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Abstract—Equivalent circuit models (ECMs) are widely used in
battery management systems in electric vehicles and other battery
energy storage systems. The battery dynamics and the model
parameters vary under different working conditions, such as different
temperature and state of charge (SOC) levels, and therefore online
parameter identification can improve the modelling accuracy. This
paper presents a way of online ECM parameter identification using a
continuous time (CT) estimation method. The CT estimation method
has several advantages over discrete time (DT) estimation methods
for ECM parameter identification due to the widely separated battery
dynamic modes and fast sampling. The presented method can be used
for online SOC estimation. Test data are collected using a lithium ion
cell, and the experimental results show that the presented CT method
achieves better modelling accuracy compared with the conventional
DT recursive least square method. The effectiveness of the presented
method for online SOC estimation is also verified on test data.

Keywords—Equivalent circuit model, continuous time domain
estimation, linear integral filter method, parameter and SOC
estimation, recursive least square.

I. INTRODUCTION

IN recent years, battery energy storage systems are being

widely used in high power and high energy applications,

such as electric vehicles (EVs) and power grid support. A

battery model plays an important role for the system analysis,

design, control and optimization. Equivalent circuit models

(ECMs), which use a combination of electric components

(resistors, capacitors etc., as shown in Fig. 1) to describe

the battery terminal voltage and current (VI) dynamics, have

been widely used for battery modelling and model-based

state estimation, such as the state of charge (SOC) estimation

[1]-[3]. The advantages of using ECMs are the simple model

structure, low computational expense and acceptable accuracy.

One issue that needs to be taken into consideration when

developing an ECM is that the battery performance changes

with the working condition, such as the temperature and SOC

levels. For example, at a typical mid-SOC value, the battery

resistance is approximately doubled when the temperature

drops from 25◦C to 0◦C [4]. The effect can be characterized

offline and captured by using varying model parameters

depending on the temperature and SOC [1], [4], [5]. On the

other hand, the battery dynamics also change as the battery
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ages, which may be a very slow process with a time duration

of a few months and years and is very difficult to fully

characterize offline. Similarly, the dependence of the model

parameters on temperature and SOC may also change with the

battery ageing, making the previous characterization obsolete.

Therefore, online battery model parameter identification is

necessary in order to capture the evolving nature of the battery

behaviour in realtime, and to improve the accuracy.

Different methods for online battery ECM parameter

identification have been proposed in the literature, which in

general can be categorized into two groups, i.e., the recursive

least square (RLS) method [6]-[12], and the Kalman filter

(KF) method [13], [14]. Verbrugge [7] proposed an adaptive

algorithm for online battery model parameter identification

and SOC estimation using the RLS method. The governing

equations of an ECM are formulated into a ’linear in the

parameter (LITP)’ way, so that the weighted RLS (WRLS)

can be adopted for recursive parameter identification. The open

circuit voltage (OCV) hysteresis effect is also considered in

the model. Plett [13] proposed using joint extended Kalman

filter (EKF) for the simultaneous estimation of the battery

SOC and the time-varying model parameters. Duong et al.

[11] proposed an online battery SOC and model parameter

estimation method using the WRLS algorithm with multiple

adaptive forgetting factors (FFs). Unlike the RLS method that

uses only a single FF, multiple FFs are assigned to different

model parameters that are varying at different rates. The

algorithm is validated using test data on a LiFePO4 battery

cell, and shows improved modelling accuracy and parameter

consistency. Hu [15] proposed a two time-scale scheme for

online battery ECM parameter identification. The battery fast

and slow dynamics are separated using a high-pass and a low

pass filter, and thus the model parameters are divided and

estimated separately.

Up to now, according to the authors’ best knowledge,

only discrete time (DT) identification methods have been

used for online battery model parameter estimation, e.g., the

widely used RLS method mentioned above. However, those

DT methods have some limitations. One issue is the numerical

difficulty due to the widely separated poles of the battery

model. Another problem shows in the case of fast sampling

because the model poles lie close to the unit circle in the

complex domain, so that the model parameters are more

poorly defined in statistical terms [16]. These problems can

lead to poor estimation accuracy, or unreasonable estimation

results, as illuminated in [11], [15]. These problems can
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be circumvented using continuous time (CT) identification

methods, which have several advantages over the DT methods.

For example, the CT model parameters are independent of

the sampling time, and the CT methods can deal with widely

separated model poles [16]-[18]. Therefore, this paper presents

a CT method, i.e., the linear integral filter (LIF) method, for

online estimation of the battery ECM parameters, and it shows

improved modelling accuracy compared with the DT RLS

method using experimental data. The method can also be used

for SOC estimation.

The reminder of this paper is organized as follows: Section

II presents the battery model, and Section III introduces the

DT RLS and CT LIF estimation methods. The battery test

data and the experimental results are presented in Section IV,

along with the result analysis and potential future research

work. Finally Section V concludes this paper.

II. BATTERY ECM

A battery equivalent circuit model is shown in Fig. 1, where

OCV is a function of battery SOC. v, i are the battery terminal

voltage and current, respectively. Ri is the internal resistance.

vj is the over-potential across the j-th RC networks. The

resistors and capacitors are usually the time-varying model

parameters to be identified.

m is the total number of RC network, and m = 2 is usually

a good trade-off between model accuracy and complexity

[3]-[5], and thus is selected in this paper.

Fig. 1 A m-th order battery electric circuit model

The model equations are given as follows,

d

dt
soc(t) =

1

Cn
∗ i(t)

d

dt
vj(t) = −aj ∗ vj(k) + bj ∗ i(t), j = 1, 2, ...,m

v(t) = OCV (soc(t)) + Σm
j=1vj(t) +Ri ∗ i(t)

(1)

where

aj =
1

RjCj
, bj = 1/Cj

Cn is the battery capacity (unit: Ampere second).

Let vo = v − OCV = Ri ∗ i + v1 + v2, then from (1),

yielding

vo(t) = (Ri +
b1

s+ a1
+

b2
s+ a2

) ∗ i(t) + c0 (2)

where s stands for the Laplace transform variable. Note that

an extra constant c0 is introduced to represent the OCV bias

caused by possible SOC initial error, as will be discussed in

Section IV. Then we can get,

v(2)o = θ1 ∗v(1)o +θ2 ∗vo+θ3 ∗ i(2)+θ4 ∗ i(1)+θ5 ∗ i+θ6 (3)

where x(k) stands for the k-th order derivative of the

variable x(t). The relationship between θj and aj , bj (or

Ri, R1, C1, R2, C2) is straightforward and is omitted here.

III. CT LIF METHOD AND DT RLS METHOD

A. CT LIF Method

As it can be seen that (3) becomes a LITP problem if

the time derivatives can be calculated. There are various

ways of calculating the derivatives, such as linear filter

methods, LIF methods, and modulating function methods,

etc, and each method is characterized by specific advantages

such as mathematical convenience, simplicity in numerical

implementation and computation, physical insight, accuracy

and others [16], [17]. The LIF method is selected here due to

its ease of digital implementation and the elimination of extra

burden of calculating initial conditions [17]. The LIF method,

in this case, deals with the derivatives in (3) by performing

two successive integral calculations on both sides of (3), i.e.,
∫ t2

t2−L∗Ts

∫ t1

t1−L∗Ts

(3) dtdt1 (4)

where Ts the sampling time, L is a positive integral number,

and thus L∗Ts is the time window of the integral calculation.

Define the time shifter q as x(t−Ts) = q−1 ∗x(t), and the

two functions [17],

f1 = (1− q−L)

f2 = Ts ∗ (0.5 + q−1 + q−2 + ...+ q−L+1 + 0.5 ∗ q−L)

Then assume that first-order holder discretization method is

used, yielding,
∫ t

t−L∗Ts

x(τ)dτ = f2 ∗ x(t)
∫ t

t−L∗Ts

x(1)(τ)dτ = f1 ∗ x(t)

Then from (4), we can get

f2
1 ∗ vo(t) = θ1 ∗ f1 ∗ f2 ∗ vo(t) + θ2 ∗ f2

2 ∗ vo(t)
+ θ3 ∗ f2

1 ∗ i(t) + θ4 ∗ f1 ∗ f2 ∗ i(t)
+ θ5 ∗ f2

2 ∗ i(t) + θ6 ∗ T 2
s ∗ L2

(5)

Let

y(t) = f2
1 ∗ vo(t)

φ(t) = [f1 ∗ f2 ∗ v0(t), f2
2 ∗ v0(t), f2

1 ∗ i(t), f1 ∗ f2 ∗ i(t), f2
2 ∗

i(t), L2 ∗ T 2
s ]

T

then, (5) becomes

y(t) = φT (t) ∗ θ + e(t) (6)

where θ = [θ1, ..., θ6]
T , and e(t) is introduced as the

modelling error. This is a typical LITP problem, and the
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parameters θ can be estimated recursively using the WRLS

method, as follows.

e(t+ 1) = y(t+ 1)− φT (t+ 1)θ(t)

θ(t+ 1) = θ(t) + P (t+ 1)φ(t+ 1)e(t+ 1)

P (t+ 1) =
1

λ
(P (t)− P (t)φ(t+ 1)φT (t+ 1)P (t)

λ+ φT (t+ 1)P (t)φ(t+ 1)
)

(7)

where λ is the FF. The initial parameters θ(0), P (0) can be

obtained by performing a block-wise least square estimation.

B. DT RLS Method

Equation (2) can be discretized as follows,

vo(t) =
n0 + n1 ∗ q−1 + n2 ∗ q−2

1− d1 ∗ q−1 − d2 ∗ q−2
∗ i(t) + c0 (8)

and then yielding,

vo(t) = φT
d (t) ∗ θd + e(t) (9)

where

φd(t) = [vo(t−Ts), vo(t−2Ts), i(t), i(t−Ts), i(t−2Ts), 1]
T

θd = [d1, d2, n0, n1, n2,−c0 ∗ (1− d1 − d2)]
T

e(t) is the modelling error. This is again a LITP problem, and

the WRLS method can be used.

There are some techniques to improve the parameter

estimation stability and consistency of the WRLS method,

such as data pre-processing (e.g., normalization), variable

FF or directional forgetting, algorithm turn on/off scheme,

covariance resetting [19]. Here the turn-on-turn-off method

is adopted, namely, turning off the parameter adaption when

the modelling error keeps low for a certain time period (e.g.,
1
N1

∗Σt
τ=t−N1Ts

e2(τ) < eth where eth is the threshold level),

and then turning on again when the error increases over

the threshold. This is because the battery model parameters

are assumed to change slowly (since the battery SOC or

temperature usually change slowly), and if the modelling error

keeps low, it is reasonable to assume that the optimal model

parameters have been found. An upper-limit threshold value of

the trace of P (t) is also adopted to prevent covariance blowup

[19] and unnecessary parameter fluctuations, as follows

if trace(P (t)) > Ptr,max,
then P (t) = P (t) ∗ Ptr,max/trace(P (t))

IV. EXPERIMENTAL RESULTS

A. Modelling Results

Two dynamic load test data sets are collected using a

lithium ion NCA 18650 cell at the room temperature (25
◦C), for model training and validation, as shown in Figs. 2

and 3, respectively. The sampling time is one second. The

experimentally derived battery OCV versus SOC cruve is

shown in Fig. 4. This battery shows a low hysteresis effect

[20], which is thus neglected. Only the test data between

20-90% SOC is used for the model training and validation

to avoid the highly nonlinear zones of the battery dynamics.

Usually lithium ion batteries are operated within this SOC

Fig. 2 Model training data set: test starts from 100% SOC till end of
discharge

Fig. 3 Model validation data set: test starts from 100% SOC till end of
discharge

range, because cycling operations at too high and too low

SOC degrade the battery much faster [21].

The identified model parameters using the training data

set are given in Figs. 5 and 6 for the CT LIF method and

the DT RLS method, respectively, where taoj = Rj ∗ Cj

stands for the j-th RC network time constant. The two RC

time constants of the CT model lie around 10s and 200s,

respectively, and the two resistors R1, R2 are both significant.

On the other hand, the DT model has one RC network (R2C2)

with tao2 ≈ 0.5s,R2 ≈ 0.6mΩ, whose voltage contribution

Fig. 4 Battery OCV vs SOC
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is almost negligible compared with that of R1C1. Since the

larger time constant of the DT model is about 20s, we assume

that it has limited capacity of capturing battery low dynamics

outside its frequency range, e.g., < 0.01Hz. In contrast, the

CT model should be able to model the battery dynamics

accurately at a wider frequency range compared with the DT

model.

Fig. 5 Model parameter estimation results using CT LIF method on the
training data set in Fig. 2

Fig. 6 Model parameter estimation results using DT RLS method on the
training data set in Fig. 2

The model training errors are shown in Fig. 7, which

shows the one-step-ahead (OSA) prediction error, i.e., e(t) in

(6) and (9). The results show that the DT and CT models

produce similar OSA prediction accuracy. Since the OSA

error weights lower on the low-frequency range and higher

on the high-frequency range, the advantage of the CT model

on the low frequency range is suppressed. To further compare

between the CT and DT models, we run simulations using

the identified DT and CT models on both the training and

validation data set. The results are shown in Figs. 8 and

9, which clearly show that the CT model outperforms the

DT model in terms of long term prediction accuracy. The

simulation root mean square errors (RMSEs) using the training

data set (in Fig. 8) are 21.6 mV and 36.3 mV for the CT and

DT method, respectively. The simulation RMSEs using the

validation data set (in Fig. 9) are 17.3 mV and 53.8 mV for

the CT and DT method, respectively.

Fig. 7 Modelling error using CT LIF and DT RLS methods on the training
data set in Fig. 2: OSA prediction error

Fig. 8 Modelling error using CT LIF and DT RLS methods on the training
data set in Fig. 2: simulation error

Fig. 9 Modelling error using CT LIF and DT RLS methods on the
validation data set in Fig. 3: simulation error

B. SOC Estimation Results

The battery SOC is assumed to be known in the above

analysis, then the battery OCV can be calculated using the

OCV-SOC relationship, and then the calculation of vo =
v−OCV . In practise, there may exist an initial SOC estimation

error. Assume a linear piecewise relationship between the

battery OCV and SOC (which is valid according to Fig. 4),

this initial SOC error will generate a constant bias in the
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OCV estimation, i.e., c0 in (2), which is a slowly time-varying

constant depending on the SOC error and the slope of

the OCV-SOC curve. Therefore, once this parameter c0 is

estimated, the battery OCV can be compensated as OCV −c0,

and then the battery SOC estimation can be corrected. Note

that after this correction, the vo values need to be updated to

vo + c0, and then reset c0 = 0. The rest model parameters

can thus remain almost unaffected. This overall procedure is

shown as follows,

First, initialize soc(0), θ(0), P (0). Then at time t = kT

1) measure voltage and current v(t), i(t)
2) update soc(t) in (1)

3) calculate OCV (t) using the OCV-SOC look-up table,

and then calculate vo(t) = v(t)−OCV (t)
4) calculate y(t), φ(t) in (6)

5) update θ(t), P (t) in (7)

6) compensate OCV (t) = OCV (t) − c0; update soc(t)
using the OCV-SOC table. Then update vo(t − 2LTs :
t) = vo(t− 2LTs : t) + c0; then reset c0 = 0. Note that

the Matlab syntax is used here to indicate the way of

variable update.

Note that the OCV compensation step 6) does not need

to be implemented in every iteration. Actually, step 6 is

implemented only when c0 is stable and significant (large than

a threshold value cth corresponding to 2% SOC deviation), i.e.,

1

N2
Σt

τ=t−N2Ts
c0(τ) > cth

.

By means of an example, assume a 20% initial SOC error

using the training data set, and run the above parameter and

SOC estimation procedure, the SOC estimation results are

given in Fig. 10. As it can be seen, the SOC estimation method

can effectively correct the large initial error. The obtained SOC

RMSE is about 2.3%.

C. Discussion and Future Work

From (2) and (8), it may be appealing to use the recursive

instrumental variable (RIV) method [22], or recursive output

error estimation method [23], rather than the RLS method for

parameter identification. The adaption scheme of RIV method

is more complex than the RLS method and more care needs

to be taken for parameter convergence analysis. Further, the

CT LIF method has already achieved desirable modelling

accuracy, and thus the RIV method is not covered in this paper.

However, this may constitute our future work.

The OCV hysteresis effect of the NCA cell used in this

paper is negligible for SOC estimation. However, for other

lithium ion cells, e.g., LiFePO4 cell, the hysteresis effect

needs to be taken into consideration in order to obtain accurate

SOC estimation. This will be dealt with in our future work.

V. CONCLUSION

Battery ECMs are widely used in the battery management

systems in EVs and other battery energy storage systems, and

play a key role in the system analysis and control. The model

parameters vary with the operating condition and thus need to

Fig. 10 SOC estimation results using CT LIF method on the training data set

be estimated in realtime to improve the modelling accuracy.

This paper presents a new way of online ECM parameter

estimation using the CT LIF method, which shows improved

modelling accuracy compared with the conventional DT RLS

method. The proposed method can also be used for online

SOC estimation. Test data are collected on a lithium ion cell,

and the experimental results have verified the effectiveness

of the proposed method for both model parameter and SOC

estimation.
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[21] A. Barré, B. Deguilhem, S. Grolleau, M. Gérard, F. Suard, and D. Riu,
“A review on lithium-ion battery ageing mechanisms and estimations
for automotive applications,” Journal of Power Sources, vol. 241, pp.
680–689, 2013.

[22] S. Sagara and Z.-Y. Zhao, “Numerical integration approach to on-line
identification of continuous-time systems,” Automatica, vol. 26, no. 1,
pp. 63–74, 1990.

[23] L. Dugard and I. Landau, “Recursive output error identification
algorithms theory and evaluation,” Automatica, vol. 16, no. 5, pp.
443–462, 1980.


