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Abstract—Lung cancer accounts for the most cancer related 

deaths for men as well as for women. The identification of cancer 
associated genes and the related pathways are essential to provide an 
important possibility in the prevention of many types of cancer. In 
this work two filter approaches, namely the information gain and the 
biomarker identifier (BMI) are used for the identification of different 
types of small-cell and non-small-cell lung cancer. A new method to 
determine the BMI thresholds is proposed to prioritize genes (i.e., 
primary, secondary and tertiary) using a k-means clustering approach. 
Sets of key genes were identified that can be found in several 
pathways. It turned out that the modified BMI is well suited for 
microarray data and therefore BMI is proposed as a powerful tool for 
the search for new and so far undiscovered genes related to cancer. 
 

Keywords—lung cancer, micro arrays, data mining, feature 
selection.  

I. INTRODUCTION 
UNG cancer accounts for the most cancer related deaths 
(29%) for men as well as for women and follows with a 
very poor prognosis – a 5-year survival rate of 15% (data 

for USA) [1]. The major types of lung cancer are small-cell 
and non-small-cell cancer. Non-small-cell cancer can be 
further divided into three major histological subtypes: 
squamous-cell carcinoma, adenocarcinoma, and large-cell 
lung cancer [2]. The treatment of lung cancer depends on the 
cancer type and the stage of cancer including surgery, 
radiation therapy, chemotherapy and targeted biological 
therapies.  

Biologists have known for a long time that the participation 
of certain genes in specific pathways are risk factors for 
multiple cancers. The identification of these genes and 
pathways is important since targeting them could provide an 
important possibility in the prevention of many types of 
cancer. Such genes include both onco-genes and onco-
pathways that are amplified in cancers and activate the growth 
of tumors across different organs and tumor suppressor genes 
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having the opposite effect (i.e., if active, they prevent multiple 
types of tumor growth and development) [3]. 

DNA microarray technology enables the simultaneous 
monitoring of the expression of thousands of genes resulting 
in a high dimensionality of the data subject to being 
investigated. Changes in the expression levels of single genes 
during cancer development within a given cell population may 
be associated with cancer etiology and development [4]. For 
extraction of those particular genes or features, however, 
sophisticated data mining approaches are required. Feature 
selection, as an important step in the data mining process, 
reduces dimensionality by searching for representative feature 
subsets with highly discriminatory ability.  

In general, feature selection methods can be classified into 
filters and wrappers [5]. Filter methods rank features based on 
a quality measure (merit) depending on the ability to 
distinguish between predefined classes (e.g., case vs. control 
group). Wrappers use accuracy estimates provided by machine 
learning approaches to evaluate feature subsets. In general, 
feature subsets selected by wrappers are highly discriminatory, 
with the drawback of an extensive computational cost. Filters 
are more efficient but less accurate. The calculated merit – on 
the other hand – allows prioritizing features which is 
particularly important for biological interpretation purposes. 

Especially for small size datasets there are significant 
differences in the ranking between different filter approaches 
due to the diversity of the underlying statistical models [6]. It 
is obvious that the underlying models learned from data 
include different types of errors. The bias-variance 
decomposition as defined by Geman and collegues [7] 
distinguishes between three types of errors: The bias error is a 
systematic component of the error. It results from differences 
between the learning method and the domain [8]. The 
variance error results from differences between models of 
different samples. The sum of bias and variance is called total 
expected error of a learning method. The intrinsic error is due 
to the uncertainty in the domain and cannot be “learned” [9].  

In this work different types of small-cell and non-small-cell 
lung cancer are compared using information gain (IG) [10] 
and the biomarker identifier (BMI) [11] as feature selection 
methods. The IG computes the discriminatory ability of every 
feature based on an entropy measure.  

The BMI, which was originally applied on metabolic data, 
combines various statistical measures to calculate an 
evaluation score for feature ranking. The strength of the BMI 
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is the ability to clearly differ between primary, secondary and 
tertiary marker candidates with respect to their discriminatory 
ability. For the categorization of genes into these three groups 
using BMI a new method relying on a k-means clustering 
approach is proposed. 

II. METHODS 

A. Research Data 
In this study, the gene expression data sets from 

GlaxoSmithKline (GSK) are examined which had released the 
genomic profiling data for over 300 cancer cell lines via the 
National Cancer Institute’s cancer Bioinformatics Grid™ 
(caBIG™) [12]. The investigated dataset applied in this work 
comprises data of 177 individuals divided into different types 
of lung cancer: small-cell (n = 41), adenocarcinoma (n = 65), 
squamous-cell (n = 34) and large-cell cancer (n = 37). 
Formally, the dataset can be described as a set of tuples T, 
where T = {(cj,m)|cj ∈ C, m ∈ M} with C = { small-cell 
cancer, adenocarcinoma, squamous-cell, large-cell cancer }, C 
is the set of class labels and M is the set of features (gene 
expressions). The number of measured gene expressions 
available in the database is 54,676. 

B. Feature Selection using the Information Gain 
The IG describes how well a given feature separates 

between two or more classes based on an entropy measure. 
The IG with respect to class cj can be defined as the difference 
between the entropy of class cj and the conditional entropy for 
class cj for a given feature fi. This means that the expected 
reduction of entropy caused by partitioning the data according 
to feature fi can be measured and used for feature ranking [10, 
13]. More formally the IG in feature F with relation to C is the 
mutual information between F and C [14]: 
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C. Feature Selection using the Biomarker Identifier 
The Biomarker identifier (BMI) was developed for 
dichotomous test problems and combines various statistical 
measures to discern the discriminatory ability of features 
distinguishing between two classes of interest. The BMI score 
for a feature f, a variant of the initial method described in 
Baumgartner et al. [11], is defined as: 
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where λ  is a scaling factor and TP2 is the product of the true 
positive (TP) values determined for both classes using logistic 
regression analysis. The parameter diffΔ  calculates relative 
changes in levels with respect to a reference group, 

and
CV

refCV
 denotes changes in the variance of data across the 

two cohorts.  x  is the mean value of levels in both classes. 
Using BMI for microarray data, a list of genes ranked by the 
BMI score is returned, representing the ability of genes to 
distinguish between both cohorts. Note that a positive 

diffΔ can be interpreted as over expression, a negative 

diffΔ value as under expression in the second class – compared 
to the chosen reference class – of a particular gene. 
 

D. Gene categorization 
A categorization scheme into primary, secondary and 

tertiary candidate genes according to their discriminatory 
ability is proposed. Primary genes reflect high (positive as 
well as negative) alterations in their expression levels. The 
prioritization into secondary and tertiary genes appears to be 
useful to distinguish between further promising candidates of 
which the latter group is more likely associated with 
secondary gene regulation pathways.  

For the IG empirical threshold scores greater than zero, 
greater than the half maximum score and greater than two-
thirds of the maximum score (see Table I) are used.  

TABLE I.  THRESHOLDS FOR PRIMARY, SECONDARY AND TERTIARY GENE 
SETS USING IG. 

Categorization of 
genes IG 

Primary  ≥ 0.67 

Secondary  0.67 > IG ≥  0.5 

Tertiary  0.5 > IG > 0 

 
To determine adequate thresholds for the BMI first a 

histogram of computed BMI scores was created (see Fig. 1). It 
is assumed that there are regions (or clusters) with “strong” 
(high absolute BMI score values, grey area in Fig. 1) and weak 
discriminating genes (low BMI absolute score values, black 
area in Fig. 1). To discern such regions a partitioning 
clustering algorithm on absolute BMI scores to get symmetric 
cut-offs was applied. In this work the k-means algorithm [15, 
16] with k=4 number of clusters was used (three clusters 
represent genes categorized into primary, secondary and  
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tertiary genes, the cluster in the center of the histogram 
represents genes with weak or no discrimination). K-means 
groups the data objects by minimizing the sum of squared 
distances between each data point and its cluster 
representative based on an iterative procedure. 
 

 
Fig. 1 Histogram of calculated BMI scores (schematic illustration). 
Grey areas indicate BMI scores of genes with good or excellent 
discrimination where the black area in the middle represents BMI 
values of genes with weak or no discrimination.  

TABLE II.  CALCULATED BMI THRESHOLDS FOR PRIMARY, 
SECONDARY AND TERTIARY GENE SETS. 

Categorization of genes Reference  
vs. comparison 

group 
primary 

threshold  
secondary 
threshold  

tertiary 
threshold 

Adenocarcinoma  
vs. small-cell  |BMI| ≥ 590 590 > |BMI|  ≥ 

170 170 > |BMI|  ≥47 

Squamous-cell 
vs. adenocarcinoma |BMI| ≥ 230 230 > |BMI|  ≥ 90 90 > |BMI|  ≥ 30 

Squamous-cell  
vs. large-cell  |BMI| ≥ 170 170 > |BMI|  ≥ 50 50 > |BMI|  ≥ 20 

Squamous-cell  
vs. small-cell |BMI| ≥ 190 190 > |BMI|  ≥ 90 90 > |BMI|  ≥ 40 

Large-cell  
vs. adenocarcinoma |BMI| ≥ 230 230 > |BMI|  ≥ 80 80 > |BMI|  ≥ 30 

Large-cell  
vs. small-cell |BMI| ≥ 140 140 > |BMI|  ≥ 60 60 > |BMI|  ≥  30 

 

III. RESULTS 
The calculated BMI thresholds for gene categorization 

using the k-means approach are depicted in Table II. The 
corresponding clusters and thresholds for BMI when 
comparing adenocarcinoma vs. small-cell lung cancer are 
shown in Fig. 2. The identified number of primary, secondary 
and tertiary candidate genes using the BMI are depicted in 
Table III and using the IG in Table IV.  

The IG lacked the ability to clearly categorize genes into the 
proposed scheme when using the clustering approach (Fig. 3), 
resulting in a high number of primary genes (2,531 primary 
gene candidates for adenocarcinoma vs. small-cell lung 
cancer, residual data not shown). This might be explained that 
IG scores do not follow roughly a Gaussian distribution 
(compare Fig. 3b). Furthermore the IG does not allow 
distinguishing between over- and under expression, because 
the IG solely delivers absolute values. 

 

TABLE III.  NUMBER OF IDENTIFIED GENES USING BMI AND K-
MEANS CUT-OFFS FOR DIFFERENT LUNG CANCER TYPES. 

Categorization of genes 
Reference vs. comparison group  primary 

n 
secondary 

n 
tertiary 

n 

Adenocarcinoma vs. small-cell  79 1669 13173 

Squamous-cell vs. adenocarcinoma 321 4707 17464 

Squamous-cell vs. large-cell  100 6121 34390 

Squamous-cell vs. small-cell 614 6677 24028 

Large-cell vs. adenocarcinoma 253 4981 16911 

Large-cell vs. small-cell 555 11058 25771 

 

TABLE IV.  NUMBER OF IDENTIFIED GENES USING IG  FOR 
DIFFERENT LUNG CANCER TYPES APPLYING THE THRESHOLDS DEFINED IN 

TABLE I. 

Categorization of genes 
Reference vs. comparison group primary 

n  
secondary 

n  
tertiary 

n 

Adenocarcinoma vs. small-cell  615 1503 21098 

Squamous-cell vs. adenocarcinoma 13 519 26578 

Squamous-cell vs. large-cell  0 20 5753 

Squamous-cell vs. small-cell 78 993 25633 

Large-cell vs. adenocarcinoma 13 519 26578 

Large-cell vs. small-cell 78 993 25633 

 

 

Fig. 2 Identified clusters on the BMI scores using the k-means 
algorithm for adenocarcinoma vs. small-cell lung cancer (a), and the 
related histogram plot (b). Green: primary genes; black: secondary 
genes; blue: tertiary genes. In the left figure (a) the absolute BMI 
scores are displayed according to their sorted rank (index).  

 
 
 

a)                                       b) 



International Journal of Medical, Medicine and Health Sciences

ISSN: 2517-9969

Vol:3, No:10, 2009

279

 

 

 

Fig. 3 Identified clusters on IG scores using the k-means clustering 
algorithm for adenocarcinoma vs. small-cell carcinoma (a) (red: 
primary genes; green: secondary genes; blue: tertiary genes), and the 
related histogram plot (b).  

IV. DISCUSSION AND CONCLUSION 
In this work gene expressions of different types of small-

cell and non-small-cell lung cancer are compared. The feature 
selection methods IG and BMI were applied to search for the 
best discriminating genes when comparing pairs of different 
cancer types and categorize them into primary, secondary and 
tertiary candidate genes. It turned out that fixed thresholds are 
inappropriate for categorizing genes because the number of 
primary genes ranges from 0 to 615 for the different data sets 
when using empirical IG cut-offs. Based on this aspect a new 
method for adjusting thresholds using a k-means clustering 
approach was developed.  

Due to the characteristics of roughly Gaussian distributed 
scores when using the BMI method it excellently turns out the 
primary gene cluster, representing a range beyond the 99th 
percentile of calculated BMI scores. Furthermore the BMI 
method is very useful to distinguish between over- and under 
expressed genes. Interpreting the distribution of BMI scores it 
also points out a general tendency to higher or lower over- or 
respectively under expressed genes in a micro array 
experiment (see Fig. 4).  

 
Fig. 4 Histogram plot of BMI scores for comparing squamous-cell vs. 
adenocarcinoma indicating a higher ratio of under expressed genes 
(BMI-scores < 0). 
 

 

At this point it is also important to map the top ranking 
markers with their genes and biological pathways. 

Therefore pathway analysis was performed using HGD 
(Hyper Geometric Distribution) technique to validate the top 
ranked genes and the associated pathways [17]. These genes 
were found to be part of Cell Communication, Focal adhesion, 
T cell receptor signaling pathway, ECM-receptor interaction 
pathway, Cell Cycle and P53 signaling pathways. The list of 
top ranked gene names and their associated pathways by 
comparing squamous-cell lung carcinoma vs. large-cell lung 
carcinoma is shown in Table V (using BMI) and Table VI 
(using IG). Focal adhesion, cell cycle, P53 signaling and 
ECM-receptors pathways play a significant role in small cell 
lung cancer and non small cell lung cancer. These genes are 
involved in reducing the cell-cycle progression and 
degradation of resistance to apoptosis signals as observed in 
the small cell lung cancer pathway models. Genes like 
collagen, cyclin d1 that have been identified as one of the key 
genes are also responsible for constitutively up-regulation in 
lung cancer cell lines. They have been found to be 
ecteinascidin 743 (ET-743; Yondelis, Trabectedin) a marine 
anticancer agent that induced long-lasting objective remissions 
and tumor control in a subset of patients with lung carcinoma. 
Hence these primary genes identified through this approach 
can play a significant role in distinguishing various cancer 
types in lung. 
 

TABLE V.  TOP TEN RANKED PRIMARY MARKERS AND PATHWAYS 
SQUAMOUS-CELL VS. LARGE-CELL USING BMI. 

Affymetrix ID Gene Name Pathways Involved 

37892_at collagen, type XI, alpha 1 

Cell 
Communication,  
Focal adhesion,  
ECM-receptor 

interaction 
242128_at orthodenticle homolog 2 - 

204320_at collagen, type XI, alpha 1 

Cell 
Communication,  
Focal adhesion,  
ECM-receptor 

interaction, Cell 
cycle 

243610_at otthump00000021439 - 

206422_at glucagon - 

1564359_a_at similar to hypothetical protein 
FLJ36492 - 

206378_at n/a - 

219612_s_at 
 fibrinogen gamma chain 

Complement 
Coagulation 

cascades, Small 
cell lung cancer 

229271_x_at n/a - 

210602_s_at n/a - 

 

a)                                       b) 
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TABLE VI.  TOP TEN RANKED PRIMARY MARKERS AND PATHWAYS 
SQUAMOUS-CELL VS. LARGE-CELL USING IG. 

Affymetrix ID Gene Name Pathways Involved 

217900_at 
 

isoleucyl-tRNA synthetase 2, 
mitochondrial 

Valine, leucine and 
isoleucine 

biosynthesis, 
Aminoacyl-tRNA 

biosynthesis 
235072_s_at n/a - 

211988_at 
 

swi/snf related, matrix 
associated, actin dependent 

regulator of chromatin, 
subfamily e, member 1 

Chromatin 
Remodeling by 

hSWI/SNF ATP-
dependent 

Complexes, 
Control of Gene 
Expression by 

Vitamin D 
Receptor 

218820_at chromosome 14 open reading 
frame 132 - 

209177_at chromosome 3 open reading 
frame 60 - 

208711_s_at 
 cyclin d1 

Cell cycle, p53 
signaling pathway, 

Wnt signaling 
pathway, Focal 
adhesion, Small 
cell lung cancer, 

Non-small cell lung 
cancer 

212614_at at rich interactive domain 5b 
(mrf1-like) - 

226609_at discoidin, cub and lccl domain 
containing 1 - 

222572_at 
 

protein phosphatase 2c, 
magnesium-dependent, catalytic 

subunit 
- 

218754_at nucleolar protein 9 - 

 
In order to cross validate the findings based on the selected 

cell lines used in the caBIGTM gene expression studies should 
be probed for expression profile of the identified genes and the 
corresponding protein levels. Similar profiling of the tumor 
tissues from mouse and human tumors would further validate 
findings from BMI and IG. An additional level of validation 
could involve pharmacologically treating the cells with known 
anti-tumor agents and profiling the same genes to determine 
potential efficacy. The biological studies might confirm the 
accuracy of the informatics tools developed and also point 
toward selective biomarkers that may be of significance in 
diagnostic and prognostic applications.  

Using IG and BMI sets of key genes which can be found in 
several pathways could be identified. Especially the BMI 
combined with dynamic thresholds is well suited for analyzing 
microarray experiments and therefore BMI as a powerful tool 
for the exploration of new and so far undiscovered genes 
associated with cancer is proposed.  

For future work it is intended to further study the predictive 
value of discovered gene sets to aid in risk prediction in lung 
cancer.  
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