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Optimal Image Representation for Linear Canonical
Transform Multiplexing

Navdeep Goel, Salvador Gabarda

Abstract—Digital images are widely used in computer
applications. To store or transmit the uncompressed images
requires considerable storage capacity and transmission bandwidth.
Image compression is a means to perform transmission or storage of
visual data in the most economical way. This paper explains about
how images can be encoded to be transmitted in a multiplexing
time-frequency domain channel. Multiplexing involves packing
signals together whose representations are compact in the working
domain. In order to optimize transmission resources each 4 × 4
pixel block of the image is transformed by a suitable polynomial
approximation, into a minimal number of coefficients. Less than
4 × 4 coefficients in one block spares a significant amount of
transmitted information, but some information is lost. Different
approximations for image transformation have been evaluated as
polynomial representation (Vandermonde matrix), least squares +
gradient descent, 1-D Chebyshev polynomials, 2-D Chebyshev
polynomials or singular value decomposition (SVD). Results have
been compared in terms of nominal compression rate (NCR),
compression ratio (CR) and peak signal-to-noise ratio (PSNR)
in order to minimize the error function defined as the difference
between the original pixel gray levels and the approximated
polynomial output. Polynomial coefficients have been later encoded
and handled for generating chirps in a target rate of about two
chirps per 4 × 4 pixel block and then submitted to a transmission
multiplexing operation in the time-frequency domain.

Keywords—Chirp signals, Image multiplexing, Image
transformation, Linear canonical transform, Polynomial
approximation.

I. INTRODUCTION

D IGITAL representation of images requires a very large
number of bits and it is always highly important

to represent the information contained in the image with
fewer numbers of bits. Image compression is a technique
to reduce the redundancies in data representation in order
to decrease data storage requirements and hence reduces
the communication costs [1]–[4]. Reducing the storage
requirement is equivalent to increasing the capacity of
the storage medium and hence communication bandwidth.
Basically, image is represented as a combination of
information and redundancy. In order to correctly interpret
the purpose of image information, the image data must be
preserved permanently in its original form. For lossless image
compression, it is always required to preserve information
absolutely and it needs as more coefficients as pixels
for the polynomial approximation. Otherwise, for lossy
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compression, that some amount of information may be lost if
the number of coefficients in the polynomial approximation
are reduced [4], [5]. In this paper, different approximations
for image transformation have been evaluated as polynomial
representation (Vandermonde matrix) [5], least squares +
gradient descent [6], 1-D Chebyshev polynomials T (x)
(notation T is taken from the older French spellings of
Chebyshev as Tchebichef) [7], 2-D Chebyshev polynomials
[8], [9] or truncated singular value decomposition (SVD) [10],
[11] for lossy/lossless image compression. In all polynomial
approximation techniques, each 4 × 4 pixel block of the
image is transformed into a set of polynomial coefficients.
By using an 8-coefficient polynomial approximation, 50%
of the representation is spared, but some information is lost.
These 8 polynomial coefficients can be encoded and handled
for generating chirps [12] in a rate of two chirps per block .
The generated chirp functions can be rotated and shifted by
using offset linear canonical transform (OLCT) [13]–[16] for
multiplexing operation in the time-frequency domain [17].

The rest of the paper is organized as below: Section II gives
the brief review of the proposed polynomial approximation
techniques for image representation. Section III explains
the experimental results for comparative analysis of image
compression by using different polynomial approximation
techniques or SVD. Generation of chirp functions from the
polynomial coefficients are explained in Section IV and finally
conclusion and future scope is given in Section V.

II. IMAGE COMPRESSION

Image compression is an application of data compression
that encodes the original image with fewer bits without
degrading the quality of the image to an unacceptable level.
A gray image as stored in binary code by 8 bits per pixel
is able to take account of 0 to 255 gray levels. The target
of image compression consists in handling the structure of
the image in order to reduce the bulk of data for storage
purposes or to transmit data in an efficient form. Image
compression plays an important role in applications like
tele-video conferencing, remote sensing and medical imaging
[18], [19]. Image compression may be classified as lossy or
lossless compression. In lossless compression, all original data
can be recovered when the file is uncompressed i.e. every
single bit of data that was originally in the file remains
after the file is uncompressed. On the other hand, lossy
compression reduces a file by permanently eliminating certain
information, especially redundant information by reducing the
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correlation between the pixels [20], [21]. Three main steps
have to be considered for image compression: transformation,
quantization and coding [22], [23].

The transformation step consists of finding some invertible
transform T for decorrelating the image pixels as much
as possible, by removing redundancy. The results of
transformation T is a set of coefficients. If such transformation
is exactly invertible then the transformation is lossless,
otherwise it is a lossy transformation. In this paper, seven
different transformations have been applied for image tiling
in blocks of 4 × 4 pixels. In the first phase, a method to
obtain an exact or simplified least square representation of an
image by a set of polynomial coefficients has been applied [5].
The idea of reducing a matrix into a diagonal representation
is an ill-posed mathematical problem, because in the sense
of Newton polynomial interpolation “given a finite set of
data points, there is only one polynomial, of least possible
degree, that passes through all of them”, and this polynomial
could be variable-separable or not. To meet this challenge,
a new algorithm piece-wise least squares-gradient descent
polynomial approximation of images with reduced number of
coefficients has been developed. By the combination of least
squares and gradient descent, it became possible to develop
an algorithm for approximating an image tile of 4 × 4 block
g(x, y) to a polynomial with 8 coefficients, 4 for variable x
and 4 for variable y in a separate variable context. It has been
observed that this algorithm gives better results with large
images at the cost of longer time of calculations. The reason is
due to the better behavior of polynomials with smoother image
variations as details change more slowly in larger images.

To further improve the quality the recovered image,
Chebyshev polynomial with spiral scanning method is
proposed. Chebyshev polynomials are among the most popular
orthogonal polynomials that are used to approximate a set of
data and are useful in such contexts as numerical analysis and
circuit design [8], [9]. Orthogonal polynomials can be used
to make the polynomial coefficients uncorrelated, to minimize
the error of approximation, and to minimize the sensitivity of
calculations to round off error [24].

The main advantage of Chebyshev polynomials is that the
error is equally distributed in the interval of application, while
in the general polynomial approximation the error is unevenly
distributed. The results obtained by spiral scanning method are
found to be superior than other scanning methods such as row
scanning, column scanning and diagonal scanning etc. [24],
because in this scanning method the sequence is a next-pixel
arrangement with a close pixel to pixel correlation that
abides well with a 1-D smooth polynomial fitting. To control
the desired amount of quality, the Chebyshev algorithm is
transformed into an adaptive algorithm that is by establishing
an admissible error e and then approximating by polynomials
of 1, 2, 3...m degree, until we get an squared error or quality
factor Q < e to stop the algorithm, then in a frame of 16
coefficients we will have 16-m zero coefficients and then the
length of the encoded coefficients will be reduced significantly.
In this paper, for all adaptive algorithms, the square error is
considered as 0.1 per 4 × 4 image block and PSNR can be
further improved by considering smaller error at the cost of

less compression ratio. When square error is zero then PSNR is
infinite and worse values of PSNR are obtained by increasing
admitted error.

Let us suppose that image G(x, y) is tessellated by a set of
squared boxes of 4× 4 pixels and we seek approximate each
block g (x, y) by a polynomial such that g (x, y) ≈ P (x, y),
where P (x, y) is the unknown polynomial and is to be
obtained by the least squares approximation method. The error
function Q is given by

Q =

4∑
i=1

4∑
j=1

(
g(xi, yj)− P (xi, yj)

)2

(1)

The problem with all 1-D polynomial methods applied to
images is in the encoding step, because in 1-D x powers varies
from 0 to 15 and in 2-D x and y powers only varies from 0 to 3.
In 1-D polynomial, the coefficients are going to be ranged in a
big interval and this is difficult and slow to be coded in a binary
low rate bit/pixel. Contrary wise, 2-D polynomials with small
polynomial degree are more suitable for high-compression
and fast calculation performances. Hence 2-D Chebyshev and
2-D adaptive Chebyshev algorithms have been developed for
image compression. In 2-D, the degree of polynomial is the
sum of maximum power of polynomial in x direction and
maximum power of polynomial in y direction and the number
of coefficients are obtained by the product of maximum power
of polynomial in x direction plus one and maximum power
of polynomial in y direction plus one. Approximation of 2-D
Chebyshev polynomials is achieved with two separable 1-D
Chebyshev polynomials T (x) and T (y) that are discrete and
orthogonal [8]. This massively reduces the complexity, as the
same principles from 1-D Chebyshev polynomial has been
applied, i.e. intervals of x and y are still between [−1, 1].
Mathematically, the 2-D Chebyshev polynomial is expressed
as [25]

f̃ (x, y) =

M∑
m=0

N∑
n=0

am,nTm (x)Tn (y) (2)

where am,n are the 2-D Chebyshev polynomial coefficients.
Chebyshev approximation (sometimes referred to as
Chebyshev moments) have found applications in image
analysis, pattern recognition, image segmentation, image
reconstruction and rendering [26]–[30]. Finally, another
technique, in which a m × n matrix can be factored into
the product of an orthogonal matrix times a diagonal
matrix times another orthogonal matrix has been applied for
image compression known as singular value decomposition
(SVD). For a m × n image, the truncated SVD originates
k (m+ n+ 1) coefficients. The compressed image will
reduce the storage space requirement to k (m+ n+ 1) bytes
as against the storage space requirement of m × n bytes
of the original uncompressed image. The compression is
achieved if the storage space required by the compressed
image is less than that required by the original image i.e.,
(m× n) > k (m+ n+ 1). Value of k represents the number
of eigen values used in the reconstruction of the compressed
image. Smaller the value of k, the more is the compression
ratio (i.e. less storage space is required) but image quality



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:1, 2016

36

deteriorate. When k << m, then the number of coefficients
are < (m× n), but for k = m (0 error), there are more
coefficients than the pixels and the transformation is not
suitable at all [10], [11].

The outcome of the transformation step is a set of
coefficients, that are real numbers, and they may be adjusted
to a least high-precision floating point range. These values
require a high number of bits to be stored. The aim of the
quantization step is replacing these real numbers with an
approximation that requires fewer bits to be stored. Then,
quantization is a lossy process and exact values of coefficients
cannot be recovered. So, some error hast to be admitted in this
step.

The coding step takes advantage about that the most of
the coefficients will be close to zero and then set to zero
in the quantization step. The outcome of the transformation
step plus the quantization step will be a sequence of numbers
with a great amount of zeros. Such configuration can be
successfully compressed to a binary sequence of 0s and 1s.
In this paper, the arithmetic encoding and decoding technique
has been applied. Arithmetic coding is a common algorithm
used in both lossless and lossy data compression algorithms.
Arithmetic encoders are better suited for adaptive models than
Huffman coding, but they can be challenging to implement
[31]–[35].

III. EXPERIMENTAL RESULTS

For testing the proposed compression algorithms,
experiments have been done to compare the performance
of the different polynomial image approximation techniques
using a fixed block of size of 4 × 4 and truncated SVD.
These are applied on a number of well-known standard
bitmap images, all images of 256 gray levels (8 bits/pixel)
of size 256 × 256. The peak signal-to-noise ratio (PSNR)
in dB, nominal compression rate (NCR) i.e. entropy and
compression ratio (CR) in bits/pixel are adopted as objective
fidelity measures between the original image and the decoded
image. The NCR is measured with respect to the initial
storage requirement (ISR) of the original 256 gray scale
bitmap image i.e. 8 bits/pixel.

Nominal Compression Rate(Entropy) =

−
q∑

k=1

pk log (pk) bits/pixel (3)

where q is the number of quantization levels and

pk =
Number of polynomial coefficients in the kth bin

Total number of polynomial coefficents
(4)

For entropy calculation of 8 bit images, the number of
quantization levels will be equal to q = 256. In case of
Vandermonde technique, for proper recovery of the image
at the decoder side, the number of quantization levels q
should be 4096 or more. Hence Vandermonde technique is
not suitable for compression purposes, because q has to be
a huge number. By increasing q, better PSNR is obtained at
the cost of worse CR. The reason is that if the compression
will be more i.e. small number q of levels, more information
will be lost. When the degree of polynomial is high, generally

> 8 then for 1-D Chebyshev polynomial, 256 quantization
levels for arithmetic compression will result in a low PSNR
because the quantization does not meet the sampling theorem,
hence these polynomials have to be discarded. NCR is not
the compression of the image but a compression possibility
that will be real if coefficients are efficiently encoded. This
parameter is important to determine the efficiency of the
encoding step and also the information reduction from the
image ISR 8 bits/pixel. Final image compression is obtained
after encoding the polynomial coefficients such as:

Final Compression =
Length(B2)
M ×N

bits/pixel (5)

where B2 indicates the binary code for polynomial coefficients
which are obtained after quantizing and encoding the
polynomial coefficients and M × N indicates the image
size.The CR may be defined as

Compression Ratio =
Initial Storage Requirement

Final Compression
(6)

The unity value of CR indicates that there is no
compression. More will be the value of CR, better will be
the image compression at the cost of degraded image quality.
The various test results are shown in Tables I and II. In order
to test the lossless compression system efficiency for an image
block of size 4× 4, the proposed algorithms results in infinite
(∞) PSNR with the selection of 16 polynomial coefficients.
However, for lossy compression the number of polynomial
coefficients are < 16 for an image block of size 4 × 4. To
evaluate the performance of the proposed image compression
techniques, a set of seven 8 bit gray scale images are put under
test. The numerical values of different performance metrics
of various test images are shown in Tables I and II. Figs.
1 and 2 show the outcome of different transformations for
different 8-bit bitmap gray scale 256 × 256 size test images.
It has been observed from Tables I and II that as the degree
of polynomial increases then the compression results in low
PSNR for 1-D Chebyshev polynomial. Due to small degree of
polynomial, 2-D Chebyshev polynomials ends up with high
PSNR as compare to 1-D Chebyshev and gradient-descent
polynomial techniques and found more suitable for image
compression.

IV. GENERATION OF CHIRP FUNCTIONS FROM THE
POLYNOMIAL COEFFICIENTS

A chirp is a signal in which the frequency increases
(’up-chirp’) or decreases (’down-chirp’) with time. These are
ubiquitous in nature as these can be observed in animal
communication and echolocation, geophysics, astro-physics,
acoustics, or biology. These are also extensively used in
manmade systems, such as radar and sonar [36].

Chirps are considered as transient observations that may
take account for many non-stationary deterministic signals.
The time-frequency plane is a natural representation space
for chirps [12]. When the instantaneous frequency is a linear
function, then the input signal is referred as a linear chirp
function [12]. A certain family of linear chirp functions may
be defined as:

f (t) = Ae−(p(t+q)2+jrt2) (7)
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(a) (b) (c)

(d) (e)

Fig. 1 Decoded Image from different transformations (a) Original image (b) Gradient-descent, PSNR=27.7228 dB (c) 1-D
adaptive Chebyshev with error = 0.1, PSNR=28.3595 dB (d) 2-D adaptive Chebyshev with error = 0.1, PSNR=28.739 dB (e)

SVD with k = 32, PSNR=27.6712 dB

(a) (b) (c)

Fig. 2 Decoded image from Chebyshev transformations with 8 coefficients (a) Original image (b) 1-D Chebyshev,
PSNR=31.76 dB (c) 2-D Chebyshev, PSNR=32.7720 dB

where A, p, q, r ∈ R andA > 0, p > 0, p << abs (r).
This last requirement is introduced to determine appropriate
chirp shape in the time-frequency domain. From (7), it has
been observed that four elements A, p, q, r are required to
generate one chirp function successfully. It has been observed
from Tables I and II that the desired value of PSNR [31], [37]
i.e. ≈ 30 dB is achieved when the numbers of polynomial
coefficients are equal to 8. Hence an image block of size
4 × 4 with 8-coefficient polynomial approximation can be
transformed into a set of chirp functions.

The time-frequency response of the chirp function can

be shown with the help of the Wigner-Ville Distribution
(WVD). For a signal s (t), with analytic associate x (t), the
Wigner-Ville Distribution, Wx (t, u) is defined as [38]:

Wx (t, u) =

∞∫
−∞

x
(
t+

τ

2

)
x∗

(
t− τ

2

)
e−juτdτ (8)

Finally, the chirps generated in each 4 × 4 are submitted
to a transmission operation in the time-frequency domain for
image multiplexing.
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TABLE I
PERFORMANCE METRICS OF SVD AND CHEBYSHEV POLYNOMIALS

Truncated SVD 2-D Chebyshev 1-D Chebyshev (Spiral)
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Barbara

16 8208 25.4418 7.9844 4 1+1=2 27.577 5.529 1.5912 5.028 4 3 27.094 5.277 1.5296 5.23

32 16416 27.9373 3.992 9 2+2=4 34.728 5.076 3.3316 2.401 8 7 31.76 5.03 2.9436 2.718

64 32832 32.1365 1.996 12 3+2=5 38.499 4.925 4.3146 1.854 12 11 35.828 4.902 4.2832 1.868

128 65664 40.6691 0.998 16 3+3=6 ∞ 4.719 5.5431 1.443 16 15 ∞ 4.1 4.6248 1.73

Boat

16 8208 24.8743 7.9844 4 1+1=2 25.341 5.11 1.4728 5.432 4 3 25.44 5.07 1.4492 5.52

32 16416 27.7365 3.992 9 2+2=4 34.352 4.71 3.0989 2.582 8 7 30.826 4.829 2.8075 2.85

64 32832 32.6388 1.996 12 3+2=5 37.92 4.765 4.2337 1.89 12 11 35.753 4.704 4.0842 1.959

128 65664 42.2097 0.998 16 3+3=6 ∞ 4.848 5.668 1.411 16 15 ∞ 3.202 3.6428 2.196

Cameraman

16 8208 24.0202 7.9844 4 1+1=2 25.795 4.513 1.3317 6.008 4 3 24.95 4.394 1.2763 6.268

32 16416 26.9669 3.992 9 2+2=4 34.775 4.052 2.7292 2.931 8 7 30.742 4.209 2.5029 3.196

64 32832 32.246 1.996 12 3+2=5 39.116 4.084 3.6651 2.183 12 11 36.012 3.843 3.3916 2.359

128 65664 42.5539 0.998 16 3+3=6 ∞ 4.078 4.9606 1.613 16 15 ∞ 2.453 2.8835 2.774

Lena

16 8208 24.6385 7.9844 4 1+1=2 27.917 5.238 1.522 5.256 4 3 26.876 5.055 1.4671 5.453

32 16416 27.6712 3.992 9 2+2=4 35.462 4.595 3.0565 2.617 8 7 32.409 4.786 2.8176 2.839

64 32832 32.934 1.996 12 3+2=5 41.058 4.382 3.9111 2.046 12 11 37.656 4.306 3.8071 2.101

128 65664 42.5151 0.998 16 3+3=6 ∞ 4.552 5.4624 1.465 16 15 ∞ 3.485 3.9713 2.015

House

16 8208 26.9382 7.9844 4 1+1=2 27.58 3.919 1.0716 7.465 4 3 28.154 4.116 1.1171 7.161

32 16416 33.0276 3.992 9 2+2=4 40.488 3.52 2.1828 3.665 8 7 36.111 3.821 2.0603 3.883

64 32832 39.733 1.996 12 3+2=5 44.345 3.396 2.8348 2.822 12 11 41.499 3.978 3.2164 2.487

128 65664 49.5905 0.998 16 3+3=6 ∞ 3.399 3.6909 2.618 16 15 ∞ 3.504 3.6943 2.166

Goldhill

16 8208 26.749 7.9844 4 1+1=2 27.437 5.289 1.5396 5.196 4 3 27.503 5.292 1.5362 5.208

32 16416 28.5626 3.992 9 2+2=4 35.019 4.883 3.2443 2.466 8 7 32.804 5.035 2.9498 2.712

64 32832 32.4379 1.996 12 3+2=5 38.156 4.896 4.358 1.836 12 11 37.494 4.598 4.068 1.967

128 65664 39.9712 0.998 16 3+3=6 ∞ 5.184 6.0496 1.322 16 15 ∞ 4.272 4.8195 1.66

Pirate

16 8208 24.1064 7.9844 4 1+1=2 26.264 5.648 1.6288 4.912 4 3 26.148 5.437 1.5701 5.095

32 16416 27.53 3.992 9 2+2=4 33.96 5.237 3.4319 2.331 8 7 31.529 5.3 3.0821 2.596

64 32832 32.4454 1.996 12 3+2=5 37.985 5.158 4.552 1.758 12 11 36.282 4.534 4.0046 1.998

128 65664 41.4567 0.998 16 3+3=6 ∞ 5.29 6.1572 1.299 16 15 ∞ 4.349 4.8841 1.638
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TABLE II
EXPERIMENTAL RESULTS OF VANDERMONDE, GRADIENT DESCENT AND ADAPTIVE CHEBYSHEV TRANSFORMATIONS

Transform Number of
Coefficients

Degree of
Polynomial

Performance
Metrics

Bitmap Gray Scale Images of Size 256× 256

Barbara Boat Cameraman Lena House Goldhill Pirate

1-D
Adaptive

Chebyshev
Adaptive

Adaptive

0.1
Admitted

Error

PSNR (dB) 27.5373 27.6707 29.3206 28.3595 30.4403 27.5315 27.2266

NCR
(bits/pixel)

1.6573 1.4319 0.0112 0.9405 2.0677 1.7699 1.2673

Compression
(bits/pixel)

0.9399 0.8393 0.0113 0.5629 0.8338 0.9803 0.7618

CR 8.5113 9.5322 706.587 14.2126 9.5944 8.1608 10.5009

2-D
Adaptive

Chebyshev
Adaptive

Adaptive

0.1
Admitted

Error

PSNR (dB) 27.84 28.0027 29.6157 28.739 31.1426 27.5919 27.4119

NCR
(bits/pixel)

1.0928 1.6595 1.1889 1.4446 1.5084 1.3314 1.2057

Compression
(bits/pixel)

0.7612 0.9309 0.8331 0.7844 0.6046 0.7166 0.8551

CR 10.5104 8.5935 9.6032 10.1988 13.2312 11.1631 9.3556

Vandermonde

16
for Image
Block of

size
4× 4

16

PSNR (dB) ∞ ∞ ∞ ∞ ∞ ∞ ∞
NCR

(bits/pixel)
2.4132 2.7638 2.0059 2.4565 3.2072 3.3093 2.8638

Compression
(bits/pixel)

2.6663 3.1701 2.2883 2.7115 3.4935 3.76 3.1625

CR 3.0004 2.5236 3.4961 2.9503 2.29 2.1276 2.5296

Gradient
Descent

4 + 4
for Image
Block of

size
4× 4

3+3

PSNR (dB) 23.6264 25.8832 26.5208 27.7228 28.3438 28.2192 27.1453

NCR
(bits/pixel)

4.5036 3.3578 2.5994 3.0186 4.0074 3.5058 3.7874

Compression
(bits/pixel)

2.6834 1.9615 1.5815 1.7814 2.2293 2.1483 2.1967

CR 2.9813 4.0784 5.0585 4.491 3.5885 3.724 3.6418

V. CONCLUSION

In this paper, different transformations techniques have
been tested for image transformation. It has been observed
that Vandermonde technique is not suitable for compression
purposes because the number of quantization levels q has
to be a huge number. The adaptive Chebyshev algorithms
will run until we reach the desired squared error and it
results in lossless compression when the squared error is
set to zero. In another way, the transformation technique
is transformed to lossless compression technique when the
number of coefficients for 4 × 4 image block are equal to
16. From the experimental results, it has been found that
the 2-D Chebyshev polynomial performs better in terms of
high PSNR. As a future scope, this transformation technique
with 8-coefficients could be transformed into two chirps if no
encoding is applied to the coefficients, but this will originate
an ill-posed problem in the time-frequency domain. This is
the reason to introduce a compression step that simplifies
the time-frequency operation against an increased number
of chirp functions. Finally, we conclude that number of
coefficients cannot reduce substantially without experiencing
a considerable loss of information and consequently we will
be probably limited to keep compression ratio equal to 1 or
close to 1 or accept an error that can be fixed by design.

Further work will consists in generating suitable chirp signals
from the compressed binary code, able to be multiplexed for
transmission purposes in the time-frequency domain.
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