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Optimal Control of a Linear Distributed Parameter
System via Shifted Legendre Polynomials

Sanjeeb Kumar Kar

Abstract—The optimal control problem of a linear distributed
parameter system is studied via shifted Legendre polynomials (SLPs)
in this paper. The partial differential equation, representing the
linear distributed parameter system, is decomposed into an n - set
of ordinary differential equations, the optimal control problem is
transformed into a two-point boundary value problem, and the two-
point boundary value problem is reduced to an initial value problem
by using SLPs. A recursive algorithm for evaluating optimal control
input and output trajectory is developed. The proposed algorithm is
computationally simple. An illustrative example is given to show the
simplicity of the proposed approach.

Keywords—Optimal control, linear systems, distributed parameter
systems, Legendre polynomials.

I. INTRODUCTION

OPTIMAL control of linear distributed parameter systems
has been studied by many researchers. First this problem

was solved by finite difference technique [1] to establish a
state space model. But as it appears from the literature, [2] is
the first person to study the optimal control problem of linear
distributed parameter systems using orthogonal functions. He
solved this problem by using Walsh functions and obtained
piecewise constant solution. The optimal control problem was
transformed into a two-point boundary value problem in [3]
and [5], and obtained the solution. In [4], they have reduced
the optimal control problem of distributed parameter systems
to the optimal control problem of linear time-invariant lumped
parameter systems. This problem was studied by employing
block-pulse functions in [6]. In [8] and [9], they have also
investigated this problem using Legendre polynomials and
orthogonal polynomials, respectively. All these approaches
are noniterative and algebraic, and consequently they are
convenient for computation.

In this paper, using SLPs a simple and recursive algorithm is
proposed for the optimal control of linear distributed parameter
systems. Though the basic approach followed here is similar
to the one in [3], the manner in which SLPs are defined, the
way various operational matrices are introduced, and the way
the recursive algorithm is developed are different. The paper is
organized as follows: The next section briefly deals with SLPs
and their properties. Section 3 discusses optimal control of
linear distributed parameter systems via SLPs, and presents a
recursive algorithm to solve the control problem. One example
is considered in Section 4 to demonstrate and compare the
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performances of proposed method and the methods in [1] and
[3]. Finally Section 5 concludes the paper.

II. SLPS AND THEIR PROPERTIES [7]

A set of SLPs, denoted by {φi(t)} for i = 0, 1, 2, . . . , m−1,
is orthogonal with respect to the weighting function w(t) = 1
over the interval [t0, tf ], i.e.

∫ tf

t0

φi(t)φj(t)dt =

{
0 if i �= j

(tf−t0)
(2i+1) if i = j

(1)

These polynomials satisfy the recurrence relation

φi+1(t) =
(2i + 1)
(i + 1)

ϕ(t)φi(t)−
i

(i + 1)
φi−1(t) (2)

for i = 1, 2, 3, . . . . . .

with

ϕ(t) =
2(t− t0)
(tf − t0)

− 1 (3)

φ0(t) = 1, and φ1(t) = ϕ(t) (4)

A function f (t) that is square integrable on t ∈ [t0, tf ] can be
represented in terms of SLP as

f(t) ≈
m−1∑
i=0

fiφi(t) = fT φ(t) (5)

where
f =

[
f0, f1, . . . , fm−1

]T
(6)

is called Legendre spectrum of f (t), and

φ(t) =
[

φ0(t), φ1(t), . . . , φm−1(t)
]T

(7)

is called SLP vector. fi in Eq. (5) is given by

fi =
(2i + 1)
(tf − t0)

∫ tf

t0

f(t)φi(t)dt (8)

SLPs satisfy the relation

φi(t) =
(tf − t0)
2 (2i + 1)

(
d

dt
φi+1(t)−

d

dt
φi−1(t)

)
(9)

for i = 1, 2, 3, . . . . . .
Integrating φ0(t) once with respect to t and expressing the

result in terms of SLPs, we have∫ t

t0

φ0(τ)dτ =
(tf − t0)

2
[φ0(t) + φ1(t)] (10)
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Integrating Eq. (9) once with respect to t, we obtain
∫ t

t0

φi(τ)dτ =
(tf − t0)
2 (2i + 1)

[φi+1(t)− φi−1(t)] (11)

Eqs. (10) and (11) can be written in the form of
∫ t

t0

φ(τ)dτ ≈ Pφ(t) (12)

where

P =
(tf − t0)

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 . . . 0 0
−1
3 0 1

3 0 . . . 0 0
0 −1

5 0 1
5 . . . 0 0

...
...

...
...

...
...

0 0 0 0 . . . 0 1
2m−3

0 0 0 0 . . . −1
2m−1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(13)

which is called integration operational matrix of SLP. As can
be seen from Eq. (13), it is a tridiagonal matrix of order m×m,
and it plays an important role in deriving a recursive algorithm
in the next section.
SLPs satisfy the relation

dφ(t)
dt

= Dφ(t) (14)

where

D =
2

(tf − t0)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 . . . 0 0 0
1 0 0 . . . 0 0 0
0 3 0 . . . 0 0 0
1 0 5 . . . 0 0 0
...

...
...

...
...

...
0 3 0 . . . 2m− 5 0 0
1 0 5 . . . 0 2m− 3 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(15)

which is called differentiation operational matrix of SLP.

III. OPTIMAL CONTROL OF LINEAR DISTRIBUTED

PARAMETER SYSTEMS

Consider the one dimensional diffusion equation [1]

∂y(x, t)
∂t

=
∂2y(x, t)

∂x2
+ u(x, t) (16)

with initial condition (IC)

y(x, 0) = f(x) (17)

and boundary conditions (BCs)

∂y(x, t)
∂t

= 0 at x = 0 and x = xf (18)

The problem is to find the optimal control u(x, t) which
minimizes the cost function

J =
1
2

∫ tf

0

∫ xf

0

[
qy2(x, t) + ru2(x, t)

]
dx dt (19)

where q ≥ 0 and r > 0. Expressing u(x, t) and y(x, t) in
terms of SLPs,

u(x, t) �
n−1∑
i=0

ui(t)φi(x) = uT (t)φ(x) (20)

y(x, t) �
n−1∑
i=0

yi(t)φi(x) = yT (t)φ(x) (21)

where

u(t) = [u0(t), u1(t), . . . , un−1(t)]
T (22)

y(t) = [y0(t), y1(t), . . . , yn−1(t)]
T (23)

and

φ(x) = [φ0(x), φ1(x), . . . , φn−1(x)]T (24)

The SLPs {φi(x)}, i = 0, 1, . . . , n− 1 are defined over 0 ≤
x ≤ xf . Multiplying Eq. (16) by φ

T (x), using Eqs. (20), (21),
and integrating with respect to x, we have∫ xf

0

ẏ(t)φ(x)φT (x)dx =
∫ xf

0

yT (t)φ̈(x)φT (x)dx

+
∫ xf

0

uT (t)φ(x)φT (x)dx

= −yT (t)
∫ xf

0

φ̇(x)φ̇
T
(x)dx

+
∫ xf

0

uT (t)φ(x)φT (x)dx

(25)

after substituting the BCs. Using Eq. (1) we can write

∫ xf

0

φ(x)φT (x)dx = xf

⎡
⎢⎢⎢⎣

1 0 . . . 0
0 1

3 . . . 0
...

...
...

0 0 . . . 1
2n−1

⎤
⎥⎥⎥⎦ = Q′ (26)

Let

dij =
∫ xf

0

φ̇i(x)φ̇j(x)dx.

Then∫ xf

0

φ̇(x)φ̇
T
(x)dx =

∫ xf

0

Dφ(x)φT (x)DT dx

=

⎡
⎢⎢⎢⎣

d00 d01 . . . d0, n−1

d10 d11 . . . d1, n−1

...
...

...
dn−1, 0 dn−1,1 . . . dn−1, n−1

⎤
⎥⎥⎥⎦ (27)

where

d ij = dj i =

{
2i(i+1)

xf
if i ≤ j and i + j is zero or even.

0 if i < j and i + j is odd.

(28)

for i, j = 0, 1, 2, . . . , n − 1. Substituting Eqs. (26) and (27)
into Eq. (25), and simplifying, we have

ẏ(t) = By(t) + u(t) (29)
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where

B = − 1
xf

⎡
⎢⎢⎢⎢⎢⎣

d00 d01 . . . d0, n−1

3d10 3d11 . . . 3d1, n−1

5d20 5d21 . . . 5d2, n−1

...
...

...
(2n− 1)dn−1, 0 (2n− 1)dn−1,1 . . . (2n− 1)dn−1, n−1

⎤
⎥⎥⎥⎥⎥⎦

(30)

Now substituting Eqs. (20), (21) and (26) into Eq. (19), the
performance index is given by

J =
1
2

∫ tf

0

[
yT (t)Qy(t) + uT (t)Ru(t)

]
dt (31)

where
Q

q
=

R

r
= Q′ (32)

The optimal control problem of distributed parameter sys-
tem is now reduced to the optimal control problem of lumped
parameter systems. The adjoint equation to solve this problem
is given by

−λ̇(t) = Qy(t) + BT λ(t) with λ(tf ) = 0 (33)

and the optimal control law is given by

u(t) = −R−1λ(t) (34)

Eqs. (29), (33) and (34) can be compactly written as

[
ẏ(t)
λ̇(t)

]
=

[
B −R−1

−Q −BT

] [
y(t)
λ(t)

]
(35)

with specified y(0) and λ(tf ). Or, alternatively

ż(t) = Fz(t) (36)

where

z(t) =
[

y(t)
λ(t)

]
(37)

and

F =
[

B −R−1

−Q −BT

]
(38)

A. Recursive algorithm via SLP

Integrating Eq. (36) once with respect to t, we obtain

z(t)− z(0) = F

∫ t

0

z(τ)dτ (39)

Expressing z(t) and z(0) in terms of SLP and utilizing the
integration operational property in Eq. (12), we have

Z = Z0 + FZP (40)

where

Z = [z0, z1, . . . , zm−1] (41)

and

Z0 = [z(0),0, . . . ,0] (42)

which are 2n×m matrices. Substituting matrix P of SLP in
Eq. (40) and rearranging the terms we have

The following recursive algorithm can be obtained from
Eqs. (43)-(45) :

z0 = M00v0 (46)

R̄i,i−1 = −MiiWi,i−1for i = m− 1, . . . , 2, 1. (47)

Mii =

⎧⎨
⎩

W−1
ii if i = m− 1

(Wii + Wi, i+1R̄i+1, i)−1 if i = m− 2,
m− 3, . . . , 1, 0.

(48)

zi = R̄i, i−1zi−1 for i = 1, 2, . . . , m− 1. (49)

B. Algorithm for finding z(0)

As z(0) =
[

y(0)
λ(0)

]
and λ(0) is unknown, z(0) is

obviously unknown. Here we present an algorithm to find z(0).
For t = tf Eq. (39) reduces to

z(tf )− z(0) = tfFz0 (50)

Substituting Eqs. (45) and (46) into Eq. (50), we obtain

z(tf ) = (I2n + 2FM00) z(0) = Kz(0) (51)

⇒
[

y(tf )
λ(tf )

]
=

[
K11 K12

K21 K22

] [
y(0)
λ(0)

]

Since λ(tf ) = K21y(0) + K22λ(0) = 0, we can write

λ(0) = −K−1
22 K21y(0) (52)

Thus z(0) can be found.

C. Algorithm for calculating J

Expressing y(t) and u(t) in terms of SLPs, we have

y(t) = Y φ(t) (53)

u(t) = Uφ(t) (54)

where

Y =

⎡
⎢⎢⎢⎣

y00 y01 . . . y0, m−1

y10 y11 . . . y1, m−1

...
...

...
yn−1, 0 yn−1,1 . . . yn−1, m−1

⎤
⎥⎥⎥⎦ (55)

and

U =

⎡
⎢⎢⎢⎣

u00 u01 . . . u0, m−1

u10 u11 . . . u1, m−1

...
...

...
un−1, 0 un−1,1 . . . un−1, m−1

⎤
⎥⎥⎥⎦ (56)
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⎡
⎢⎢⎢⎢⎢⎢⎢⎣

W00 W01 © © . . . © ©
W10 W11 W12 W13 . . . © ©
© W21 W22 W23 . . . © ©
...

...
...

...
...

...
© © © © . . . Wm−2,m−2 Wm−2,m−1

© © © © . . . Wm−1,m−2 Wm−1,m−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

z0

z1

z2

...
zm−2

zm−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

v0

0
0
...
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(43)

where

Wij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2I2n

tf
− F if i = j = 0

F
(2i+3) if i = 0, 1, . . . , m− 2 and j = i + 1

−F
(2i−1) if i = 1, 2, . . . , m− 1 and j = i− 1

2I2n

tf
if i = j = 1, 2, . . . , m− 1

©2n otherwise

(44)

and

v0 =
2z(0)

tf
(45)

are n×m matrices, and φ(t) is given in Eq. (7). Substituting
Eqs. (53) and (54) into Eq. (31), we have

J =
1
2

∫ tf

0

φT (t)
[
Y T QY + UT RU

]
φ(t)dt

=
1
2

∫ tf

0

φT (t) [M + N ]φ(t)dt (57)

where M = Y T QY and N = UT RU are m×m symmetric
matrices and can be computed easily using Eqs. (55), (56) and
(32). Now substituting φ(t), M and N in Eq. (57) and utilizing
the orthogonality property of SLPs given in Eq. (1), we have

J =
xf tf

2

m−1∑
j = 0

[qM(j, j) + rN(j, j)] (58)

where

M(j, j) =
n−1∑
i =0

y2
ij

(2i + 1)
(59)

and

N(j, j) =
n−1∑
i =0

u2
ij

(2i + 1)
(60)

for j = 0, 1, 2, . . . , m− 1.

IV. AN ILLUSTRATIVE EXAMPLE [1], [3]

Let xf = 4, tf = 1, f(x) = 1 + x, q = r = 1. We
compute the control law −u(x, t) and output y(x, t) at x =
0, 1, 2, 3, 4 by considering m = n = 5 and 
t(step size)=
0.01 in the proposed method. From Figures 1-5, one can see
that results match exactly with the ones in [3]. Moreover, the
results obtained via spatially discretized model [1] are also

shown in Figures 1-5 for comparison purpose. One may opine
that this comparison is meaningless as it should be done with
exact u(x, t) and y(x, t). In the present situation, exact u(x, t)
and y(x, t) are unknown unfortunately.

Nevertheless, we say that the proposed SLP approach is
more accurate than the finite difference method [1]. This is
primely because, expansion of y(x, t) in terms of SLP is
continuous while it is discrete in finite difference method.
The discrete nature of finite difference method leads to com-
putational errors which increase as we move towards the
boundaries (x = 0 and x = 4) of the specimen. This is
apparent in Figures 1-5, i.e. the values of −u(x, t) and y(x, t)
obtained via SLP method and the method in [1] are almost
matching for x = 2 in Figure 3 and it is not so for x = 0, 1, 3, 4
in Figures 1, 2, 4, 5. The values of J are shown in Table 1.

Moreover, computational time and memory space require-
ments are comparatively low in the case of SLP approach,
see Table 2. This clearly demonstrates the superiority of
proposed SLP approach over the finite difference method. All
the computations are done with MATLAB 7 and Pentium 4
CPU 3.00 GHz, 1 GB RAM system.

TABLE I
J VALUES

Method J value

Sage and White 15.38371873364494
Proposed SLP 15.00019510801434

V. CONCLUSION

Optimal control law of a linear distributed parameter system
is computed using SLP. The proposed approach is simple,
straightforward and recursive, and therefore is computationally



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:8, 2010

1117

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time

y
(0

,t
) 

&
 −

u
(0

,t
)

Sage [1]
Proposed SLP
SLP [3]

control

output

Fig. 1. Optimal control and output for x=0

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time

y
(1

,t
) 

&
 −

u
(1

,t
)

Sage [1]
Proposed SLP
SLP [3]

control

output

Fig. 2. Optimal control and output for x=1

TABLE II
COMPUTATIONAL TIME AND WORK-SPACE MEMORY

Method Time in sec. Memory in kb.

Sage and White 1.250 42.2
Proposed SLP 0.359 11.8

attractive. Moreover, the computational methodology followed
to develop the algorithms in Section 3 is new.
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