
International Journal of Architectural, Civil and Construction Sciences

ISSN: 2415-1734

Vol:14, No:10, 2020

338


Abstract—A transportation network is a realization of a spatial

network, describing a structure which permits either vehicular
movement or flow of some commodity. Examples include road
networks, railways, air routes, pipelines, and many more. The
transportation network plays a vital role in maintaining the vigor of
the nation’s economy. Hence, ensuring the network stays resilient all
the time, especially in the face of challenges such as heavy traffic
loads and large scale natural disasters, is of utmost importance. In
this paper, we used the Neo4j application to develop the graph. Neo4j
is the world's leading open-source, NoSQL, a native graph database
that implements an ACID-compliant transactional backend to
applications. The Southern California network model is developed
using the Neo4j application and obtained the most critical and
optimal nodes and paths in the network using centrality algorithms.
The edge betweenness centrality algorithm calculates the critical or
optimal paths using Yen's k-shortest paths algorithm, and the node
betweenness centrality algorithm calculates the amount of influence a
node has over the network. The preliminary study results confirm that
the Neo4j application can be a suitable tool to study the important
nodes and the critical paths for the major congested metropolitan
area.

Keywords—Transportation network, critical path, connectivity
reliability, network model, Neo4J application, optimal path, critical
path, edge betweenness centrality index, node betweenness centrality
index, Yen’s k-shortest paths.

I. INTRODUCTION

HE transportation network is a critical component to
provide a more reliable transport service for both people

and goods. However, transportation networks are often
disturbed by recurrent and non-recurrent perturbations, which
result in various socio-economic consequences, e.g., blocked
supply chain, increased individual travel costs, loss of life, and
many more. Recurrent perturbations [1] such as traffic jams
occur periodically in transportation networks and cumulatively
cause a decline in the service level of the transportation
network by degrading network components. Non-recurrent
perturbations are rare and extreme disturbances such as
earthquakes, tsunamis, terrorist attacks, etc., can cause failures
of network components or interrupt network operations [1]. A
reliable transport system can manage these issues to ensure an
adequate administration level. Further, the higher the
reliability transport networks can produce, the more excellent
quality that transportation systems can provide. Meanwhile,

Pallavi Bhogaram and Onyedikachi Okenwa are with California State

University Long Beach, Long Beach, United States (e-mail: pallavi.
bhogaram@student.csulb.edu, onyedikachi.okenwa@student.csulb.edu).

Dr. Xiaolong Wu and Dr. Min He are with Department of Engineering and
Computer Science, California State University Long Beach, Long Beach, CA
90840 USA (e-mail: Xiaolong.Wu@csulb.edu, min.he@csulb.edu).

connectivity reliability [2], travel time reliability [3], and
capacity reliability [4] are another three main measures for
evaluating the reliability of a network. These three measures
are beyond the scope of this paper. In this paper, we first give
a brief introduction of road transport as a network using the
Neo4J application and to calculate the most critical and
optimal path of that network using centrality and pathfinding
algorithms.

II. ROAD TRANSPORT AS A NETWORK

Road transport is an example of connectivity reliability
which is the most straightforward measure of reliableness and
shows whether the source and destination of a given origin
and destination (OD) pair are related to a network matrix.
Connectivity reliability is referred to as the probability of
maintaining nodes connected in a transport network [2].
Terminal reliability [5] is a case of connectivity reliability that
represents the flexibility of a road network where alternative
routes are used once certain connections have been broken.
During a functional expression, for a specific link, its
connectivity can be expressed as a binary variable as shown in
(1):

 𝑋𝑎 ൌ ൜
1, 𝑖𝑓 𝑙𝑖𝑛𝑘 𝑎 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑
0, 𝑖𝑓 𝑙𝑖𝑛𝑘 𝑎 𝑖𝑠 𝑑𝑖𝑠𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 (1)

Transportation systems are commonly represented using

networks as an analogy for their structure and flows. The
California state has one of the highest numbers of highways
and can be considered as an ideal case for our study of
reliability. The highway transport system is transformed into a
graph/network. Highways connecting the cities are as an edge
and cities as nodes of a graph. This paper focuses solely on the
road transport system for the case study, but this can apply to
any transport and network modes. Finding the critical path [3]
among the available roads between any two nodes (cities) and
also finding the criticality of a path in the obtained network
containing the shortest paths is interesting. The higher the
criticality of a path is, the higher is its influence of the
network, and any damage to that path might lead to serious
havoc. When the California highway network is turned into a
graph, the shortest paths were considered among the group.
This fact clearly distinguishes the chosen path from other
alternatives. Obtaining the shortest path is done by comparing
the distance among all and then choosing the shortest one. The
southern California network graph is developed using the
Neo4j application as shown in Fig. 2.

Pallavi Bhogaram, Xiaolong Wu, Min He, Onyedikachi Okenwa

Optimal and Critical Path Analysis of State
Transportation Network Using Neo4J

T

International Journal of Architectural, Civil and Construction Sciences

ISSN: 2415-1734

Vol:14, No:10, 2020

339

III. NEO4J APPLICATION

Neo4J is the leading graph database. It is a high-
performance graph store with all the characteristics a mature
and robust database expects, such as a familiar query language
and ACID (Atomicity, Consistency, Isolation, Durability)
transactions [6]. The programmer works with flexible nodes
and relationships of network structure rather than static tables
yet enjoys all the advantages of the enterprise-quality
database. Script to insert data and obtain the graph is written
in cypher query language [7]. The Neo4j tools support plugin
to run graph algorithms. Neo4j offers a growing, open library
of graph algorithms as shown in Fig. 1 that are optimized for
fast results. These algorithms reveal the hidden patterns and
structures in the connected data around pathfinding and
search, centrality and community detection with a core set of
tested and supported algorithms [8]. For example, Neo4j graph
algorithm libraries [8] provide a broader view of patterns and
structures across all data and relationships are required to
discover the overall nature of the networks and model the
behavior of complex systems. Pathfinding and search
algorithms [9] help find the shortest path or evaluate the
availability and quality of routes. Centrality algorithms [10]
determine the importance of distinct nodes in a network.
Community detection [11] algorithms evaluate how a group is
clustered or partitioned, as well as its tendency to strengthen
or break apart.

Fig. 1 Neo4J Graph Algorithm Library

In this paper, we briefly discuss pathfinding and centrality
algorithms as we use centrality algorithms to find the amount
of influence a node has over the flow of information in a graph
and pathfinding algorithm to find the critical and optimal paths
in the graph. Fig. 2 shows the highway transport system graph
generated using the Neo4J application with the table showing
the most critical nodes based on the betweenness centrality
ranges. The Los Angeles city centrality index range is between
200 and above, which makes it a critical node that matches the
reality as LA is the most congested city among all other
metropolitan areas in the US. In contrast, there are five cities
(Glendale, Victorville, Lompoc, Escondido, Chula Vista) with
the centrality index rage of 0, which makes them the optimal
nodes as they are less commuted cities when compared to
other cities in the graph shown in Fig. 2.

IV. CENTRALITY ALGORITHM

A. Betweenness Centrality

Betweenness centrality is a way of identifying the amount
of influence a particular node has over the flow of information
in a graph. Nodes with high betweenness centrality have

significant influence within a network by their control over
data passing between others. They are also the ones who will
be disconnected from the network between other nodes
because they lie on the most significant number of paths. It is
used to find nodes that serve as a bridge from one point to
another. Equation (2) is used to calculate the node
betweenness centrality. The breadth-first search algorithm is
first used to calculate the shortest path between each pair of
nodes in a connected graph. Then dividing the number of
shortest paths by the total number of shortest paths in the
graph for each node [12] gives:

 𝑐𝐵ሺ𝑣ሻ ൌ ∑
𝜎ሺ𝑠,𝑡|𝑣ሻ

𝜎ሺ𝑠,𝑡ሻ

𝑠,𝑡∈𝑉 (2)

where V is the set of nodes, σ(s, t) is the number of shortest (s,
t)-paths, and σ(s, t|v) is the number of those paths passing
through node v other than s and t. If s=t, σ(s, t)=1, and if v∈s,
t, σ(s, t|v)=0 [12]. Table I presents the node betweenness
centrality index of all the nodes or cities mentioned in Fig. 1
which are calculated using the betweenness centrality
algorithm supported by the Neo4j tool.

TABLE I

BETWEENNESS CENTRALITY INDEX

City Centrality City Centrality

Los Angeles 293.52 Ventura 21.07

Riverside 174.23 Pasadena 19.78

Irvine 123.98 San Bernardino 13.63

Cathedral City 110.32 Santa Maria 12.02

Thousand Oaks 95.15 Carlsbad 11.92

Indio 90.84 Lancaster 10.67

Bakersfield 77.72 Oceanside 8.30

Temecula 58.44 Torrance 7.03

Murrieta 54.94 San Diego 6.00

Hemet 53.22 Long Beach 3.71

El Centro 51.58 Hesperia 1.17

Santa Clarita 44.51 Oxnard 1.08

Palmdale 37.41 Glendale 0.00

Anaheim 36.72 Victorville 0.00

Santa Ana 36.72 Lompoc 0.00

Pomona 29.75 Escondido 0.00

Camarillo 26.40 Chula Vista 0.00

Santa Barbara 24.18

Betweenness centrality can be implemented as described in

Algorithm 1 [13]. Betweenness centrality can be computed in
O(nm + n2 log n) time and O(n + m) for weighted graphs. For
unweighted graphs, running time reduces to O(nm).

It can be observed from the numbers shown in Table I that
the vitality of a node in a graph is directly mapped to the
critical index (CI). When the CI is higher, that particular node
has a more significant influence on the network. Any damage
to that specific node has a considerable impact on the entire
network and might bring the transportation network to a halt.
For instance, if the node ‘Los Angeles’ is removed from the
above graph, many edges/paths connecting the city and
different parts of the state via Los Angeles will not have any
communication.

International Journal of Architectural, Civil and Construction Sciences

ISSN: 2415-1734

Vol:14, No:10, 2020

340

Fig. 2 California State Network Graph

Algorithm 1: Betweenness centrality in unweighted graphs

CB[v] ← 0, v ∈ V;
for s ∈ V do

S ← empty stack;
P[w] ← empty list, w ∈ V;
σ[t] ← 0, t ∈ V; σ[s] ← 1;
d[t] ← −1, t ∈ V; d[s] ← 0;
Q ← empty queue;
enqueue s → Q;
while Q not empty do

dequeue v ← Q;
push v → S;
foreach neighbor w of v do

// w found for the first time?
if d[w] < 0 then

enqueue w → Q;
d[w] ← d[v] + 1;

end
// shortest path to w via v?
if d[w] = d[v] + 1 then

σ[w] ← σ[w] + σ[v];
append v → P[w];

 end
 end

 end
δ[v] ← 0, v ∈ V;
// S returns vertices in order of non-increasing distance from s
while S not empty do

pop w ← S;

for v ∈ P[w] do δ[v] ← δ[v] +
஢ሾ௩ሿ

஢ሾ௪ሿ
 ꞏ (1 + δ[w]);

if w ≠ s then CB[w] ← CB[w] + δ[w];
 end

end

B. Path Betweenness Centrality

Betweenness centrality of an edge e is the sum of the
fraction of all-pairs shortest paths that pass-through e [13] as
shown in (3):

 𝐶𝐵ሺ𝑒ሻ ൌ ∑ 𝜎ሺ𝑠,𝑡|𝑒ሻ

𝜎ሺ𝑠,𝑡ሻ

𝑠,𝑡∈𝑉 (3)

where V is the set of nodes, σ (s, t) is the number of shortest
(s, t)-paths, and σ(s, t|e) is the number of those paths passing

through edge e. The edge betweenness centrality index of all
the edges is calculated using the edge betweenness centrality
algorithm from the python code.

An edge with a high edge betweenness centrality index
(BCI) serves as a bridge like a connector between two pieces
of a network and the removal of which may influence the
correspondence between numerous sets of nodes through the
shortest paths between them. Fig. 3 represents a case of eight
nodes in a network, and the red edge between two red nodes
has the higher edge betweenness centrality. The removal of
this edge results in a partition of the network into two densely
associated subnetworks. Table II shows the BCI of all the
routes mentioned in Fig. 2.

Fig. 3 Critical Path Example

V. PATHFINDING ALGORITHM TO IDENTIFY THE CRITICAL PATH

The shortest path becomes the critical one when we analyze
a source and destination pair with multiple paths among them.
Along with classifying the shortest path, it is of great
importance to calculate the criticality of the classified shortest
path and to compare the importance of this path to the
remainder of the network. In our case, Yen's k-shortest paths
algorithm [14] is used to identify the shortest path based on
the edge betweenness centrality where algorithm computes
single-source k-shortest loop-less paths for a graph with non-
negative relationship weights, i.e., edge BCI in our case. Yen's
k-shortest paths algorithm is implemented using the Dijkstra

International Journal of Architectural, Civil and Construction Sciences

ISSN: 2415-1734

Vol:14, No:10, 2020

341

algorithm to find the shortest path and then proceeds to find
the k-1 deviations of the shortest paths.

TABLE II

EDGE BCI OF CALIFORNIA STATE NETWORK GRAPH

Source Destination Edge BCI Source Destination Edge BCI

Los Angeles Riverside 0.273 Cathedral City Hemet 0.041

Riverside Cathedral City 0.19 Santa Barbara Ventura 0.04

Cathedral City Indio 0.164 Los Angeles Glendale 0.039

Thousand Oaks Los Angeles 0.142 Los Angeles Pasadena 0.036

Indio El Centro 0.137 Thousand Oaks Pasadena 0.035

Irvine Murrieta 0.129 Santa Barbara Lompoc 0.035

Santa Clarita Los Angeles 0.119 Hesperia Pomona 0.035

Los Angeles Palmdale 0.109 Temecula Indio 0.034

Bakersfield Thousand Oaks 0.097 San Bernardino Cathedral City 0.034

Irvine Hemet 0.091 Los Angeles Long Beach 0.032

Riverside Irvine 0.086 Lancaster Palmdale 0.029

Santa Ana Irvine 0.084 Bakersfield Lancaster 0.029

Anaheim Irvine 0.084 Hemet Indio 0.028

Camarillo Los Angeles 0.083 Hesperia San Bernardino 0.027

Los Angeles Anaheim 0.082 Pomona Torrance 0.025

Los Angeles Santa Ana 0.082 Santa Clarita Lancaster 0.024

Thousand Oaks Ventura 0.075 Carlsbad San Diego 0.024

Santa Maria Bakersfield 0.071 Santa Maria Lompoc 0.022

Hemet Temecula 0.068 Oceanside Carlsbad 0.021

Bakersfield Santa Clarita 0.064 Thousand Oaks Camarillo 0.015

Bakersfield Santa Barbara 0.058 Ventura Oxnard 0.013

Murrieta Oceanside 0.056 Thousand Oaks Glendale 0.013

Pomona Riverside 0.051 Santa Ana Long Beach 0.013

Temecula Escondido 0.05 Anaheim Long Beach 0.013

El Centro Chula Vista 0.049 Lancaster Victorville 0.012

Oxnard Camarillo 0.048 Torrance Long Beach 0.011

Murrieta Temecula 0.048 Temecula Oceanside 0.009

Pasadena Pomona 0.047 Hemet Murrieta 0.009

Temecula Carlsbad 0.046 San Diego Chula Vista 0.008

Palmdale Victorville 0.045 Carlsbad Escondido 0.007

Los Angeles Torrance 0.045 Santa Maria Santa Barbara 0.005

El Centro San Diego 0.045 Glendale Pasadena 0.005

San Bernardino Riverside 0.042 Anaheim Santa Ana 0.002

TABLE III

 NODE CENTRALITY INDEX

City Centrality

A 15.0

F 11.0

B 0.0

C 0.0

D 0.0

E 0.0

G 0.0

H 0.0

The k-shortest paths algorithm is used to study alternative

routing on road networks and recommends the top k-paths.
Once the centrality index of each path is cumulated to find the
total cost of the paths generated from Yen's k-shortest paths
algorithm, the highest cost is the critical path, and the least
cost is the optimal path.

Fig. 4 Sample network graph

VI. CASE STUDY

In this case, we will consider a small dataset with eight
cities to calculate the node betweenness centrality, edge
betweenness centrality, and both critical and optimal path. The
corresponding graph is generated using the Neo4J application
shown in Fig. 4. Once the graph is generated the BCI of the
node can be calculated, as shown in Table III, to find the
critical nodes in the graph.

International Journal of Architectural, Civil and Construction Sciences

ISSN: 2415-1734

Vol:14, No:10, 2020

342

In Fig. 4, node A and node F are considered to be the most
critical and have the highest centrality index. Meanwhile, the
edge betweenness centrality is calculated using the Ulrik
Brande algorithm [12] to find the most critical and optimal
paths. Table IV shows the edge BCI for Fig. 4 using Python
code.

TABLE IV

EDGE BCI OF SAMPLE NETWORK GRAPH

Source Destination Edge Betweenness Centrality

A F 0.429

A B 0.25

A D 0.25

A E 0.25

F G 0.25

F H 0.25

A C 0.143

C F 0.107

Based on the Table IV we can conclude that the edge AF is

the most critical one. The Yen’s k-shortest paths algorithm is
used to find the optimal and critical path. The algorithm
computes single-source k-shortest loop-less paths for the
graph with non-negative relationship weights. Table V lists all
shortest paths based on the edge betweenness centrality. The
centrality index of each path is cumulated to find the total cost
of the path through which the most critical and optimal path is
obtained. From Table V we can conclude that the path E-A-C-
F-H is the critical one and the path E-A-F-H is an optimal one.

TABLE V

CRITICAL AND OPTIMAL PATHS

Places Costs Total Cost

E, A, C, F, H 0.25, 0.25, 0.10700000077486038, 0.25 0.857

E, A, F, H 0.25, 0.25, 0.25 0.75

Since California state transport is not a simple graph, as
shown in Fig. 2, this paper uses the edge betweenness
centrality algorithm of Ulrik Brande [12] for every path. The
algorithm takes the California state graph as an input i.e.,
source, destination, and distance values to the algorithm using
NetworkX, a Python package for complex networks. The
output of the algorithm is a dictionary with a tuple of two
cities as key and path betweenness as the value. As shown in
Table II, the higher the value of the edge BCI is, the higher is
the influence on the network.

We consider Irvine as the source node and Long Beach as
the destination node from the California network graph shown
in Fig. 2. In order to calculate the critical and optimal path, we
first need to list all possible shortest paths from Irvine to Long
Beach using Yen's k-shortest paths algorithm. Table VI shows
the top five results of the algorithm with the cumulated cost of
edge BCI. The path Irvine --- Riverside --- Pomona ---
Torrance --- Long Beach is the most critical as it has a total
cost of 0.395, and the path Irvine --- Santa Ana --- Long
Beach is the optimal one with the total cost of 0.099.

VII. CONCLUSION

This study mainly focused on generating a graph for the
southern California transportation network using the Neo4J
application. Centrality algorithms such as node betweenness
centrality and edge betweenness centrality are used to identify
the critical nodes in the network. Meanwhile, we were able to
identify the critical and optimal paths among the developed
transportation graph using Yen's k-shortest paths algorithm.
The presented case study results clearly support that the Neo4j
can be a suitable candidate to identify the important nodes and
the critical paths for major congested metropolitan areas.

TABLE VI

TOP 5 SHORTEST PATH

Places BCI Total BCI
Irvine, Riverside, Pomona, Torrance, Long

Beach
0.086,0.273,
0.025,0.010

0.395

Irvine, Anaheim, Santa Ana, Long Beach
0.086,0.002,

0.013
0.101

Irvine, Santa Ana, Anaheim, Long Beach
0.086,0.002,

0.013
0.101

Irvine, Anaheim, Long Beach 0.086,0.013 0.099

Irvine, Santa Ana, Long Beach 0.086,0.013 0.099

REFERENCES
[1] Yu Gu, Xiao Fu, Zhiyuan Liu, Xiangdong Xu, Anthony Chen,

“Performance of transportation network under perturbations: reliability,
vulnerability, and resilience” November 2019.

[2] I. M. Obeidat and S. Y. Berkovich, "Reliability of network
connectivity," 2008 First International Conference on the Applications
of Digital Information and Web Technologies (ICADIWT), Ostrava,
2008, pp. 435-441.

[3] I. K. Isukapati and G. F. List, "Using travel time reliability measures
with individual vehicle data," 2016 IEEE 19th International Conference
on Intelligent Transportation Systems (ITSC), Rio de Janeiro, 2016, pp.
2131-2136.

[4] W. J. Rueger, "Reliability Analysis of Networks with Capacity-
Constraints and Failures at Branches & Nodes," in IEEE Transactions
on Reliability, vol. 35, no. 5, pp. 523-528, Dec. 1986.

[5] C. Tanguy, "Exact two-terminal reliability of some directed networks,"
2007 6th International Workshop on Design and Reliable
Communication Networks, La Rochelle, 2007, pp. 1-8.

[6] "What Is a Graph Database and Property Graph | Neo4j", Neo4j Graph
Database Platform. (Online). Available:
https://neo4j.com/developer/graph-database/. (Accessed: 04- Sep- 2019).

[7] "Cypher Query Language Developer Guides & Tutorials", Neo4j Graph
Database Platform. (Online). Available:
https://neo4j.com/developer/cypher-query-language/. (Accessed: 22-
Sep- 2019).

[8] M. Needham and A. Hodler, "Graph Algorithms in Neo4j: Neo4j Graph
Analytics", Neo4j Graph Database Platform, 2018. (Online). Available:
https://neo4j.com/blog/graph-algorithms-in-neo4j-neo4j-graph-
analytics/. (Accessed: 20- Oct- 2019).

[9] Mark Needham, A., n.d. Graph Algorithms. (Online). O’Reilly Online
Learning. Available at: <https://www.oreilly.com/library/view/graph-
algorithms/9781492047674/ch04.html> (Accessed: 6 November 2019).

[10] Amy E. Hodler, M., 2018, “A Comprehensive Guide to Graph
Algorithms in Neo4j”, (ebook) Neo4j, p.34. Available at:
<https://go.neo4j.com/rs/710-RRC-335/images/Comprehensive-Guide-
to-Graph-Algorithms-in-Neo4j-ebook-EN-US.pdf> (Accessed: 11
February 2020).

[11] “Betweenness_centrality - NetworkX 1.10 documentation",
Networkx.github.io, (Online). Available:
https://networkx.github.io/documentation/networkx-
1.10/reference/generated/networkx.algorithms.centrality.betweenness_ce
ntrality.html. (Accessed: 19- Oct- 2019).

[12] Ulrik Brandes, "A Faster Algorithm for Betweenness
Centrality", Journal of Mathematical Sociology, vol. 25, no. 2, pp. 163-
177, 2001.

International Journal of Architectural, Civil and Construction Sciences

ISSN: 2415-1734

Vol:14, No:10, 2020

343

[13] “Edge_betweenness_centrality — NetworkX 1.10
documentation", Networkx.github.io. (Online). Available:
https://networkx.github.io/documentation/networkx-
1.10/reference/generated/networkx.algorithms.centrality.edge_betweenn
ess_centrality.html#networkx.algorithms.centrality.edge_betweenness_c
entrality. (Accessed: 23- Sep- 2019).

[14] “9.4.6. The Yen’s K-shortest paths algorithm - 9.4. Path finding
algorithms", Neo4j.com. (Online). Available:
https://neo4j.com/docs/graph-algorithms/current/labs-algorithms/yen-s-
k-shortest-path/. (Accessed: 17- Oct- 2019).

