On the Wreath Product of Group by Some Other Groups

Basmah H. Shafee

Abstract

In this paper, we will generate the wreath product $M_{11} w r M_{12}$ using only two permutations. Also, we will show the structure of some groups containing the wreath product $M_{11} w r M_{12}$. The structure of the groups founded is determined in terms of wreath product $\left(M_{11} w r M_{12}\right) w r C_{k}$. Some related cases are also included.

Also, we will show that $S_{132 K+1}$ and $A_{132 K+1}$ can be generated using the wreath product $\left(M_{11} w r M_{12}\right) w r C_{k}$ and a transposition in $S_{132 K+1}$ and an element of order 3 in $A_{132 K+1}$. We will also show that $S_{132 K+1}$ and $A_{132 K+1}$ can be generated using the wreath product $M_{11} w r M_{12}$ and an element of order $k+1$.

Keywords-Group presentation, group generated by n-cycle, Wreath product, Mathieu group.

I. INTRODUCTION

HAMMAS and Al-Amri [1], have shown that $A_{2 n+1}$ of degree $2 n+1$ can be generated using a copy of S_{n} and an element of order 3 in $A_{2 n+1}$. They also gave the symmetric generating set of Groups $A_{k n+1}$ and $S_{k n+1}$ using S_{n} [5] .

Shafee [2] showed that the groups $A_{k n+1}$ and $S_{k n+1}$ can be generated using the wreath product A_{m} wr S_{a} and an element of order $k+1$. Also she showed how to generate $S_{k n+1}$ and $A_{k n+1}$ symmetrically using n elements each of order $k+1$.

In [3], Shafee and Al-Amri have shown that the groups $A_{110 k+1}$ and $S_{110 k+1}$ can be generated using the wreath product $M_{11} w r M_{12}$ and an element of order $k+1$.

The Mathieu group M_{11} and M_{12} are two groups of the well known simple groups. In [6], they are fully described. In a matter of fact, they can be faintly presented in different ways. They have presentations in [6] as follows :

$$
\begin{aligned}
& M_{11}=<X, Y, Z \mid X^{11}=Y^{5}=(X Z)^{3}=1, X^{Y}=X^{4}=Y^{Z}=Y^{2}> \\
& \mathrm{M}_{12}=<\mathrm{X}, \mathrm{Y}, \mathrm{Z} \mid \mathrm{X}^{11}=\mathrm{Y}^{2}=\mathrm{Z}^{2}=(\mathrm{XY})^{3}=(\mathrm{XZ})^{3}=(\mathrm{YZ})={ }^{10} 1, M_{11} \\
& \mathrm{X}^{2}(\mathrm{YZ})^{2} \mathrm{X}=(\mathrm{YZ})^{2}>.
\end{aligned}
$$

Basmah H. Shafee, Assoc.professor, research field:Al-gebra, Group theory, wreath product, Mathieu group, Linear group (phone:00966555516216)(Email: dr.basmah_1391@hotmail.com).
can be generated using two permutations, the first is of order 13 and an involution as follows : $M_{11}=<(1,2, \ldots, 11)(1,2,3,7,6)(4,8,5,9,10)>. \quad M_{12}$ can be generated using two permutations, the first is of order 17 and an involution as follow:

$$
\mathrm{M}_{12}=<(1,2, \ldots, 11)(1,2,3,7,6)(4,8,5,9,10)(1,12)(2,11)(3,6)
$$

$(4,8)(5,9)(7,10)>$.
In this paper, we will generate the wreath product $M_{11} w r M_{12}$ using only two permutations. Also, we show the structure of some groups containing the wreath product $M_{11} w r M_{12}$. The structure of the groups founded is determined in terms of wreath product $\left(M_{11} w r M_{12}\right) w r C_{k}$. Some related cases are also included. Also, we will show that $S_{132 K+1}$ and $A_{132 K+1}$ can be generated using the wreath product $\left(M_{11} w r M_{12}\right) w r C_{k}$ and a transposition in $S_{132 K+1}$ and an element of order 3 in $A_{132 K+1}$. We will also show that $S_{132 K+1}$ and $A_{132 K+1}$ can be generated using the wreath product $M_{11} w r M_{12}$ and an element of order $k+1$.

II. Preliminary Results

DEFINITION 2.1 Let A and B be groups of permutations on non empty sets Ω_{1} and Ω_{2} respectively. The wreath product of A and B is denote by A wr B and defined as A wr $B=A^{\Omega}{ }_{2} \times_{\theta} B$, i.e., the direct product of $\left|\Omega_{2}\right|$ copies of A and a mapping θ

THEOREM 2.2 [4] Let G be the group generated by the n-cycle $(1,2, \ldots, n)$ and the 2 -cycle (n, a). If $1<a<n$ is an integer with $n=a m$, then $G \cong S_{m}$ wr C_{a}.

THEOREM 2.3 [4] Let $1 \leq a \neq b<n$ be any integers. Let n be an odd integer and let G be the group generated by the n cycle $(1,2, \ldots, n)$ and the 3 -cycle (n, a, b). If the $h c f_{(n, a, b)}=1$, then $G=A_{n}$. While if n can be an even then $G=S_{n}$.

THEOREM 2.4 [4] Let $1 \leq a<n$ be any integer. Let $G=\langle(1,2, \ldots, n),(n, a)\rangle$. If h.c.f. $(n, a)=1$, then $G=S_{n}$.

THEOREM 2.5 [4] Let $1 \leq a \neq b<n$ be any integers. Let n be an even integer and let G be the group generated by the $(n-1)$-cycle $(1,2, \ldots, n-1)$ and 3 -cycle (n, a, b). Then $G=A_{n}$.

III. The Results

THEOREM 3.1 The wreath product $M_{11} w r M_{12}$ can be generated using two permutations, the first is of order 132 and the second is of order 4.

Proof : Let $G=\langle X, Y\rangle$, where: $X=(1,2,3,4, \ldots, 132)$, which is a cycle of order $252, Y=(1,9)(2,6)(4,5)(7,8)(12,20,23$, $31)(13,17)(15,16)(18,19)(24,28)(26,27)(29,30)(34,42$, $56,64)(35,39)(37,38)(40,41)(45,53)(46,50)(48,49)(51$, $52)(57,61)(59,60)(62,63)(67,75)(68,72)(70,71)(73,74)$, which is the product of two cycles each of order 4 and twenty four transpositions. Let $\alpha_{1}=\left((X Y)^{6}[X, Y]^{5}\right)^{18}$. Then

$$
\alpha_{1}=(11,22,33,44,55,66,132)
$$

which is a cycle of order 7. Let $\alpha_{2}=\alpha_{1}^{-1} X$. It is easy to show that

$$
\begin{gathered}
\alpha_{2}=(1,2,3, \ldots, 17)(18,19,20, \ldots, 22) \ldots(67,68,69, \\
132),
\end{gathered}
$$

which is the product of seven cycles each of order 11. Let: $\beta_{1}=\left(Y^{2}\right)^{(X Y)^{18}}=(9, \quad 20)(12, \quad 23)(31, \quad 53)(34, \quad 56)$, $\beta_{2}=\beta_{1} Y^{-1}=(1,9,12,20)(2,6)(4,5)(7,8)(13,17)(15$, $16)(18,19)(23,31,45,53)(24,28)(26,27)(29,30)(34,42)(35$, 39)(37, 38)(40, 41)(46, 50)(48, 49)(51, 52)(56, 64)(57, $61)(59,60)(62,63)(67,75)(68,72)(70,71)(73,74)$, $\beta_{3}=\left(Y^{3} \beta_{2}\right)^{2}=(1, \quad 45)(12, \quad 23), \quad \beta_{4}=\beta_{3}^{\left(\alpha_{2}^{-1} \alpha_{1}^{3}\right)}=(11$, $44)(55,66)$ and $\beta_{5}=\beta_{4}^{\beta_{3} \alpha_{2}^{-1}}=(17,221)(68,85)$.

Let $\alpha_{3}=\beta_{5}{ }^{\left.\beta_{3} \alpha_{2}^{-1} \alpha_{1}\right)}$. Hence
$\alpha_{3}=(12,24)(48,60)$.
Let $\alpha_{4}=Y X^{-1} \alpha_{3}^{-1} X$. We can conclude that
$\alpha_{4}=(1,9)(2,6)(4,5)(7,8)(12,20)(13,17)(15,16)(18,19)(23,3$

1) $(24,28)(26,27)(29,30)(34,42)(35,39)(37,38)(40,41)(45,53)(4$ $6,50)(48,49)(51,52)(56,64)(57,61)(59,60)(62,63)(67,75)(68,7$ 2) $(70,71)(73,74)$,
which is the product of twenty eight transpositions. Let $K=\left\langle\alpha_{2}, \alpha_{4}\right\rangle$. Let $\left.\theta: K \rightarrow M_{12}\right)$ be the mapping defined by

$$
\theta(12 i+j)=j \quad \forall 1 \leq i \leq 10, \forall 1 \leq j \leq 12
$$

Since $\theta\left(\alpha_{2}\right)=(1,2, \ldots, 12)$ and $\theta\left(\alpha_{4}\right)=(1,9)(2,6)(4$, 5)(7, 8), then $K \cong \theta(K)=M_{12}$. Let $H_{0}=\left\langle\alpha_{1}, \alpha_{3}\right\rangle$. Then $H_{0} \cong M_{11}$. Moreover, K conjugates H_{0} into H_{1}, H_{1} into H_{2} and so it conjugates H_{16} into H_{0}, where
$H_{i}=<(i, 12+i, 34+i, 51+i, 68+i, 85+i, 102+i, \ldots, 221+i)(i, 12+i)(34+i, 68+i)>$
$\forall 1 \leq i \leq 10$. Hence we get $\left.M_{11} w r M_{12}\right) \subseteq G$. On the other hand, Since $X=\alpha_{1} \alpha_{2}$ and $Y=\alpha_{4} \alpha_{3}^{X}$, then $G \subseteq M_{11} w r M_{12}$. Hence $G=M_{11} w r M_{12} \diamond$

THEOREM 3.2 The wreath product $\left(M_{11} w r M_{12}\right) w r C_{k}$ can be generated using two permutations, the first is of order $132 k$ and an involution, for all integers $k \geq 1$.

Proof: Let $\sigma=(1,2, \ldots, 132 k)$ and $\tau=(k, 9 k)(2 k, 6 k)(4 k$, $5 k)(7 k, 8 k)(12 k, 20 k, 23 k, 31 k)(13 k, 17 k)(15 k, 16 k)(18 k$, $19 k)(24 k, 28 k)(26 k, 27 k)(29 k, 30 k)(34 k, 42 k, 56 k, 64 k)(35 k$, $39 k)(37 k, 38 k)(40 k, 41 k)(45 k, 53 k)(46 k, 50 k)(48 k, 49 k)(51 k$, $52 k)(57 k, 61 k)(59 k, 60 k)(62 k, 63 k)(67 k, 75 k)(68 k, 72 k)(70 k$, $71 k$). If $k=1$, then we get the group $M_{11} w r M_{12}$ which can be considered as the trivial wreath product $\left(M_{11} w r M_{12}\right) w r C_{k} \mathrm{wr}<\mathrm{id}>$. Assume that $k>1$. Let $\alpha=\prod_{i=0}^{12} \tau^{\sigma^{\omega^{*}}}$, we get an element $\delta=\alpha^{45}=(k, 2 k, 3 k, \ldots$, $132 k$). Let $G_{i}=\left\langle\delta^{\sigma^{\mathrm{i}}}, \tau^{\sigma^{\mathrm{i}}}\right\rangle$, be the groups acts on the sets $\Gamma_{i}=\{\mathrm{i}, k+\mathrm{i}, 2 k+\mathrm{i}, \ldots, \quad 131 k+i\}$, for all $1 \leq i \leq k$. Since $\bigcap_{i=1}^{k} \Gamma_{i}=\varphi$, then we get the direct product $G_{1} \times G_{2} \times$ $\ldots \times G_{k}$, where, by theorem 3.1 each $G_{i} \cong M_{11} w r M_{12}$. Let $\beta=\delta^{-1} \sigma=(1,2, \ldots, k)(k+1, k+2, \ldots, 2 k) \ldots(76 k+1,76 k+2$, $\ldots, 132 k)$. Let $H=\langle\beta\rangle \cong C_{k} . H$ conjugates G_{1} into G_{2}, G_{2} into G_{3}, \ldots and G_{k} into G_{1}. Hence we get the wreath $\left.\operatorname{product}\left(M_{11}\right) w r M_{12}\right) w r C_{K} \subseteq G$. On the other hand, since $\delta \beta=(1,2, \ldots, k, k+1, k+2, \ldots, 2 k, \ldots, 131 k+1$, $131 k+2, \quad \ldots, \quad 132 k)=\sigma$, then $\sigma \in\left(M_{11} w r M_{12}\right) w r C_{K}$. Hence $G=\langle\sigma, \tau\rangle \cong\left(M_{11} w r M_{12}\right) w r C_{K} . \diamond$

THEOREM 3.3 The wreath product $\left(L_{2}(11) w r M_{12}\right) w r S_{k}$ can be generated using three permutations, the first is of order $132 k$, the second and the third are involutions, for all $k \geq 2$.

Proof: Let $\sigma=(1,2, \ldots, 132 k), \tau=(k, 9 k)(2 k, 6 k)(4 k$, $5 k)(7 k, 8 k)(12 k, 20 k, 23 k, 31 k)(13 k, 17 k)(15 k, 16 k)(18 k$, $19 k)(24 k, 28 k)(26 k, 27 k)(29 k, 30 k)(34 k, 42 k, 56 k, 64 k)(35 k$, $39 k)(37 k, 38 k)(40 k, 41 k)(45 k, 53 k)(46 k, 50 k)(48 k, 49 k)(51 k$, $52 k)(57 k, 61 k)(59 k, 60 k)(62 k, 63 k)(67 k, 75 k)(68 k, 72 k)(70 k$, $71 k)$ and $\mu=(1,2)(k+1, k+2)(2 k+1,2 k+2) \ldots(131 k+1$, $131 k+2$). Since by Theorem 3.2, $\langle\sigma, \tau\rangle=\left(M_{11} w r M_{12}\right) w r C_{k}$ and $(1,2, \ldots, k)(k+1, k+2, \ldots$, $2 k) \quad \ldots \quad(131 k+1, \quad \ldots, 132 k) \in \quad\left(M_{11} w r M_{12}\right) w r C_{k}$ then $\langle(1, \ldots, k)(k+1, \ldots, 2 k) \ldots(131 k+1, \ldots, 132 k), \mu\rangle \cong S_{k}$. Hence $G=\langle\sigma, \tau, \mu\rangle \cong\left(M_{11} w r M_{12}\right) w r S_{k} . \diamond$

COROLLARY 3.4 The wreath product $\left(M_{11} w r M_{12}\right) w r A_{k}$ can be generated using three permutations, the first is of order $132 k$, the second is an
involution and the third is of order 3, for all odd integers $k \geq$ 3.

THEOREM 3.5 The wreath product $\left(M_{11} w r M_{12}\right) w r\left(S_{m} w r C_{a}\right)$ can be generated using three permutations, the first is of order $132 k$, the second and the third are involutions, where $k=a m$ be any integer with $1<a<k$.

Proof : Let $\sigma=(1,2, \ldots, 132 k), \tau=(k, 9 k)(2 k, 6 k)(4 k$, $5 k)(7 k, 8 k)(12 k, \quad 20 k, 23 k, 31 k)(13 k, 17 k)(15 k, 16 k)(18 k$, $19 k)(24 k, 28 k)(26 k, 27 k)(29 k, 30 k)(34 k, 42 k, 56 k, 64 k)(35 k$, $39 k)(37 k, 38 k)(40 k, 41 k)(45 k, 53 k)(46 k, 50 k)(48 k, 49 k)(51 k$, $52 k)(57 k, 61 k)(59 k, 60 k)(62 k, 63 k)(67 k, 75 k)(68 k, 72 k)(70 k$, $71 k)$ and $\mu=(k, a)(2 k, k+a)(3 k, 2 k+a) \ldots(132 k, 131 k+a)$. Since by Theorem 3.2, $\langle\sigma, \tau\rangle \cong\left(M_{11} w r M_{12}\right) w r C_{k}$ and $(1, \ldots, k)(k+1, \ldots, 2 k) \ldots \quad(131 k+1, \quad \ldots \quad, 132 k) \in$ $\left(M_{11} w r M_{12}\right) w r C_{k}$ then
$\langle(1, \ldots, \quad k)(k+1, \quad \ldots, \quad 2 k) \quad \ldots(131 k+1, \quad \ldots$, 132k, $\mu\rangle \cong\left(S_{m}\right.$ wr $\left.C_{a}\right)$.
Hence $G=\langle\sigma, \tau, \mu\rangle \cong\left(M_{11} w r M_{12}\right) w r\left(S_{m} w r C_{a}\right) . \diamond$
THEOREM $3.6 S_{132 k+1}$ and $A_{132 k+1}$ can be generated using the wreath product $\left(M_{11} w r M_{12}\right) w r C_{k}$ and a transposition in $S_{132 k+1}$ for all integers $k>1$ and an element of order 3 in $A_{132 k+1}$ for all odd integers $k>1$.

Proof: Let $\sigma=(1,2, \ldots, 132 k), \tau=(k, 9 k)(2 k, 6 k)(4 k$, $5 k)(7 k, 8 k)(12 k, \quad 20 k, 23 k, 31 k)(13 k, 17 k)(15 k, 16 k)(18 k$, $19 k)(24 k, 28 k)(26 k, 27 k)(29 k, 30 k)(34 k, 42 k, 56 k, 64 k)(35 k$, $39 k)(37 k, 38 k)(40 k, 41 k)(45 k, 53 k)(46 k, 50 k)(48 k, 49 k)(51 k$, $52 k)(57 k, 61 k)(59 k, 60 k)(62 k, 63 k)(67 k, 75 k)(68 k, 72 k)(70 k$, $71 k), \mu=(132 k+1,1)$ and $\mu^{\prime}=(1, k, 132 k+1)$ be four permutations, of order $132 k, 2,2$ and 3 respectively. Let $H=\langle\sigma, \tau\rangle$. By theorem $3.2 H \cong\left(M_{11} w r M_{12}\right) w r C_{k}$.

Case 1: Let $G=\langle\sigma, \tau, \mu\rangle$. Let $\alpha=\sigma \mu$, then $\alpha=(1,2, \ldots, 132 k, 132 k+1) \quad$ which is a cycle of order $132 k+1$.

By theorem 2.4 $G<\sigma, \tau, \mu^{\prime}>\cong<\alpha, \mu>\cong S_{132 k+1}$.
Case 2: Let $G=\left\langle\sigma, \tau, \mu^{\prime}\right\rangle$
By theorem $\left.2.5<\sigma, \mu^{\prime}\right\rangle \cong A_{132 K+1}$. Since τ is an even permutation, then $G \cong A_{132 K+1}$.

THEOREM $3.7 S_{132 k+1}$ and $A_{132 k+1}$ can be generated using the wreath product $L_{2}(11) w r M_{12}$ and an element of order $k+1$ in $S_{132 k+1}$ and $A_{132 k+1}$ for all integers $k \geq 1$.

Proof: Let $G=\langle\sigma, \tau, \mu\rangle$, where, $\sigma=(1,2,3, \ldots$, 132)(132(k-(k-1))+1, ..., 132(k-(k-1))+132) ... (132(k-1)+1, $\ldots, 132(k-1)+132), \tau=(1,9)(2,6)(4,5)(7,8)(12,20,23$, $31)(13,17)(15,16)(18,19)(24,28)(26,27)(29,30)(34,42,56$, $64)(35,39)(37,38)(40,41)(45,53)(46,50)(48,49)(51$, $52)(57,61)(59,60)(62,63)(67,75)(68,72)(70,71)(73,74) \ldots$ $(132(k-1)+1,132(k-1)+9) \ldots(132(k-1)+73,132(k-1)+74)$, and $\mu=(132,154, \ldots, 132 k, 132 k+1)$, where $k-i>0$, be three permutations of order 132, 4 and $k+1$ respectively. Let $H=\langle\sigma, \tau\rangle$. Define the mapping θ as follows;

$$
\theta(12(k-i)+j)=j \quad \forall 1 \leq i \leq k, \forall 1 \leq j \leq 12
$$

Hence $H=\langle\sigma, \tau\rangle \cong M_{11} w r M_{12}$. Let $\alpha=\mu \sigma$ it is easy to show that $\alpha=(1,2,3, \ldots, 132 k+1)$, which is a cycle of order $132 k+1$. Let
$\mu^{\prime}=\mu^{\sigma}=(1,133, \ldots, 132(k-1)+1,132 k+1) \quad$ and $\beta=\left[\mu, \mu^{\prime}\right]=(1,132,132 k+1)$.
Sinceh.c.f $(1,132,132 k+1), \quad$ then by theorem 2.3 $G=\langle\sigma, \tau, \mu\rangle \cong\langle\alpha, \beta\rangle S_{132 k+1} \quad$ or $A_{132 K+1} \quad$ depending \quad on whether k is an odd or an even integer respectively. \rangle

References

[1] A. M. Hammas and I. R. Al-Amri, Symmetric generating set of the alternating groups , JKAU: Educ. Sci., 7 (1994), 3-7.
[2] B. H. Shafee, Symmetric generating set of the groups and using th the wreath product , Far East Journal of Math. Sci. (FJMS), 28(3) (2008), 707-711.
[3] B. H. Shafee and I. R. Al-Amri, On the Structure of Some Groups Containing , International Journal of Algebra, vol.6, 2012,no.17, 857862.
[4] I.R. Al-Amri, Computational methods in permutation groups, ph.D Thesis, University of St. Andrews, September 1992.
[5] I.R. Al-Amri, and A.M. Hammas, Symmetric generating set of Groups and , JKAU: Sci., 7 (1995), 111-115.
[6] J. H. Conway and others, Atlas of Finite Groups, Oxford Univ. Press, New York, 1985.

