable zijk is defined as follows.

zijk =
{

1 if arc ij is selected at kth travel time,
0 otherwise.

(5)

Through the definitions above, the mathematical model of
path planning is formulated as follows:

min[Wd(t0)|zijk
] (6)

Its constraints are

∑

j

Ki,j(t)
∑

k=1

−
∑

j

Ki,j(t)
∑

k=1

zjik =

⎧

⎨

⎩

1 if i = s,

−1 if i = d,
0 otherwise.

∀i, j ∈ N, (i, j) ∈ A

(7)

∑

j

Ki,j(t)
∑

k=1

zijk ≤ 1, ∀i, j ∈ N, (i, j) ∈ A

k = 1, ...,Ki,j(t)

(8)

td =
∑

j

∑

k∈F η
d

zijk · τk
i,j(t) (9)

Ki,j(t)
∑

k=1

pk
i,j(t) = 1, ∀t ∈ T (10)

F η
x ⊆ Fx, x ∈ N (11)

s, x1, ..., d ∈ N (12)

In the mathematical model, constraints (7) denotes relationship
between arcs and paths. Equation (9) describes the possible
travel times from start to destination. The model’s decision
variable is zijk. Through the assignment of possible travel
times to arcs, the results of optimal path planning are realized.

IV. ALGORITHM

To solve the mathematical model efficiently, we derive a
heuristic algorithm by using pruning techniques.

For the quantities of intervals and number of possible
travel time at intervals, the worst case complexity of the
model is Θ(n2KI), where K = max(Ki,j(t)). In order to
decrease the solution space, the pruning techniques in the
network is needed to be implemented. First, the definition of
stochastically consistent is introduced as follows.
Definition 4 The network is stochastically consistent if all
i,j,s ≤ t [11],

Pr{s+ cij(s) ≤ t+ cij(t)} = 1 (13)

where Pr{·} denotes probability operator, and cij is the
possible travel time between arc (i, j). The equation defines
the consistent of paths as its constituent arcs also comply with
the rule of stochastically consistent.

In order to prune the paths in the transportation network,
the concept of dominance is needed to be proposed. Path Pa2
is dominated by path Pa1 iff the latter’s expected travel time
is less than the former at intervals of t. With the concept of
consistent, Miller-Hooks [11] defines the first-order stochastic
dominance (FSD) as

F t
1(x) ≥ F t

2(x), ∀x (14)

where F t
1(x) and F t

2(x) are the distribution function of pos-
sible travel time, x is the possible path travel time. Thus,
path Pa2 is dominated by path Pa1 according to above
equation, and path Pa2 is pruned. The weak FSD condition,
F t

1(x) > F t
2(x) for at least one value of x, is also applied

to reduce the number of paths. Under priori information, the
distribution of the path travel time is known in advance. As a
result, the pruning techniques can help to reduce the solution
space before computation.

After deployed the pruning techniques, the solution space is
obviously decreased, then based on the revised solution space,
a solution algorithm (Algorithm1) is presented to compute the
results of the optimal path planning.

In the algorithm1, a backward optimal path planning method
is deployed in several steps. We first run shortest path al-
gorithm at last interval, and then the successor as to the
destination is selected. Finally, algorithm1 run the main loop
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Algorithm 1 Backward optimal path planning algorithm
1: Initialization
2: At interval I − 1, run a shortest path problem algorithm

on the deterministic and static network G′(N,A) where
arc (i, j) has a deterministic travel time cij,t.

3: Let eμ(i, t) = ∞ be the expected travel time of path
between node i and d, and μ(i, t) = ∞ be set of selected
nodes ,∀i ∈ N −{d},∀t < t0 + Iδ, eμ(i, t0 + (I − 1)δ) =
ci,d, eμ(d, t) = 0,∀t ∈ T .

4: Main loop
5: for t = t0 + (I − 1)δ to 0 do
6: for (i, j) ∈ A do
7: Temp=

∑Ki,j(t)
k=1 [τk

i,j(t) + eμ(j, t+ cij,t)] × pk
i,j(t);

8: If Temp< eμ(i, t)
9: eμ(i, t) = temp

10: μ(i, t) = j
11: end for
12: Store μ(·) in list π
13: end for
14: Output path planning list π.

to find optimal path planning results from destination to
start node backward in time and space.The computation com-
plexity is Θ(nm) in the fist step while the second step is
Θ(nK + mK). Therefore, the complexity of Algorithm1 is
Θ(nm+ nK +mK).

V. NUMERICAL EXAMPLE

A simple STV network is presented as Fig 2. The network
has an origin and destination node.

Fig. 2. A simple STV example network

Table 1 lists travel time/probability of each arc with different
departure time. The table’s content written as ’A/B’ describe
link travel time (A) and corresponding probability (B).

Through the algorithm, results of optimal path planning are
presented as table 2, and optimal paths at each departure time
is listed properly.

VI. CONCLUSIONS

A decision theoretic framework is developed in resolving
problem of optimal path planning under priori information
in STV networks. In order to solve problems caused by the
methods of DP used in STV networks, such as decrease
curse of dimensionality and comply with violation of optimal
principle, an integer programming model is built to realize the
assignment of discrete travel times to arcs. Simultaneously,

TABLE I
TRAVEL TIME/PROBABILITY OF EACH ARC WITH DIFFERENT DEPARTURE

TIME.

Departure time

Link 0 1 2 3 4 5 6 7 8

(O,1) 1/0.5

2/0.5

1/0.5

2/0.5

1/0.5

2/0.5

1/0.5

2/0.5

1/0.5

2/0.5

1/0.5

2/0.5

1/0.5

2/0.5

1/0.5

2/0.5

1/0.5

2/0.5

(O,2) 1

-

1

-

2/0.3

1/0.7

1/0.6

2/0.4

1/0.5

2/0.5

1/0.5

2/0.5

1/0.5

2/0.5

1/0.5

2/0.5

1/0.5

2/0.5

(2,1) 3/0.5

4/0.5

2/0.6

3/0.4

2/0.2

4/0.8

3/0.1

2/0.9

1/0.5

2/0.5

5/0.5

2/0.5

4/0.4

2/0.6

1/0.5

2/0.5

4/0.6

2/0.4

(1,3) 4/0.7

2/0.3

3/0.5

2/0.5

2/0.5

5/0.5

1/0.5

2/0.5

5/0.5

2/0.5

4/0.4

2/0.6

1/0.5

2/0.5

1/0.5

2/0.5

3/0.4

2/0.6

(2,3) 5

-

6

-

6

-

6

-

3/0.5

2/0.5

7/0.7

2/0.3

3/0.5

6/0.5

1/0.5

2/0.5

3/0.6

2/0.4

(1,D) 5/0.6

7/0.4

4/0.5

6/0.5

5

-

3

-

4

-

3/0.5

7/0.5

7/0.7

9/0.3

3/0.5

6/0.5

4/0.5

8/0.5

(3,D) 4/0.7

2/0.3

3/0.5

2/0.5

2/0.2

5/0.8

4/0.6

2/0.4

3/0.5

6/0.5

4/0.5

3/0.5

7/0.3

5/0.7

3/0.4

5/0.6

5/0.6

4/0.4

TABLE II
THE RESULTS OF OPTIMAL PATH PLANNING.

Departure time Optimal path planning between OD

0 (O − 1 − D)

1 (O − 1 − D)

2 (O − 1 − D), (O − 1 − 3 − D)

3 (O − 2 − 1 − D), (O − 1 − 3 − D)

4 (O − 1 − D), (O − 1 − 3 − D)

5 (O − 1 − 3 − D), (O − 2 − 1 − D)

6 (O − 2 − 1 − D), (O − 1 − 3 − D)

7 (O − 2 − 1 − D), (O − 1 − 3 − D)

8 (O − 1 − D), (O − 1 − 3 − D)

pruning techniques are also applied to reduce computation
complexity in the algorithm. The final experiments show the
feasibility of the novel approach. Future work is to practice
the novel approach in real transportation network.
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