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 
Abstract—A transportation network is a realization of a spatial 

network, describing a structure which permits either vehicular 
movement or flow of some commodity. Examples include road 
networks, railways, air routes, pipelines, and many more. The 
transportation network plays a vital role in maintaining the vigor of 
the nation’s economy. Hence, ensuring the network stays resilient all 
the time, especially in the face of challenges such as heavy traffic 
loads and large scale natural disasters, is of utmost importance. In 
this paper, we used the Neo4j application to develop the graph. Neo4j 
is the world's leading open-source, NoSQL, a native graph database 
that implements an ACID-compliant transactional backend to 
applications. The Southern California network model is developed 
using the Neo4j application and obtained the most critical and 
optimal nodes and paths in the network using centrality algorithms. 
The edge betweenness centrality algorithm calculates the critical or 
optimal paths using Yen's k-shortest paths algorithm, and the node 
betweenness centrality algorithm calculates the amount of influence a 
node has over the network. The preliminary study results confirm that 
the Neo4j application can be a suitable tool to study the important 
nodes and the critical paths for the major congested metropolitan 
area. 
 

Keywords—Transportation network, critical path, connectivity 
reliability, network model, Neo4J application, optimal path, critical 
path, edge betweenness centrality index, node betweenness centrality 
index, Yen’s k-shortest paths.  

I. INTRODUCTION 

HE transportation network is a critical component to 
provide a more reliable transport service for both people 

and goods. However, transportation networks are often 
disturbed by recurrent and non-recurrent perturbations, which 
result in various socio-economic consequences, e.g., blocked 
supply chain, increased individual travel costs, loss of life, and 
many more. Recurrent perturbations [1] such as traffic jams 
occur periodically in transportation networks and cumulatively 
cause a decline in the service level of the transportation 
network by degrading network components. Non-recurrent 
perturbations are rare and extreme disturbances such as 
earthquakes, tsunamis, terrorist attacks, etc., can cause failures 
of network components or interrupt network operations [1]. A 
reliable transport system can manage these issues to ensure an 
adequate administration level. Further, the higher the 
reliability transport networks can produce, the more excellent 
quality that transportation systems can provide. Meanwhile, 
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connectivity reliability [2], travel time reliability [3], and 
capacity reliability [4] are another three main measures for 
evaluating the reliability of a network. These three measures 
are beyond the scope of this paper. In this paper, we first give 
a brief introduction of road transport as a network using the 
Neo4J application and to calculate the most critical and 
optimal path of that network using centrality and pathfinding 
algorithms.  

II.  ROAD TRANSPORT AS A NETWORK 

Road transport is an example of connectivity reliability 
which is the most straightforward measure of reliableness and 
shows whether the source and destination of a given origin 
and destination (OD) pair are related to a network matrix. 
Connectivity reliability is referred to as the probability of 
maintaining nodes connected in a transport network [2]. 
Terminal reliability [5] is a case of connectivity reliability that 
represents the flexibility of a road network where alternative 
routes are used once certain connections have been broken. 
During a functional expression, for a specific link, its 
connectivity can be expressed as a binary variable as shown in 
(1): 

 

                 𝑋𝑎 ൌ  ൜
1, 𝑖𝑓 𝑙𝑖𝑛𝑘 𝑎 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑          
0, 𝑖𝑓 𝑙𝑖𝑛𝑘 𝑎 𝑖𝑠 𝑑𝑖𝑠𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑      (1) 

 
Transportation systems are commonly represented using 

networks as an analogy for their structure and flows. The 
California state has one of the highest numbers of highways 
and can be considered as an ideal case for our study of 
reliability. The highway transport system is transformed into a 
graph/network. Highways connecting the cities are as an edge 
and cities as nodes of a graph. This paper focuses solely on the 
road transport system for the case study, but this can apply to 
any transport and network modes. Finding the critical path [3] 
among the available roads between any two nodes (cities) and 
also finding the criticality of a path in the obtained network 
containing the shortest paths is interesting. The higher the 
criticality of a path is, the higher is its influence of the 
network, and any damage to that path might lead to serious 
havoc. When the California highway network is turned into a 
graph, the shortest paths were considered among the group. 
This fact clearly distinguishes the chosen path from other 
alternatives. Obtaining the shortest path is done by comparing 
the distance among all and then choosing the shortest one. The 
southern California network graph is developed using the 
Neo4j application as shown in Fig. 2. 
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III. NEO4J APPLICATION 

Neo4J is the leading graph database. It is a high-
performance graph store with all the characteristics a mature 
and robust database expects, such as a familiar query language 
and ACID (Atomicity, Consistency, Isolation, Durability) 
transactions [6]. The programmer works with flexible nodes 
and relationships of network structure rather than static tables 
yet enjoys all the advantages of the enterprise-quality 
database. Script to insert data and obtain the graph is written 
in cypher query language [7]. The Neo4j tools support plugin 
to run graph algorithms. Neo4j offers a growing, open library 
of graph algorithms as shown in Fig. 1 that are optimized for 
fast results. These algorithms reveal the hidden patterns and 
structures in the connected data around pathfinding and 
search, centrality and community detection with a core set of 
tested and supported algorithms [8]. For example, Neo4j graph 
algorithm libraries [8] provide a broader view of patterns and 
structures across all data and relationships are required to 
discover the overall nature of the networks and model the 
behavior of complex systems. Pathfinding and search 
algorithms [9] help find the shortest path or evaluate the 
availability and quality of routes. Centrality algorithms [10] 
determine the importance of distinct nodes in a network. 
Community detection [11] algorithms evaluate how a group is 
clustered or partitioned, as well as its tendency to strengthen 
or break apart. 

 

 

Fig. 1 Neo4J Graph Algorithm Library 
 

In this paper, we briefly discuss pathfinding and centrality 
algorithms as we use centrality algorithms to find the amount 
of influence a node has over the flow of information in a graph 
and pathfinding algorithm to find the critical and optimal paths 
in the graph. Fig. 2 shows the highway transport system graph 
generated using the Neo4J application with the table showing 
the most critical nodes based on the betweenness centrality 
ranges. The Los Angeles city centrality index range is between 
200 and above, which makes it a critical node that matches the 
reality as LA is the most congested city among all other 
metropolitan areas in the US. In contrast, there are five cities 
(Glendale, Victorville, Lompoc, Escondido, Chula Vista) with 
the centrality index rage of 0, which makes them the optimal 
nodes as they are less commuted cities when compared to 
other cities in the graph shown in Fig. 2. 

IV. CENTRALITY ALGORITHM 

A. Betweenness Centrality  

Betweenness centrality is a way of identifying the amount 
of influence a particular node has over the flow of information 
in a graph. Nodes with high betweenness centrality have 

significant influence within a network by their control over 
data passing between others. They are also the ones who will 
be disconnected from the network between other nodes 
because they lie on the most significant number of paths. It is 
used to find nodes that serve as a bridge from one point to 
another. Equation (2) is used to calculate the node 
betweenness centrality. The breadth-first search algorithm is 
first used to calculate the shortest path between each pair of 
nodes in a connected graph. Then dividing the number of 
shortest paths by the total number of shortest paths in the 
graph for each node [12] gives: 

 

                        𝑐𝐵ሺ𝑣ሻ ൌ  ∑
𝜎ሺ𝑠,𝑡|𝑣ሻ

𝜎ሺ𝑠,𝑡ሻ
 
𝑠,𝑡∈𝑉           (2) 

 
where V is the set of nodes, σ(s, t) is the number of shortest (s, 
t)-paths, and σ(s, t|v) is the number of those paths passing 
through node v other than s and t. If s=t, σ(s, t)=1, and if v∈s, 
t, σ(s, t|v)=0 [12]. Table I presents the node betweenness 
centrality index of all the nodes or cities mentioned in Fig. 1 
which are calculated using the betweenness centrality 
algorithm supported by the Neo4j tool. 

 
TABLE I 

BETWEENNESS CENTRALITY INDEX 

City Centrality City Centrality 

Los Angeles 293.52 Ventura 21.07 

Riverside 174.23 Pasadena 19.78 

Irvine 123.98 San Bernardino 13.63 

Cathedral City 110.32 Santa Maria 12.02 

Thousand Oaks 95.15 Carlsbad 11.92 

Indio 90.84 Lancaster 10.67 

Bakersfield 77.72 Oceanside 8.30 

Temecula 58.44 Torrance 7.03 

Murrieta 54.94 San Diego 6.00 

Hemet 53.22 Long Beach 3.71 

El Centro 51.58 Hesperia 1.17 

Santa Clarita 44.51 Oxnard 1.08 

Palmdale 37.41 Glendale 0.00 

Anaheim 36.72 Victorville 0.00 

Santa Ana 36.72 Lompoc 0.00 

Pomona 29.75 Escondido 0.00 

Camarillo 26.40 Chula Vista 0.00 

Santa Barbara 24.18   

 
Betweenness centrality can be implemented as described in 

Algorithm 1 [13]. Betweenness centrality can be computed in 
O(nm + n2 log n) time and O(n + m) for weighted graphs. For 
unweighted graphs, running time reduces to O(nm). 

It can be observed from the numbers shown in Table I that 
the vitality of a node in a graph is directly mapped to the 
critical index (CI). When the CI is higher, that particular node 
has a more significant influence on the network. Any damage 
to that specific node has a considerable impact on the entire 
network and might bring the transportation network to a halt. 
For instance, if the node ‘Los Angeles’ is removed from the 
above graph, many edges/paths connecting the city and 
different parts of the state via Los Angeles will not have any 
communication. 
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Fig. 2 California State Network Graph 
 
Algorithm 1: Betweenness centrality in unweighted graphs 

CB[v] ← 0, v ∈ V;  
for s ∈ V do  

S ← empty stack;  
P[w] ← empty list, w ∈ V;  
σ[t] ← 0, t ∈ V; σ[s] ← 1;  
d[t] ← −1, t ∈ V; d[s] ← 0;  
Q ← empty queue;  
enqueue s → Q;  
while Q not empty do  

dequeue v ← Q;  
push v → S;  
foreach neighbor w of v do  

// w found for the first time?  
if d[w] < 0 then  

enqueue w → Q;  
d[w] ← d[v] + 1;  

end  
// shortest path to w via v?  
if d[w] = d[v] + 1 then  

σ[w] ← σ[w] + σ[v];  
append v → P[w];  

      end  
   end  

   end  
δ[v] ← 0, v ∈ V;  
// S returns vertices in order of non-increasing distance from s  
while S not empty do  

pop w ← S;  

for v ∈ P[w] do δ[v] ← δ[v] + 
஢ሾ௩ሿ

஢ሾ௪ሿ 
 ꞏ (1 + δ[w]);  

if w ≠ s then CB[w] ← CB[w] + δ[w];  
   end  

end 

B. Path Betweenness Centrality  

Betweenness centrality of an edge e is the sum of the 
fraction of all-pairs shortest paths that pass-through e [13] as 
shown in (3): 

 

                          𝐶𝐵ሺ𝑒ሻ ൌ  ∑ 𝜎ሺ𝑠,𝑡|𝑒ሻ

𝜎ሺ𝑠,𝑡ሻ
 
𝑠,𝑡∈𝑉         (3) 

 
where V is the set of nodes, σ (s, t) is the number of shortest 
(s, t)-paths, and σ(s, t|e) is the number of those paths passing 

through edge e. The edge betweenness centrality index of all 
the edges is calculated using the edge betweenness centrality 
algorithm from the python code.  

An edge with a high edge betweenness centrality index 
(BCI) serves as a bridge like a connector between two pieces 
of a network and the removal of which may influence the 
correspondence between numerous sets of nodes through the 
shortest paths between them. Fig. 3 represents a case of eight 
nodes in a network, and the red edge between two red nodes 
has the higher edge betweenness centrality. The removal of 
this edge results in a partition of the network into two densely 
associated subnetworks. Table II shows the BCI of all the 
routes mentioned in Fig. 2. 

 

 

Fig. 3 Critical Path Example 

V. PATHFINDING ALGORITHM TO IDENTIFY THE CRITICAL PATH 

The shortest path becomes the critical one when we analyze 
a source and destination pair with multiple paths among them. 
Along with classifying the shortest path, it is of great 
importance to calculate the criticality of the classified shortest 
path and to compare the importance of this path to the 
remainder of the network. In our case, Yen's k-shortest paths 
algorithm [14] is used to identify the shortest path based on 
the edge betweenness centrality where algorithm computes 
single-source k-shortest loop-less paths for a graph with non-
negative relationship weights, i.e., edge BCI in our case. Yen's 
k-shortest paths algorithm is implemented using the Dijkstra 
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algorithm to find the shortest path and then proceeds to find 
the k-1 deviations of the shortest paths.  

 

 
TABLE II 

EDGE BCI OF CALIFORNIA STATE NETWORK GRAPH 

Source Destination Edge BCI Source Destination Edge BCI 

Los Angeles Riverside 0.273 Cathedral City Hemet 0.041 

Riverside Cathedral City 0.19 Santa Barbara Ventura 0.04 

Cathedral City Indio 0.164 Los Angeles Glendale 0.039 

Thousand Oaks Los Angeles 0.142 Los Angeles Pasadena 0.036 

Indio El Centro 0.137 Thousand Oaks Pasadena 0.035 

Irvine Murrieta 0.129 Santa Barbara Lompoc 0.035 

Santa Clarita Los Angeles 0.119 Hesperia Pomona 0.035 

Los Angeles Palmdale 0.109 Temecula Indio 0.034 

Bakersfield Thousand Oaks 0.097 San Bernardino Cathedral City 0.034 

Irvine Hemet 0.091 Los Angeles Long Beach 0.032 

Riverside Irvine 0.086 Lancaster Palmdale 0.029 

Santa Ana Irvine 0.084 Bakersfield Lancaster 0.029 

Anaheim Irvine 0.084 Hemet Indio 0.028 

Camarillo Los Angeles 0.083 Hesperia San Bernardino 0.027 

Los Angeles Anaheim 0.082 Pomona Torrance 0.025 

Los Angeles Santa Ana 0.082 Santa Clarita Lancaster 0.024 

Thousand Oaks Ventura 0.075 Carlsbad San Diego 0.024 

Santa Maria Bakersfield 0.071 Santa Maria Lompoc 0.022 

Hemet Temecula 0.068 Oceanside Carlsbad 0.021 

Bakersfield Santa Clarita 0.064 Thousand Oaks Camarillo 0.015 

Bakersfield Santa Barbara 0.058 Ventura Oxnard 0.013 

Murrieta Oceanside 0.056 Thousand Oaks Glendale 0.013 

Pomona Riverside 0.051 Santa Ana Long Beach 0.013 

Temecula Escondido 0.05 Anaheim Long Beach 0.013 

El Centro Chula Vista 0.049 Lancaster Victorville 0.012 

Oxnard Camarillo 0.048 Torrance Long Beach 0.011 

Murrieta Temecula 0.048 Temecula Oceanside 0.009 

Pasadena Pomona 0.047 Hemet Murrieta 0.009 

Temecula Carlsbad 0.046 San Diego Chula Vista 0.008 

Palmdale Victorville 0.045 Carlsbad Escondido 0.007 

Los Angeles Torrance 0.045 Santa Maria Santa Barbara 0.005 

El Centro San Diego 0.045 Glendale Pasadena 0.005 

San Bernardino Riverside 0.042 Anaheim Santa Ana 0.002 

 
TABLE III 

 NODE CENTRALITY INDEX 

City Centrality 

A 15.0 

F 11.0 

B 0.0 

C 0.0 

D 0.0 

E 0.0 

G 0.0 

H 0.0 

 
The k-shortest paths algorithm is used to study alternative 

routing on road networks and recommends the top k-paths. 
Once the centrality index of each path is cumulated to find the 
total cost of the paths generated from Yen's k-shortest paths 
algorithm, the highest cost is the critical path, and the least 
cost is the optimal path. 

 

 

Fig. 4 Sample network graph 

VI. CASE STUDY 

In this case, we will consider a small dataset with eight 
cities to calculate the node betweenness centrality, edge 
betweenness centrality, and both critical and optimal path. The 
corresponding graph is generated using the Neo4J application 
shown in Fig. 4. Once the graph is generated the BCI of the 
node can be calculated, as shown in Table III, to find the 
critical nodes in the graph.  
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In Fig. 4, node A and node F are considered to be the most 
critical and have the highest centrality index. Meanwhile, the 
edge betweenness centrality is calculated using the Ulrik 
Brande algorithm [12] to find the most critical and optimal 
paths. Table IV shows the edge BCI for Fig. 4 using Python 
code. 

 
TABLE IV 

EDGE BCI OF SAMPLE NETWORK GRAPH 

Source Destination Edge Betweenness Centrality 

A F 0.429 

A B 0.25 

A D 0.25 

A E 0.25 

F G 0.25 

F H 0.25 

A C 0.143 

C F 0.107 

 
Based on the Table IV we can conclude that the edge AF is 

the most critical one. The Yen’s k-shortest paths algorithm is 
used to find the optimal and critical path. The algorithm 
computes single-source k-shortest loop-less paths for the 
graph with non-negative relationship weights. Table V lists all 
shortest paths based on the edge betweenness centrality. The 
centrality index of each path is cumulated to find the total cost 
of the path through which the most critical and optimal path is 
obtained. From Table V we can conclude that the path E-A-C-
F-H is the critical one and the path E-A-F-H is an optimal one. 

 
TABLE V 

CRITICAL AND OPTIMAL PATHS 

Places Costs Total Cost 

E, A, C, F, H 0.25, 0.25, 0.10700000077486038, 0.25 0.857 

E, A, F, H 0.25, 0.25, 0.25 0.75 

 

Since California state transport is not a simple graph, as 
shown in Fig. 2, this paper uses the edge betweenness 
centrality algorithm of Ulrik Brande [12] for every path. The 
algorithm takes the California state graph as an input i.e., 
source, destination, and distance values to the algorithm using 
NetworkX, a Python package for complex networks. The 
output of the algorithm is a dictionary with a tuple of two 
cities as key and path betweenness as the value. As shown in 
Table II, the higher the value of the edge BCI is, the higher is 
the influence on the network.  

We consider Irvine as the source node and Long Beach as 
the destination node from the California network graph shown 
in Fig. 2. In order to calculate the critical and optimal path, we 
first need to list all possible shortest paths from Irvine to Long 
Beach using Yen's k-shortest paths algorithm. Table VI shows 
the top five results of the algorithm with the cumulated cost of 
edge BCI. The path Irvine --- Riverside --- Pomona --- 
Torrance --- Long Beach is the most critical as it has a total 
cost of 0.395, and the path Irvine --- Santa Ana --- Long 
Beach is the optimal one with the total cost of 0.099. 

VII. CONCLUSION 

This study mainly focused on generating a graph for the 
southern California transportation network using the Neo4J 
application. Centrality algorithms such as node betweenness 
centrality and edge betweenness centrality are used to identify 
the critical nodes in the network. Meanwhile, we were able to 
identify the critical and optimal paths among the developed 
transportation graph using Yen's k-shortest paths algorithm. 
The presented case study results clearly support that the Neo4j 
can be a suitable candidate to identify the important nodes and 
the critical paths for major congested metropolitan areas.  

 
TABLE VI 

TOP 5 SHORTEST PATH 

Places BCI Total BCI 
Irvine, Riverside, Pomona, Torrance, Long 

Beach 
0.086,0.273, 
0.025,0.010 

0.395 

Irvine, Anaheim, Santa Ana, Long Beach 
0.086,0.002, 

0.013 
0.101 

Irvine, Santa Ana, Anaheim, Long Beach 
0.086,0.002, 

0.013 
0.101 

Irvine, Anaheim, Long Beach 0.086,0.013 0.099 

Irvine, Santa Ana, Long Beach 0.086,0.013 0.099 
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