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Abstract—The permanent magnet synchronous motor (PMSM) is 

very useful in many applications. Vector control of PMSM is popular 
kind of its control. In this paper, at first an optimal vector control for 
PMSM is designed and then results are compared with conventional 
vector control. Then, it is assumed that the measurements are noisy 
and linear quadratic Gaussian (LQG) methodology is used to filter 
the noises. The results of noisy optimal vector control and filtered 
optimal vector control are compared to each other. Nonlinearity of 
PMSM and existence of inverter in its control circuit caused that the 
system is nonlinear and time-variant. With deriving average model, 
the system is changed to nonlinear time-invariant and then the 
nonlinear system is converted to linear system by linearization of 
model around average values. This model is used to optimize vector 
control then two optimal vector controls are compared to each other. 
Simulation results show that the performance and robustness to noise 
of the control system has been highly improved.    
 

Keywords—Kalman filter, Linear quadratic Gaussian (LQG), 
Linear quadratic regulator (LQR), Permanent-Magnet synchronous 
motor (PMSM). 
 

NOMECLATURE 
,d qi i  d-q Stator currents 

,d qv v d-q Stator voltages 

rω       Electrical speed (rad/s) 

rθ        Electrical position (rad) 

LT       Load torque (N.m) 

R        Phase resistance (Ω) 
L        Phase inductance (Henry) 
J        Rotor inertia (kg.m2) 
D       Damping coefficient (N.m.s/rad) 
ϕ        Permanent magnet flux linkage (N.m/A) 
N      Number of pole pairs 
 

I. INTRODUCTION 
ECTOR control technique, incorporating fast signal 
processing and fast power electronics, have made 

possible the application of ac motors drives in high 
performance tasks where traditionally only dc servo drives 
were applied. A permanent magnet synchronous motor 
(PMSM) employing vector control is especially favorable for 
high performance servo drive applications because it fulfills 
the design criteria of high performance servo drive, such as 
compact structure, high air-gap flux density, high power to 

inertia ratio, high torque to inertia ratio and high torque 
capability [1]. As the PM ac motor is replacing the 
conventional dc motors for small output power rating variable 
speed control system, the performance of PM ac motors which 
uses vector control and has quick transient response at same 
time, must be improved [2]. One way to improved the 
response of the system is linear quadratic regulator (LQR). 
The linear quadratic regulator (LQR) is an optimal control 
methodology that can be employed in wide range of 
applications. The quadratic cost function provides the designer 
with lots of flexibility to perform trade off among various 
performance criteria. The relationship between cost function 
weights and performance criteria hold even for high order and 
multiple input systems, where classical control becomes 
cumbersome. A major limitation of LQR is that the entire state 
must be measured exactly when generating the control. This 
limitation becomes increasingly troublesome for high order 
systems, where measuring all states can be very expensive. In 
addition no measurement is ever exact. Therefore, an optimal 
design methodology that results in controllers that utilize 
noisy, partial state information is desirable. The linear 
quadratic Gaussian (LQG) methodology provides a means of 
designing such controller [3].  

The main contribution of this paper is optimal vector 
control of PMSMs that is essential for high precision 
applications such as servo drive. The rest of the paper is 
structured as follows. The linearized models of PMSM are 
presented in section II. Section III introduces the optimal 
strategies for speed control of PMSM through linear quadratic 
regulator (LQR) and linear quadratic Gaussian (LQG) 
methodologies. The computer simulation results are presented 
in section IV. Finally, section V concludes the paper.  

II. STATE SPACE MODELS AND LINEARIZED MODELS OF 
PMSM 

The dynamic model for the PMSM in the d-q transformed 
rotor reference frame is given in state space as follow [4]: 
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The basic principle in controlling the PMSM is based on 
field orientation. This is obtained by letting the permanent 
magnet flux linkage be aligned the d-axis and stator current 
vector is kept along q-axis direction. This means the value of 

di is kept zero in order to achieve the field orientation 
condition. Since the permanent magnet flux is constant, 
therefore the electromagnetic torque is linearly proportional to 
the q-axis current which is determined by closed loop control. 
As a result, maximum torque per ampere can be obtained from 
the machine in addition to achievement of high dynamic 
performance. Applying the field orientation concept by letting 

0di = in (1) the linearized model of PMSM can be described 
in state space form as [5]: 

( ) ( ) ( ) ( )x t Ax t Bu t Ed t= + +                    (2) 
Where: 

( ) , ( ) , ( )
T

q r r q Lx t i u t v d t Tω θ⎡ ⎤= = =⎣ ⎦        (3) 
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Above, the switching effect of inverter is neglected. As a 
matter of fact, because of nonlinearity of PMSM and existence 
of inverter, system is nonlinear and time-variant (due to 
periodicity of function dv and qv and they have switching 

form) [6]: 
( ) ( ( ), )x t f x t t=                                 (5) 
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After deriving average model, dv and  qv are changed to 

constant value. Consequently the system is changed to 
nonlinear time-invariant. Optimal output feedback problem 
can be solved for system by linearization around average 
values. In other word equilibrium operating point is defined 
by average model. Where xΔ is small changes around 
average point with resulted by jacobian. 
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Where: 

( ) , ( )
T T

d q r d qx t i i u t v vω θ⎡ ⎤ ⎡ ⎤Δ = Δ =⎣ ⎦ ⎣ ⎦       (8) 

In the next section, optimal strategy will be summarized. 

III. OPTIMAL CONTROL STRATEGY 

A. Linear Quadratic Regulator (LQR) 
The linear quadratic regulator (LQR) is an optimal control 

problem where the state equation of the plant is linear, the cost 
function is quadratic and test conditions consist of initial 
condition on the state and no disturbance input. The plant 
equation is:  

                  
= Ax + Bux                                        (9) 
 y = Cx                                         (10) 

A reasonable cost function to use when the control system is 
designed to operate for long time period is: 

 
0

( ( ), ( )) 1/ 2 ( ( ) ( ) ( ) ( ))T TJ x t u t x t Qx t u t Ru t dt
∞

= +∫          (11) 

One method of finding the optimal feedback gain matrix 
utilizes a nonlinear matrix differential equation, known as 
Riccati equation: 

1( ) ( ) ( ) ( ) ( )Tp t p t A A p t Q p t BR Bp t−= − − − +            (12) 
P(t )must satisfy the above equation. The solution of the 
optimal control problem can be reduced to finding the matrix 
p(t), since the optimal control is given [3] : 

1( ) ( ) ( ) ( ) ( )Tu t R B p t x t k t x t−= − = −                    (13)  
 
 
 
 
 
 
 
 
 

Fig. 1 Block diagram of optimal control 
 

B. Linear Quadratic Gaussian (LQG)  
Linear quadratic Gaussian (LQG) control refers to an 

optimal control problem where the plant model is linear, the 
cost function is quadratic and the test condition consist of 
random initial conditions, a white noise disturbance input, and 
white measurement noise. The plant is described by the 
following [3]: 

( ) ( ) ( ) ( )u wx t Ax t B u t B w t= + +                       (14) 
where u(t) is the control input and w(t) is a random 
disturbance input known as plant noise. The measurement 
available for feedback is: 

 ( ) ( ) ( )mm t c x t v t= +                               (15) 
where v(t) is a random signal known as measurement noise. 
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Fig. 2 A Linear quadratic Gaussian optimal control system 
 

The state model for the optimal controller is: 
ˆ [ ( ) ( )] ( ) ( ) ( )m ux A G t C B K t x t G t m t= − − +               (16)           

ˆ( ) ( ) ( )u t K t x t= −                                    (17) 
Where G(t) is Kalman gain. The state feedback gain K(t) is 
found by solving the following [3]: 

1( ) ( ) ( ) ( ) ( )T T

u up t p t A A p t Q p t B R B p t−= − − − +        (18) 
1( ) ( )T

uK t R B p t−=                                 (19) 
    In summary, the solution of linear quadratic Gaussian 
optimal control problem can be broken into two parts: (1) find 
the linear quadratic regulator feedback gains that minimize the 
cost asumming perfect state information. (2) generate a 
Kalman filter to estimate the state. This is a remarkable result 
known as the stochastic separation principle [3]. 

IV. SIMULATION RESULTS 

 
Fig. 3 Block diagram of optimal vector control 

 
 

Fig. 4 Optimal and conventional vector control 
 
Speed references is set to 150rad/s and settling time of 

actual speed is 0.1s in optimal vector control but in 

conventional vector control, settling time of actual speed is 
0.5s (with the same PI parameters). Speed overshoot in 
optimal vector control is 0.033% but in conventional method, 
its overshoot is 4.58% (Fig. 4).  

Electromagnetic torque overshoot has 3.73% improvement 
in comparison of optimal vector control and conventional 
vector control. 

 At t=1s, speed reference is changed from 150rad/s to 
180rad/s. Settling time of  actual speed in optimal method is 
0.07s and speed overshoot is 0% approximately but in 
conventional  method settling time of actual speed is 0.4s and 
it has 0.8% 0vershoot (Fig. 5). Electromagnetic torque 
overshoot while speed is changing, has 1.94% improvement in 
comparison of conventional method. 

 
 

Fig. 5 Speed of optimal and conventional vector control 
 
  At t=2s, speed reference is changed from 180rad/s to 
150rad/s.  speed settling time and speed undershoot in optimal 
method are, 0.1s and 0% respectively. But in conventional 
method these parameters are 0.8s and 0.83% respectively   
(Fig. 6). Also electromagnetic torque overshoot has 2.72% 
improvement in comparison of conventional method. 
 

 
Fig. 6 Speed variation in optimal and conventional vector control 

 
Then it is assumed that system has process and 

measurements noises and Kalman filter is used to reduce noise 
effect (Fig. 7). 
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Fig. 7 Block diagram of linear quadratic Gaussian 
 

 
Fig. 8 Speed  for LQR and LQG under noisy condition 

     
 

Fig. 8, Fig. 9 and Fig. 10 show speed and electromagnetic 
torque for LQR and LQG under noisy condition. 
 

 
 

Fig. 9 Electromagnetic torque for LQR under noisy condition 
 

 
 

Fig. 10 Electromagnetic torque for LQG under noisy condition 
 

Considering nonlinearity of PMSM and time-variant of 
inverter and linearization of model around average value is 
trend to changes block diagram of optimal vector control as 
below: 
 

 
Fig. 11 Block diagram of optimal vector control 

 
Speed reference is set to 150rad/s and settling time for 

actual speed is 0.05s. 

 
 

Fig. 12 Actual speed 
 

Fig. 13 shows actual speed comparison of conventional 
vector control and two optimal vector control methods. 
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Fig. 13 Actual speed comparison 

V. CONCLUSION 
     In this paper, we investigated the LQR and LQG 
methodologies in vector control of PMSMs. The simulation 
results showed that the proposed controllers has better 
performance for the sake of design criteria like overshoot and 
settling time of the step response. Moreover, the LQG 
controller shows more robustness against process and 
measurement noises. Considering the nonlinearity of PMSM 
and existence of inverter in its control circuit that is caused the 
optimal gains with conventional optimal control theory can 
not be found. The solution to this problem is using average 
values and linearization around average values and simulation 
results showed that performance of system is improved by this 
method. 

APPENDIX 
Motor parameter used in the simulation: 
PMSM                                          INDRAMAT-MAC090B 
Stator resistance                            0.97 ohm 
Stator inductance                          5.1 mH 
Permanent magnet flux                 0.121 N.m/A 
Moment of inertia                         0.0036 kg.m2  
Friction coefficient                        0.0221 N.m.s/rad 
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