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Abstract—The paper contains an investigation on basic problems
about the zeros of analytic theta functions. A brief introduction to
analytic representation of finite quantum systems is given. The zeros
of this function and there evolution time are discussed. Two open
problems are introduced. The first problem discusses the cases when
the zeros follow the same path. As the basis change the quantum state
|f〉 transforms into different quantum state. The second problem is
to define a map between two toruses where the domain and the range
of this map are the analytic functions on toruses.

I. INTRODUCTION

THIS Paper is devoted to discuses some problem related
to the paths of zeros in analytic representation of finite

quantum systems on a torus. Analytic functions are considered
from [1], [2], [3] and used in various places in physic sciences.
The analytic Bargmann function [4], [5], [6], [7], [8], [9], [10]
is The most famous one. Ref [12] has considered analytic
representations of finite quantum systems on a torus. The
analytic function has exactly N zeros. Ref [13] has been
studied the motion of the zeros.In some cases N of the zeros
follow the same path and in other cases each zero follow its
own path.It is seen that the same zeros with two different
Hamiltonian, in the first case follow the same path and in the
second case follow different paths. Also we have seen that for
the same Hamiltonian, two sets of zeros, follow the same path
and different paths correspondingly. We concluded that there
is specific constraint should be satisfied, and either the zeros
or the Hamiltonian subjected to the constraint which should
involve both the zeros and the Hamiltonian. The first problem
is what is the constraint. A unitary transformation is equivalent
to a change of basis. We try to discuss how to define a map
from torus to another such that the domain of this map is the
zeros of analytic function in first torus and the range is the
zeros of analytic function in second torus. The second problem
is what is the definition of the map.

II. ZEROS OF ANALYTIC REPRESENTATION OF FINITE
QUANTUM SYSTEMS

Let H be a Hilbert space with dimension N and let
|Xm〉, |Pm〉 be the position states and momentum states re-
spectively( m ∈ N) where

|Pm〉 = F|Xm〉 = N−1/2
∑
n

(exp

[
i
2πm

N

]
)|Xm〉, (1)
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and F the Fourier operator:

F = N−1/2
∑
m,n

(exp

[
i
2πm

N

]
)|Xm〉〈Xn|. (2)

The position and momentum operators are defined as

x =
N−1∑
n=0

n|Xn〉〈Xn|; p = FxF† =
N−1∑
n=0

n|Pn〉〈Pn|, (3)

respectively
We study an arbitrary normalized state |F〉

|F〉 =
∑
m

Fm|Xm〉;
∑
m

|Fm|2 = 1, (4)

Following ref [12], [13] we introduce the analytic representa-
tions of finite quantum systems on a torus.
We represent the state |F〉 of Eq.(4), with the analytic function

f(z) = π−1/4
N−1∑
m=0

Fmϑ3[πmN−1 − z

√
π

2N
; iN−1] (5)

which satisfy quasi-periodic condition

f
[
z +

√
2πN

]
= f(z)

f
[
z + i

√
2πN

]
= f(z) exp

[
πN− i(2πN)1/2z

]
(6)

where ϑ3 is Theta function and defined as

ϑ3(u, τ) =
∞∑

n=−∞
exp(iπτn2 + i2nu). (7)

The analytic function f(z) is defined on a cell [x0, x0 +√
2πN)× [x1, x1 +

√
2πN) ( on a torus)

The sum of the zeros zn of analytic function f(z) is
N∑

n=1

zn = (2π)1/2N3/2(l + ir) +
(π
2

)1/2

N3/2(1 + i), (8)

where l, r are integers.
Ref.[12], [13] has constructed the function f(z) from its zeros
zn as following:
Let zn be the zeros of the analytic function f(z) and suppose
that this zeros satisfy the relation.(8) then the analytic function
f(z) is defined as

f(z) = q exp

[
−i

(
2π

N

)1/2

lz

]
N∏

n=1

ϑ3 [wn(z); i]

wn(z) =
( π

2N

)1/2

(z − zn) +
π(1 + i)

2
(9)

where l is the integer relation of Eq.(8) and q is a constant
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We consider the state |F(0)〉 =
∑

Fm(0)|X;m〉 at t = 0.
Using the Hamiltonian H , the state |F(0)〉 evolves at time t

|F(t)〉 = exp(itH)|F(0)〉 =
N−1∑
m=0

Fm(t)|Xm〉 (10)

numerically we calculate the zeros zn of f(z).
Ref.[13] has discussed the Periodic finite quantum systems.
In some cases N of the zeros follow the same path. We say
that this path has multiplicity d.

III. CONSTRAINTS ON THE ZEROS OF THE FUNCTIONS f(z)

It is will known that in the periodic systems the N paths of
the zeros zn(t) are in general closed curves on the torus. In
some cases N of the zeros follow the same path and in other
cases each zero follow its own path.
We discuss how the same zeros with two different Hamil-
tonian, follow the same path with the first Hamiltonian and
different paths with the other Hamiltonian. We consider two
sets of zeros with one Hamiltonian, one of them follow same
path and the other follow different paths. Therefore there is
specific constraint should be satisfied, and either the zeros or
the Hamiltonian subjected to the constraint.

Example 1:
Let z0(t), z1(t), z2(t) be the paths of the three zeros. We
assume that the initial values of these zeros are

z0(0) = 2 + 2i, z1(0) = 2 + 2.5i, z2(0) = 2.5 + 2i. (11)

We consider two different Hamiltonians.
� The first Hamiltonian is

H =

⎡
⎣ 1 1 0

1 1 0
0 0 1

⎤
⎦ (12)

This Hamiltonian has the eigenvalues 0, 1, 2 with period O =
2π.
� The second Hamiltonian is

H =

⎡
⎣ 2 −i 0
i 2 0
0 0 1

⎤
⎦ (13)

This Hamiltonian has the eigenvalues 0, 1, 2 with period O =
2π.
In the case of Hamiltonian.(12) we found numerically that

z0(O + t) = z1(t), z1(O + t) = z2(t), z2(O + t) = z0(t). (14)

After period the three zeros follow the same path. In Fig.1 we
present the path of these zeros.
In the case of Hamiltonian.(13), after period each zero follows
its own path. In Fig.2 we present the path of these zeros.
It is seen that the same zeros with two different Hamiltonian,
in the first case follow the same path and in the second case
follow different paths.

Example 2:
We consider the Hamiltonian

H =

⎡
⎣ 1 −i 0
i 1 0
0 0 2

⎤
⎦ (15)
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Fig. 1. The path of the zeros z0(t), z1(t), z2(t) for the system with the
Hamiltonian of Eq.(12). All zeros follow the same path. At t = 0 the zeros
z0(0), z1(0), z2(0) are given in Eq.(11)
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Fig. 2. The path of the zeros z0(t), z1(t), z2(t) for the system with the
Hamiltonian of Eq.(13). Each zero follows its own path. At t = 0 the zeros
z0(0), z1(0), z2(0) are given in Eq.(11) .

The Hamiltonian has the eigenvalues 0, 2, 2. Here we consider
two cases.
� In the first case, the initial values of the zeros are

z0(0) = 1.5 + 1.5i, z1(0) = 2 + 3i, z2(0) = 3 + 2i, (16)

with period O = 2π.
� In the second case, the initial values of the zeros are

z0(0) = 2.1 + 2.1i, z1(0) = 1.4 + 3.4i, z2(0) = 3 + 0.1i, (17)

with period O = 2π.
In the case of Eq.(16)one can see that

z0(O + t) = z2(t), z2(O + t) = z0(t) (18)

Here the zeros z0, z2 follow the same path and the third zero
follows its own path. This is shown in Fig.3 .
In the case of Eq.(17) each zero follows its own path. This is
shown in Fig.4.
For the Hamiltonian (15), we get two of the zeros in the
case of Eq.(16) follow the same path and in the case of
Eq.(17) each zero follows different path. It is seen that for
the same Hamiltonian, two sets of zeros, follow the same path
and different paths correspondingly.We concluded that there
is specific constraint should be satisfied, and either the zeros
or the Hamiltonian subjected to the constraint. Therefore if
there is such constraint, it should involve both the zeros and
the Hamiltonian.
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Fig. 3. The path of the zeros z0(t), z1(t), z2(t) for the system with the
Hamiltonian of Eq.(15). the zeros z0, z2 follow the same path and the third
zero follows its own path. At t = 0 the zeros z0(0), z1(0), z2(0) are given
in Eq.(16)
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Fig. 4. The path of the zeros z0(t), z1(t), z2(t) for the system with the
Hamiltonian of Eq.(15). Each zero follows its own path. At t = 0 the zeros
z0(0), z1(0), z2(0) are given in Eq.(17) .

Problem 1

We consider the Hamiltonian H with the initial zeros
z1, z2, ..., zN.
Is there any constraint such that D of these zeros follow same
path ?
If there is such constraint, what is that constraint?

IV. THE CHANGE OF THE BASIS

The unitary transformation is one-to-one function between
two Helbert spaces. Let A be a Hermitean matrix, and let U
be a unitary transformation. It is will known that the matrix
UAU † is Hermation and has the same of eigenvalues of A.
A unitary transformation is equivalent to a change of basis.
It is a transformation that transforms one basis into another.
As an example of a unitary transformation we consider the
Symplectic transformations U.

Symplectic transformations

Following ref.[11] we introduce the Symplectic transforma-
tions U in the ZN×ZN phase-space of a finite quantum system.
We consider the unitary transformations

X
′

= UXU† = XκZλψ(2−1κλ),

Z
′

= UZU† = XμZνψ(2−1μν), (19)

Here

X = exp[
−i2πp
N

], Z = exp[
i2πx

N
], ψ(a) = exp

[
i
2πa

N

]
(20)

where x, p are the position and momentum operators and
λ, κ, μ, ν are integers in ZN obey the relation

κν − λμ = 1(mod(N)). (21)

By reference to ref.[11] we construct the unitary operator U.
Example 3:

We consider a three-dimensional Hilbert space (N = 3) and
U(1,−1 − 1),which leads (by definition in Eq.(19)) to the
transformations

X
′
= UXU† = XZ−1ω(−1

2
),

Z
′
= UZU† = X−1Z2ω(−1). (22)

The operator U is given in a matrix U(ı, j) and the matrix
elements U(ı, j) are given in table I. The transformation with

TABLE I
THE COEFFICIENTS U(ı, j) FOR THE TRANSFORMATIONS OF EQ.( 22).

ı = 0 ı = 1 ı = 2
j = 0 0.5774 0.2887 + 0.5i 0.5774
j = 1 -0.2887 + 0.5i 0.2887 - 0.5i 0.5774
j = 2 0.5774 0.2887 - 0.5i -0.2887 + 0.5i

operatore U on the analytic function f(z)

f(z) = π−1/4
N−1∑
m=0

Fm ϑ3[
πm

N
− z

√
π

2N
;
i

N
] (23)

can be expressed as

Uf(z) −→ π−1/4
N−1∑
m=0

UmlFl ϑ3[
πm

N
− z

√
π

2N
;
i

N
] (24)

We denote as zn the zeros of function f(z) in Eq.(23) and we
denote as ηn the zeros of function

g(z) = π−1/4
N−1∑
m=0

UmlFl ϑ3[
πm

N
− z

√
π

2N
;
i

N
] (25)

The paths of the zeros define completely a finite quantum
system. Hence the study of paths of the zeros is equivalent
the study of the system. We consider the paths of the zeros of
both functions f(z) and g(z).
Let z0(t), z1(t), z2(t) be the paths of the three zeros of f(z),
and let η0(t), η1(t), η2(t) be the paths of the three zeros of
g(z).

Example 4:
We consider the Hamiltonian

H =

⎡
⎣ 1 −i 0
i 1 0
0 0 2

⎤
⎦ (26)

which has the eigenvalues 0, 2, 2 with period O = π. We cal-
culate the Hamiltonian UHU† which has the same eigenvalues
of H. We assume that the initial values the zeros of f(z) are

z0(0) = 2 + 2i, z1(0) = 2.2 + 2i, z2(0) = 2.3 + 2.3i (27)



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:7, No:8, 2013

1221

0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

Z
R

Z
I

Fig. 5. The path of the zeros z0(t), z1(t), z2(t) for the system with the
Hamiltonian of Eq.(26). All zeros follow the same path. At t = 0 the zeros
z0(0), z1(0), z2(0) are given in Eq.(27)
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Fig. 6. The path of the zeros η0(t), η1(t), η2(t) for the system with the
Hamiltonian UHU† where H of Eq.(26). The zeros η0(t), η2(t) follow the
same path and the zero η1(t) follows a different path.. At t = 0 the zeros
η0(0), η1(0), η2(0) are given in Eq.(28) .

The initial values the zeros of g(z) are

z0(0) = 1 + 1i, z1(0) = 2 + 3.3i, z2(0) = 3.4 + 1i (28)

In the case of Eq.(27) we get

z0(T + t) = z1(t), z1(T + t) = z2(t), z2(T + t) = z0(t) (29)

After period the three zeros follow the same path. In Fig.5 we
present the paths of these zeros.
In the case of Eq.(28), after period we found numerically that

z0(O + t) = z2(t), z2(O + t) = z0(t). (30)

Therefore two of the zeros follow the same path and the third
one follows a different path. In Fig.6. we present the paths of
these zeros.

Example 5:
Another example is the Hamiltonian of Eq.(26) and zeros with
the initial values

z0(0) = 1.4 + 3.4i, z1(0) = 1.7 + 2.5i, z2(0) = 3.4 + 0.6i (31)

and the initial values of zeros of g(z) are

z0(0) = 0.8 + 3.9i, z1(0) = 2 + 0.36i, z2(0) = 3.7 + 2.3i, (32)

The period is O = π.
In the case of Eq.(31) after period the zeros obey the relation

z0(O + t) = z2(t), z2(O + t) = z1(t), z1(O + t) = z0(t) (33)
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Fig. 7. The path of the zeros z0(t), z1(t), z2(t) for the system with the
Hamiltonian of Eq.(26). All zeros follow the same path. At t = 0 the zeros
z0(0), z1(0), z2(0) are given in Eq.(31)
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Fig. 8. The path of the zeros η0(t), η1(t), η2(t) for the system with the
Hamiltonian UHU† where H of Eq.(26). The zeros η0(t), η1(t), η2(t) follow
a different paths.. At t = 0 the zeros η0(0), η1(0), η2(0) are given in Eq.(32)

Here the three zeros follow the same path. In Fig.7. we present
the paths of these zeros.
In the case of Eq.(32) found numerically that each zero follows
a different path.
In Fig.8. we present the paths of these zeros.
A unitary transformation is equivalent to a change of basis.
As the basis change the quantum state |f〉 transforms into
different quantum state.

Let U be an arbitrary unitary transformation . We can define
a map from torus T1 into another torus T2

G : T1 −→ T2 (34)

as following

G(f(z)) = g(z) = π−1/4
N−1∑
m=0

UmlFl ϑ3[
πm

N
− z

√
π

2N
;
i

N
] (35)

where f(z) is the analytic function in Eq.(23). It seen that this
map is one-to-one and on to.

Let us try define another map from torus T1 into T2

W : T1 −→ T2 (36)

such that

W (zn) = ηn (37)
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Fig. 9. The zero of f(z)(circle). At t = 0 the zeros z0(0), z1(0), z2(0)
are given in Eq.(38) .The zeros of g(z)(triangles). At t = 0 the zeros η0(0),
η1(0), η2(0) are given in Eq.(39)

Where zn are the zeros of f(z) and ηn are the zeros of g(z).
The domain of this map is the zeros of function f(z) and the
range is the zeros of function g(z). This map is not one-to-
one, it is enough to give the following example to show that.
Let U = U(1,−1,−1) in Eq.(22). We assume that the initial
zeros of f(z) are

z0(0) = z1(0) = z2(0) = 2.1708 + 2.1708i. (38)

In this case the three zeros are identical, we can say that they
are one zero.

The initial values of the zeros of g(z) are

z0(0) = 1 + 1i, z1(0) = 2 + 3.34i, z2(0) = 3.34 + 2i (39)

In Fig.9 we present the zeros of f(z) (circles), and the zeros
of g(z) (triangles).

Problem 2

Let zn be the zeros of the analytic function f(z) in Eq.(23)
and ηn be the zeros of the analytic function g(z) in Eq.(25).
Let

W : T1 −→ T2; (40)

be a map from torus T1 into another T2 such that

W (zn) = ηn. (41)

What is the definition of that map?

V. CONCLUSION

We discussed briefly the analytic representation of finite
quantum systems. We reviewed briefly the zeros of analytic
theta function and there time evolution.

We showed that in some cases N of the zeros follow the
same path and in other cases each zero follow its own path.
Numerically we found that the same zeros with two different
Hamiltonian, in the first case follow the same path and in
the second case follow different paths. Also we showed that
for the same Hamiltonian, two sets of zeros, follow the same
path and different paths correspondingly. We concluded that
there is specific constraint should be satisfied, and either the
zeros or the Hamiltonian subjected to the constraint which
should involve both the zeros and the Hamiltonian. The first

problem is to construct the constraint. A unitary transformation
is equivalent to a change of basis. We try to discuss how
to define a map from torus to another such that the domain
and the range is the zeros of analytic functions. The second
problem is to construct the map. We gave several examples to
demonstrate these ideas.
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