
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:9, 2017

1001


Abstract—Software applications have become crucial to the

aerospace industry, providing a wide range of functionalities and
capabilities used during the design, manufacturing and support of
aircraft. However, as this criticality increases, so too does the risk for
business operations when facing a software failure. Hence, there is a
need for new methodologies to be developed to support aerospace
companies in effectively managing their software portfolios, avoiding
the hazards of business disruption and additional costs. This paper
aims to provide a definition of operational software maturity, and
how this can be used to assess software operational behaviour, as
well as a view on the different aspects that drive software maturity
within the aerospace industry. The key research question addressed
is, how can operational software maturity monitoring assist the
aerospace industry in effectively managing large software portfolios?
This question has been addressed by conducting an in depth review
of current literature, by working closely with aerospace professionals
and by running an industry case study within a major aircraft
manufacturer. The results are a software maturity model composed of
a set of drivers and a prototype tool used for the testing and
validation of the research findings. By utilising these methodologies
to assess the operational maturity of software applications in
aerospace, benefits in maintenance activities and operations
disruption avoidance have been observed, supporting business cases
for system improvement.

Keywords—Aerospace, capability maturity model, software
maturity, software lifecycle.

I.INTRODUCTION

ITHIN the aerospace industry, IT departments manage
large portfolios of software applications that support the

full lifecycle of aerospace products, providing capability to
large numbers of users within the organisations. These
capabilities have become crucial to the business and are
involved in core processes across the enterprise. As a result,
innovative methodologies to improve the management of
software portfolios are of interest to the industry.

In the last several decades, rapid evolutions in technology
have led to fast-changing application portfolios, and as a result
the concept of “maturity” has acquired relevance. Maturity is a
widely used concept to analyse the achievement and

Raúl González Muñoz and Paul Baguley are with the Department of

Manufacturing, School of Aerospace, Transport and Manufacturing, Cranfield
University, Cranfield, Bedfordshire, MK43 0AL, United Kingdom.

Essam Shehab is with the Department of Manufacturing, School of
Aerospace, Transport and Manufacturing, Cranfield University, Cranfield,
Bedfordshire, MK43 0AL, United Kingdom (corresponding author, phone:
+44 79 50554 084; e-mail: e.shehab@cranfield.ac.uk).

Martin Weinitzke is with the Airbus Operations, Hamburg, 21129,
Germany.

Chris Fowler is with the Airbus Operations, Filton-Bristol, BS34 7PA,
United Kingdom.

progression of a set of indicators or attributes in a particular
domain or discipline [1].

In order to evaluate the capabilities of an organisation using
the concept of maturity, a number of models have been
developed over time. These models are instruments to measure
the maturity and allow an organisation or industry to have its
practices, processes or methods evaluated to determine its
current level of achievement or capability and apply these
models over time to drive improvement.

According to Becker [2], there are 51 maturity models
documented and each one of them has been applied to
different domains or disciplines.

In the area of software, one of the most well-known is the
Capability Maturity Model (CMM) [3] developed by the
Software Engineering Institute. However, this model focuses
solely on software maturity during its development stage, not
encompassing software behaviour while in usage.

Regarding maturity models for software in operation,
Renken [4] developed an IS/ICT Management Capability
Maturity Framework with the aim of assessing the capabilities
of a company for IT management. Nonetheless, this model has
a focus in the capabilities of IT departments, rather than the
software applications themselves. Hence, to the author’s
knowledge, there seems to be a lack of a clear methodology to
evaluate software application maturity during usage, this
reason being one of the main drivers to conduct the following
research.

II.RESEARCH METHODOLOGY

A clear, accurate and well planned methodology is key to
reach the aim and objectives of this research. Between the
different options, the author decided to follow a methodology
comprised by three main phases divided into seven stages, as
it was considered to be the most appropriate regarding the
characteristics of the project.

The initial phase focused on the existing literature regarding
maturity in software, maturity models, software requirements
and software quality. In order to enhance the vision of
academia, a group of industry experts was also contacted
regularly to engage in a constructive discussion. The
participants are shown in Table I.

The second phase involved the creation of a framework
encompassing the main areas and drivers that influence the
maturity of a software application once in operation. This
work was conducted based on the research performed in the
previous phase.

The third and final phase encompassed the application of
the operational maturity framework within a case study inside

Operational Software Maturity: An Aerospace
Industry Analysis

Raúl González Muñoz, Essam Shehab, Martin Weinitzke, Chris Fowler, Paul Baguley

W

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:9, 2017

1002

an aircraft manufacturer. For that end, a review of a set of
existing indicators was conducted, as well as a workshop with
industry experts, whose participants are illustrated in Table II,
with the aim of adapting the model to the key areas of the

targeted business. The result was an adapted operational
software maturity model, tested through a prototype tool and
validated by industry experts.

Fig. 1 Research Methodology

A.Industry Participants

For this research, a set of industry experts have been
regularly contacted. All the validation from the industry
experts regarding the model and the tool as well as feedback
regarding a range of aspects was gathered, processed and
implemented.

The first group involved in the research was a small core
team of industry experts composed of four participants from
the aerospace industry and services related, as shown in Table
I. This group was actively involved during the whole research,
being especially helpful during the case study performed to
test the research results with real data, as the responsible of the
selected application was among them. Furthermore, the group
provided valuable assistance when creating the first generic
proposal of software maturity drivers.

TABLE I

INDUSTRY TEAM MEMBERS

Participants Experience Role

Participant 1 20 years Service Package Manager

Participant 2 20 years SPM Delegate (Contractor)

Participant 3 6 years Service Manager

Participant 4 29 years Design Process Architect

The second group consulted, illustrated in Table II, was of a

much larger size, intentionally increasing the number of
different views on the topic to achieve the best possible set of
data to work with. This group was involved through a
workshop that was arranged specifically to assess the maturity
drivers developed and improve or modify them, with the aim
of conducting afterwards an industrial case study within a
major aircraft manufacturer.

TABLE II
WORKSHOP PARTICIPANTS

Participants Experience Role

Participant 1 30 years Robustness Manager

Participant 2 15 years Application Manager

Participant 3 10 years Total Cost Team (contractor)

Participant 4 10 years Total Cost Team (contractor)

Participant 5 10 years Application support

Participant 6 10 years Service Line Manager

Participant 7 30 years Head of Application services

Participant 8 20 years Service Package Manager

Participant 9 20 years SPM Delegate (Contractor)

Participant 10 25 years Head of Application Services

Participant 11 30 years Head of Department

Participant 12 20 years Service Package Manager

Participant 13 20 years Service Package Manager

Participant 14 5 years Product-Owner/SPM Delegate

Participant 15 1 year Assistance (contractor)

Participant 16 5 years Business Manager

Participant 17 30 years Service Package Manager

Participant 18 30 years Process Lead

Participant 19 30 years Transition Manager

Participant 20 10 years Project Manager

Participant 21 5 years Project Manager Assistant (contractor)

Participant 22 15 years License Manager

Participant 23 20 years Reporting

Participant 24 25 years Finance Manager

Participant 25 20 years Delegate (contractor)

Participant 26 20 years Robustness services

Participant 27 20 years Technical lead (contractor)

Participant 28 20 years Developer (contractor)

Participant 29 20 years Delegate (contractor)

Participant 30 25 years Bundle Manager

Participant 31 15 years Application Manager

Participant 32 10 years Service Package Manager

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:9, 2017

1003

During the workshop a range of topics were covered:
 Introduction of the model in terms of drivers and

indicators
 Discussion to reach agreement in the use of several

indicators for all the departments
 Agreement on the input data requirements depending on

the department
 Remarks that the model needs to align with the security

drivers of the company and follow their changes and
updates

 Concerns regarding the quality of the input data for some
applications

III.SOFTWARE QUALITY AND MATURITY

In order to achieve maturity in an application and to get a
software quality product, a better understanding of the user
expectations and product attributes need to be analysed and
explored in detail to assess what areas of software product
quality are important to achieve high maturity. The main idea
of most quality models is to break down the complex concept
of quality into quality factors that may be broken down again
in order to get a hierarchy of quality characteristics.

Quality is a concept which can be used as a needed property
to get the required capabilities in a particular domain and,
therefore, to achieve the definition of maturity for this
research.

The Software Engineering Institute has taken the process

management premise of Watts Humphrey: “the quality of a
system or product is highly influenced by the quality of the
process used to develop and maintain it,” [5] and defined
Capability Maturity Models that embody this premise.

According to the Software Engineering Institute [1], a
maturity model provides:
 “The benefit of a community’s experience and

knowledge.”
 “A common language and shared vision.”
 “A way to define what improvement and maturity mean

for an organisation.”
 “A framework for prioritizing actions.”
 “A roadmap for increased maturity.”

One of the most widely used Capability Maturity Model is
the Capability Maturity Model Integration (CMMI) [3] which
has a prescriptive approach to software process improvement.
This model has several maturity or capability levels on the
way from chaotic processes to highly standardised and
optimised processes. Therefore, this model provides a guide of
improvement in the processes according to quality assurance
standards. It has been understood that good processes produce
quality in the software since there is a clear relationship
between process and product quality which needs to be
established.

Currently in the industry, one of the most used standards is
the ISO/IEC 25010 [6], which is illustrated in Fig. 2.

Fig. 2 Product quality model of ISO/IEC 25010 [6]

The model illustrates the hierarchical structure that divides
quality into characteristics, which can consist of sub-
characteristics and, in turn, of sub-sub-characteristics. This
standard provides a guide to ensure quality in the software
product but it emphasises that not all characteristics are

relevant in every software. It provides no help regarding how
to customise the quality model. This standard is an evolution
from the previous ISO/IEC 9126 [7], which itself was
developed closely based in the model developed by McCall
and Matsumoto in 1980 [8], as shown in Fig. 3. This kind of

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:9, 2017

1004

approach to quality models, which became the basis for
several international standards, has been used as one of the
main references in the research to develop a suitable
operational maturity model for software.

Fig. 3 Quality factor classification [9]

IV.RESULTS

A.Operational Software Maturity: Drivers Proposal

According to de Bruin [10], there are two main ways to
design a maturity model, from a top-down or bottom-up
approach. Starting from the top, the model would look at the
level and progress at maturity divided by characteristic; those
models assume the evolution of maturity and are rigid in the
paths they can take.

Starting from the bottom, the different characteristics or
assessments are then gathered into main areas of maturity to
provide a more general view.

The approach selected during the research was the latter
one, starting from the bottom, as the changing nature of
software through time, depending on the environment in
which it operates, makes it very difficult to predict a “rigid
path” for a maturity evolution.

During the project, “Maturity” was defined as:
 The capabilities of a software application to perform what

is required while in usage, evaluating under which degree
of success the applications are meeting the defined
requirements of operation.

This definition was later validated through expert elicitation
by the industry members depicted in Table I.

As a result of the literature review conducted and the active
consultation with industry experts, an Operational Software
Maturity Capability Framework was developed, as shown in
Fig. 4.

Fig. 4 Operational Maturity Drivers

The framework is divided into three main drivers and

several indicators, which are the following:
 Usability: to which degree the application is fit for

purpose and easy to operate by the user.
○ Number of User Errors: it serves as an indicator of how

difficult it is for the user to make proper use of the
application. Fewer errors would equal higher maturity.

○ User Documentation Availability: the availability of
quality user guides can serve as an indicator of the
usability for an application. Lack of them would decrease
maturity.

 Application Health: to which degree the application can
be operated within the service level agreements of the

organisation.
○ Number of Failures: the amount of issues of an

application for a given time can serve as an indicator of
how well it is working in the operative environment. A
lower number of issues would mean higher maturity.

○ Availability: compare the level of availability of the
application to the requirements of the business. If the
availability meets the requirements, the application would
have higher maturity.

○ Performance: Performance of the application compared to
organisation requirements. If the application meets the
requirements, the application would have higher maturity.

○ Median Time Between Failures: time between failures is a

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:9, 2017

1005

common indicator to assess the robustness of a system. In
this case, the use of median has been preferred to the
mean, in order to avoid disturbances on the data set due to
outliers. A higher time here would translate on a higher
maturity.

○ Number of Workarounds: compare the evolution of
workarounds through time for an application. A higher
number of those would mean a lower maturity, as this will
cause deficiencies in the long-term.

○ Security Compliance: if the application complies with all
security requirements of the company. If not, this would
equal a lower maturity.

 Maintainability: how much effort it takes to keep the
application operational.

○ Median time to Repair Failures: is a common indicator
used to assess the reparability of assets. A lower time
would mean a higher maturity.

○ Support Documentation Availability: the presence of
technical documentation depicting maintenance
guidelines would translate into a higher maturity.

This framework constitutes a baseline for any company to
develop their own metrics to assess Operational Software
Maturity of their applications. Furthermore, these drivers and
indicators can be modified as well to suit the particularities of
the environment in which each organisation operates.

B.Industry Case Study: Drivers Modifications

With the aim of improving the developed framework as
well as to show its utility, a case study was conducted in close
collaboration with a major aircraft manufacturer.

Initially, the company had been using an approach to the
concept of performance/maturity in order to estimate how
much effort was required to keep the different applications
operational. This approach resulted in a matrix with a set of 10
indicators:
 Maturity of Technology
 Performance Constraints
 Number of interfaces
 Multi-sites application
 Complexity on the infrastructure
 Impact on business functions
 Administration complexity
 Number of users
 Number of lines of code
 Documentation completion

Such a matrix was being filled by the users themselves
under their expert opinion. Each indicator could have three
different scores, 1, 3 or 5, depending on its perception of low,
medium or high, respectively (Ordinal scale). As can be noted,
the set of indicators was a mixture of concepts between
“Maturity” and “Complexity”. Hence, complexity indicators
were discarded and a new framework was created focused in
operational maturity, based on the previous research (Fig. 4),
but also taking into account the particular requirements of the
company. Such model main drivers are illustrated in Fig. 4. It
can be noted that one of the major changes was the addition of
“Security” as an independent driver, rather than just an

indicator within “Application Health”, due to requirements
from the company exposed during the workshop.
“Maintainability” and “Usability” were kept as drivers,
although some modifications were performed within the
indicators used by both drivers.

Fig. 5 Adapted Operational Maturity Model

Within each of those four drivers, a number of indicators

have been identified, as illustrated in Figs. 6-9. The way of
assessing those indicators changed from a subjective point of
view to an objective one based on sets of data. Hence, a
system based on the Box-and-whisker method was used in
several indicators. The Box-and-whisker plot is an exploratory
graphic, developed by Tukey in 1977, [11], and it is used to
show the distribution of a dataset at a glance. However, the
scale used for the evaluation was kept in 1, 3 or 5, effectively
keeping the Ordinal scale approach, which is common in
many maturity models [10].

Fig. 6 Application Health Indicators

As a concept, “Application Health” refers to which degree

the application can be operated within the service level
agreements of the organisation. In this driver, the previous
indicator “Performance constraints”, from the previous
performance/maturity matrix, was developed into two new
maturity indicators, “Performance” and “Availability”. In
addition of those, another eight more indicators are grouped

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:9, 2017

1006

under this driver, based on the research conducted and shown
in Fig. 6. The details of each of the indicators are as follows:
 Incidents solved: As a concept, an incident is an issue in

which it is known what it is causing it. Regarding
maturity, a lower number of incidents mean that the
application is more mature in capability terms. In order to
assess it, the number of incidents of the application is
compared against the total set of data for the portfolio,
following a box-and-whisker method with percentiles, a
set of scores is given, being 1 if it is over the third
quartile, 5 if it is below the first quartile, and 3 if it is
between those 2 quartiles. Hence, less incidents results in
a higher maturity score.

 Problems solved: As a definition, a problem is an issue
in which it is not known what it is causing it. Regarding
maturity, a lower number of problems mean that the
application is more mature in capability terms. In order to
assess it, the number of problems of the application is
compared against the total set of data for the portfolio,
following a box-and-whisker method with percentiles, a
set of scores is given, being 1 if it is over the third
quartile, 5 if it is below the first quartile, and 3 if it is
between those 2 quartiles. Hence, less problems results in
a higher maturity score.

 Workarounds: A workaround is a temporary fix that
implies that a genuine solution to the issue is needed. In
order to assess it, the number of workarounds for the
application is compared against the total set of data for the
portfolio, following a box-and-whisker method with
percentiles, a set of scores is given, being 1 if it is over
the third quartile, 5 if it is below the first quartile, and 3 if
it is between those 2 quartiles. Therefore, the highest
number of workarounds the lowest the maturity of the
application.

 Bug Fixing Change Notes: The number of change notes
applied to fix the bugs in an application. In order to assess
it, the number of bug fixing change notes of the
application is compared against the total set of data for the
portfolio, following a box-and-whisker method with
percentiles, a set of scores is given, being 1 if it is over
the third quartile, 5 if it is below the first quartile, and 3 if
it is between those 2 quartiles. Thus, the higher the
number of bug fixing change notes the lower the maturity
of the application

 Adaptive Maintenance Change Notes: The number of
change notes implementing small updates linked to the
maintenance of the application. In order to assess it, the
number of adaptive maintenance change notes of the
application is compared against the total set of data for the
portfolio, following a box-and-whisker method with
percentiles, a set of scores is given, being 1 if it is over
the third quartile, 5 if it is below the first quartile, and 3 if
it is between those 2 quartiles. Thus, the higher the
number of adaptive maintenance change notes the lower
the maturity of the application.

 Backlog Change Notes: A backlog change note is a
change note that is open and has not been applied yet. In

order to assess it, the number of backlog change notes of
the application is compared against the total set of data for
the portfolio, following a box-and-whisker method with
percentiles, a set of scores is given, being 1 if it is over
the third quartile, 5 if it is below the first quartile, and 3 if
it is between those 2 quartiles. Thus, the higher the
number of backlog change notes, the lower the maturity
of the application.

 Availability: By knowing the Service Level Agreement
(SLA) of the company, compare the level of availability
of the application to the SLA of the business. If the
availability is higher than the SLA, the application would
be considered more mature.

 Performance: Performance of the application compared
against the requirement of the company (SLA). If the
performance of the application meets the requirements, its
maturity will be higher.

 Median time between Incidents: Median time between
each of the incidents of the application. In order to assess
it, the median time between incidents of the application is
compared against the total set of data for the portfolio,
following a box-and-whisker method with percentiles, a
set of scores is given, being 5 if it is over the third
quartile, 1 if it is below the first quartile, and 3 if it is
between those 2 quartiles. Hence, a higher median time
between incidents means a higher maturity.

 Median time between Problems: Median time between
each of the problems of the application. In order to assess
it, the median time between problems of the application is
compared against the total set of data for the portfolio,
following a box-and-whisker method with percentiles, a
set of scores is given, being 5 if it is over the third
quartile, 1 if it is below the first quartile, and 3 if it is
between those 2 quartiles. Hence, a higher median time
between problems means a higher maturity.

Regarding the driver “Usability”, it refers to which degree
the application is fit for purpose, how easy is for the user to
make use of it. In this driver, the indicator “Documentation
completion”, from the previous performance/maturity matrix,
was developed into a new maturity indicator, “User
documentation”. In addition of that one, two more indicators
are grouped under this driver, as shown in Fig. 7.

Fig. 7 Usability Indicators

The details of each of the indicators are as follows:

 User Error: Regarding number of failures of the
application due to a user error. This metric is obtained as
a proportion of the user errors taken into account the total
number of users of that application. In order to assess it,

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:9, 2017

1007

the number of user errors of the application is compared
against the total set of data for the portfolio, following a
box-and-whisker method with percentiles, a set of scores
is given, being 1 if it is over the third quartile, 5 if it is
below the first quartile, and 3 if it is between those 2
quartiles. Therefore, the higher the number of user errors
is, the less mature is the application.

 User Documentation: This indicator refers to the
availability of a User Guide or not. The availability of a
User Guide will mean a higher maturity for the
application.

 Small Evolution Change Notes: Change notes applied
when there is the need to improve minor aspects of the
application. In order to assess it, the number of small
evolution changes of the application is compared against
the total set of data for the portfolio, following a box-and-
whisker method with percentiles, a set of scores is given,
being 1 if it is over the third quartile, 5 if it is below the
first quartile, and 3 if it is between those 2 quartiles.
Therefore, a lower number of small evolution change
notes will mean a higher maturity.

The concept of “Maintainability” refers to how much effort
it takes to keep the application operational. This driver groups
six indicators, as shown in Fig. 8, from which several use the
box-and-whisker method as a way of assessment.

Fig. 8 Maintainability Indicators

The details of each of the indicators are as follows:

 Maintenance Documentation: Refers to the availability
of documentation that will aid in the maintenance effort
for the application. The higher the availability of those
documents, the higher the maturity of the application.

 Test Environment: Refers to the number of
environments an application has been tested in. The more
environments available to test application changes, the
higher the maturity of that application.

 Number of Test Cases: Referring to the availability of
the document “Test cases”, due to its importance and to
the fact that a higher number of such test cases, it is
positive for the maintenance of the applications. In order
to assess it, the number of test cases of the application is
compared against the total set of data for the portfolio,

following a box-and-whisker method with percentiles, a
set of scores is given, being 5 if it is over the third
quartile, 1 if it is below the first quartile, and 3 if it is
between those 2 quartiles. Thus, the higher the number of
test cases, the more mature is the application.

 Median time to repair an Incident: This indicator refers
to the amount of time it takes to solve an incident, which
is an issue whose cause is known, in a given application.
In order to assess it, the median time to repair an incident
of the application is compared against the total set of data
of the portfolio, following a box-and-whisker method
with percentiles, a set of scores is given, being 1 if it is
over the third quartile, 5 if it is below the first quartile,
and 3 if it is between those 2 quartiles. Therefore, a lower
time to repair incidents will result into a higher maturity.

 Median time to repair a Problem: This indicator refers
to the amount of time it takes to solve a problem, which is
an issue whose cause is not known, in a given application.
In order to assess it, the median time to repair a problem
of the application is compared against the total set of data
for the portfolio, following a box-and-whisker method
with percentiles, a set of scores is given, being 1 if it is
over the third quartile, 5 if it is below the first quartile,
and 3 if it is between those 2 quartiles. Therefore, a lower
time to repair problems will result into a higher maturity.

 Median time to deploy a CN: Median time it takes, since
a change note (CN) is raised until it is deployed for a
given application. In order to assess it, the median time to
deploy a CN of the application is compared against the
total set of data of the portfolio, following a box-and-
whisker method with percentiles, a set of scores is given,
being 1 if it is over the third quartile, 5 if it is below the
first quartile, and 3 if it is between those 2 quartiles.
Therefore, a lower time to deploy CN will result into a
higher maturity.

The driver of “Security”, as a concept, assesses to which
degree the application is compliant with the security drivers of
the organisation. There are six security indicators grouped
under this driver, as depicted in Fig. 9.

Fig. 9 Security Indicators

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:9, 2017

1008

Those security drivers were provided by the organization
from the case study and they may vary from one company to
another. In this driver the box-and-whisker method is not used,
as the security indicators have to be assessed usually just once
in the life of an application, unless major changes are
implemented. An application can have “Full compliance”,
“Partial compliance” or “No compliance” with the different
security indicators. “Full compliance” means high maturity,
score of 5, “No compliance” means low maturity, score of 1
and “Partial compliance” means medium maturity, score of 3.
The details of each of the indicators are as follows:
 Data Segregation and Encryption: Data access

segregation has to be implemented using Role based
access control and depending on data classification level,
encryption has to be implemented also.

 Authentication: Implementation of identification based
on company official directory using Identity and Access
Management solution in order to apply Identity
management directives and password policy.

 Data Classification: Assessment of the classification
level of data managed by the application, so the
application is classified at the level of managed data.

 Log Activation: All applications have to log a minimal
level of events such as authorization activities:
logon/logoff/attempt and all administration activities.
Depending on the data classification level these logs must
be kept three or six months. These logs are different and
must be separated from standard applicative logs.

 Account and Password: Replacement of all generic
accounts into Service or Technical Accounts and
disablement of hard coded password or readable (not
encrypted) password into all application components.

 Account Review: Process required accordingly to
application classification aiming at reviewing periodically
all declared administrators and end-users.

C.Industry Case Study: Prototype Tool

With the aim of testing the maturity model, a prototype tool
was developed, using an Excel spread sheet with embedded
formulas and some Visual Basic for Applications (VBA) code.
A dashboard was also created to visually analyse the
evolution, details and accuracy of the maturity scores. The
final goal of the tool was to build a scenario for each
application that supports decision making. Its basic structure is
illustrated in Fig. 10.

The tool has several tabs/worksheets, which will be
navigated by the user to obtain the assessment. The first of the
tabs is the “Introduction” tab, and provides the user with an
overview of the models and the tool and also has links to the
User Guide, in case more information was required. The
second tab is the main tab of the tool, “Application 1”, and is
the Dashboard where all the information regarding the
selected application is shown. The last tab is the data entry tab,
“AppData”, where the data is introduced and stored, coming
from a variety of reports and databases. There are as well a
number of hidden tabs that perform calculations and store data
labels.

The software tool needs to be fed with data in order to have
a relevant assessment. It is expected to gather the information
needed from different files, filter them with the help of pivot
tables, and evaluate them for each metric. An entry per month
is expected, to have a valid evolution for constant evaluation.

The different indicators are computed separately, and then
gathered into a unified formula. For most of the indicators, if
the value of the metric is between two limits, its maturity
score is 3; otherwise it is 1 or 5 depending on its impact on
maturity (5 is considered as high maturity, whereas 1 is low
maturity). Those two limits have been determined using a box-
and-whisker plot method [11] that is automatically performed
by the tool in a hidden tab for all the applications whose data
has been introduced in the tool.

Fig. 10 Maturity prototype tool structure

Once all the different indicators have been computed and

weighted, they are all gathered into a single value through (1):

 

 






n

i
i

n

i
ii

w

xw

1

1 (1)

where: w is the weight assigned to each indicator, x is the
indicator value, i is the referring month.

To view the results for an application, a Dashboard tab
“Application 1” was created. It groups the indicators for the
last month of the set of data available, providing the maturity
scores for each indicator, together with its assigned weight by
the company experts and its data quality. The total maturity
score and the weights for each of the drivers are also shown,
including the total score accuracy based on the data
availability. Furthermore, two graphs showing the evolution
through time of both the maturity and the score accuracy are
also provided.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:9, 2017

1009

D.Industry Case Study: “RED” Application

For the purpose of this paper, a specific application has
been chosen to serve as an illustrative example. This
application, which will be referred as “RED”, accesses
Product Data Management (PDM) systems with design data
and generates from this data specific data sets (product
structure and geometry information), which can be later
visualised using software applications for computer-aided
design (CAD), computer-aided manufacturing (CAM) and
computer-aided engineering (CAE).

Fig. 11 “RED” Maturity Indicators

As shown in Fig. 11, the maturity score of “RED” on

October is 3.77, which is slightly above medium maturity,
with room for improvement. The score accuracy is 88.46%,
due to the lack of data for the indicators “Median time
between Incidents”, “Median time between Problems” and
“Median time to deploy a Change Note”, as signalled by the
three red flags.

As shown in Fig. 12, the maturity of “RED” had a
remarkable drop during the months of February and March.
This was due to “RED” being a new application deployed by
the end of 2013. During the year 2014 “RED” started to take
on the functions provided by an older, by then obsolete
application. With this entry into service several issues arose,
being “Incidents”, “Problems” and “Workarounds” the main
reason for higher workloads than usual and causing a drop in

the maturity. These contingencies were expected, as “RED”
had to interact with several applications and databases, each
additional interface increasing the risk of malfunctions.
However, after several months in operation, and with the
required support activities, the improvement is considerable,
by October the maturity score had recovered.

Fig. 12 “RED” Maturity Evolution

Fig. 13 “RED” Score Accuracy Evolution

The accuracy of the maturity scores provided is shown in

Fig. 13. The data availability remained constant from January
to October and the previously mentioned indicators of
“Median time between Incidents”, “Median time between
Problems” and “Median time to deploy a Change Note” were
at the moment of the study difficult to estimate precisely, due
to the novelty of the application and the heterogeneity of the
data encompassing that year. Additionally, those indicators
were not considered critical for that application by the industry
experts at that moment in time.

This case study was conducted in close collaboration with
the industry experts depicted in Table I, which included the
direct responsible for the correct performance of the “RED”
application. The experts agreed the information showed by the
prototype tool during the case study constituted a good
reflection of the operational behaviour of “RED” during that
period of time.

V.CONCLUSIONS AND FURTHER WORK

This paper has developed the concept of operational

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:9, 2017

1010

maturity in aerospace software applications, creating a reliable
framework that can be integrated into an assessment tool. As a
result, a successful lifecycle management system has been
developed, that can be applied to assess large software
application portfolios.

From this research, maturity has been identified as a very
dynamic indicator, being a concept that offers an opportunity
for improvement in the future. Using it as a baseline, the
model could be linked and work together with the concepts of
software obsolescence and complexity.

Future possible enhancements of this research could be
developed by:
 Applying the model in companies from different sectors,

validating in this way the model in a cross industry
environment.

 Developing a standard methodology to gather data from
software application portfolios, linking it with the model
data input requirements.

 Studying the relationship between software obsolescence
and operational maturity.

ACKNOWLEDGMENT

This research project is funded by Airbus and Cranfield
University. The author would like to gratefully acknowledge
the support and assistance of Airbus as well as the
contribution of participants from several aerospace
organisations during the research.

REFERENCES
[1] Caralli, R., Knight, M. and Montgomery, A., “Maturity Models 101: A

Primer for Applying Maturity Models to Smart Grid Security,
Resilience, and Interoperability”, Software Engineering Institute, 2012.

[2] Becker, J., Knackstedt, R. and Pöppelbuβ, J., “Developing Maturity
Models for IT Management – Aprocedure Model and its Application”.
Westfälische Wilhelms Universität Münster European Research Center,
Münster, 2009.

[3] Paulk, M., Curtis, B., Chrissis, M. and Weber, C., “Capability maturity
model for software”, 1994 Version 1.1.
http://www.sei.cmu.edu/pub/documents/ 93.reports/pdf/tR24.93.pdf.
Accessed on 20/04/2017.

[4] Renken, J.,” Developing an IS/ICT management capability maturity
framework.” In: Research conference of the South African Institute for
Computer Scientists and Information Technologists (SAICSIT).
Stellenbosch, 2004, 53–62.

[5] Humphrey, W., “Managing the Software Process”, Goodreads, 1989.
[6] ISO/IEC 25010:2011, “Systems and software engineering – Systems and

software Quality Requirements and Evaluation (SQuaRE) – System and
software quality models”, 2011.

[7] ISO/IEC 9126-1, “Software engineering – product quality – Part 1:
Quality Model”, first ed.: 2001-06-15.

[8] McCall, J. and Matsumoto, M., “Software Quality Measurement
Manual”, General Electric Company, 1980.

[9] Lauesen, L., “Quality Factors”, Software Requirements Styles and
Techniques, Addison-Wesle y (ed), London, 2002, pp. 220-230.

[10] de Bruin, T., Rosemann, M., Freeze, R., Kulkarni, U., “Understanding
the Main Phases of Developing a Maturity Assessment Model”. In: 16th
Australasian Conference on Information Systems (ACIS), 2005, Sydney,
Australia.

[11] Tukey, J., “Exploratory Data Analysis”, Addison-Wesley, 1977.

