ISSN: 2517-9934 Vol:7, No:3, 2013

On the Wreath Product of Group by Some Other Groups

Basmah H. Shafee

Abstract—In this paper, we will generate the wreath product $M_{11}wrM_{12}$ using only two permutations. Also, we will show the structure of some groups containing the wreath product $M_{11}wrM_{12}$. The structure of the groups founded is determined in terms of wreath product $(M_{11}wrM_{12})wrC_k$. Some related cases are also included. Also, we will show that S_{132K+1} and A_{132K+1} can be generated using the wreath product $(M_{11}wrM_{12})wrC_k$ and a transposition in S_{132K+1} and an element of order 3 in A_{132K+1} . We will also show that S_{132K+1} and A_{132K+1} can be generated using the wreath product $M_{11}wrM_{12}$ and an element of order k+1.

Keywords—Group presentation, group generated by n-cycle, Wreath product, Mathieu group.

I. INTRODUCTION

 $\mathbf{H}^{\mathrm{AMMAS}}$ and Al-Amri [1], have shown that A_{2n+1} of degree 2n+1 can be generated using a copy of S_n and an element of order 3 in A_{2n+1} . They also gave the symmetric generating set of Groups A_{kn+1} and S_{kn+1} using S_n [5].

Shafee [2] showed that the groups A_{kn+1} and S_{kn+1} can be generated using the wreath product A_m Wr S_a and an element of order k+1. Also she showed how to generate S_{kn+1} and A_{kn+1} symmetrically using n elements each of order k+1.

In [3], Shafee and Al-Amri have shown that the groups A_{110k+1} and S_{110k+1} can be generated using the wreath product $M_{11}wrM_{12}$ and an element of order k+1.

The Mathieu group M_{11} and M_{12} are two groups of the well known simple groups. In [6], they are fully described. In a matter of fact, they can be faintly presented in different ways. They have presentations in [6] as follows:

$$M_{11} = \langle X, Y, Z \mid X^{11} = Y^5 = (XZ)^3 = 1, X^Y = X^4 = Y^Z = Y^2 > M_{12} = \langle X, Y, Z \mid X^{11} = Y^2 = Z^2 = (XY)^3 = (XZ)^3 = (YZ)^{=10} 1, M_{11} X^2 (YZ)^2 X = (YZ)^2 > .$$

Basmah H. Shafee, Assoc.professor, research field:Al-gebra, Group theory, wreath product, Mathieu group, Linear group (phone:00966555516216)(E-mail: dr.basmah_1391@hotmail.com).

can be generated using two permutations, the first is of order 13 and an involution as follows: $M_{11} = <(1,2,...,11)(1,2,3,7,6)(4,8,5,9,10) > .$ M_{12} can be generated using two permutations, the first is of order 17 and an involution as follow:

$$M_{12} = <(1,2,...,11)(1,2,3,7,6)(4,8,5,9,10)(1,12)(2,11)(3,6)$$

(4,8)(5,9)(7,10) > .

In this paper, we will generate the wreath product $M_{11}wrM_{12}$ using only two permutations. Also, we show the structure of some groups containing the wreath product $M_{11}wrM_{12}$. The structure of the groups founded is determined in terms of wreath product $(M_{11}wrM_{12})wrC_k$. Some related cases are also included. Also, we will show that S_{132K+1} and A_{132K+1} can be generated using the wreath product $(M_{11}wrM_{12})wrC_k$ and a transposition in S_{132K+1} and an element of order 3 in A_{132K+1} . We will also show that S_{132K+1} and A_{132K+1} can be generated using the wreath product $M_{11}wrM_{12}$ and an element of order k+1.

II. PRELIMINARY RESULTS

DEFINITION 2.1 Let A and B be groups of permutations on non empty sets Ω_1 and Ω_2 respectively. The wreath product of A and B is denote by A wr B and defined as A wr $B = A^{\Omega_2} \times_{\theta} B$, i.e., the direct product of $|\Omega_2|$ copies of A and a mapping θ

THEOREM 2.2 [4] Let G be the group generated by the n-cycle (1, 2, ..., n) and the 2-cycle (n, a). If 1 < a < n is an integer with n = am, then $G \cong S_m$ wr C_a .

THEOREM 2.3 [4] Let $1 \le a \ne b < n$ be any integers. Let n be an odd integer and let G be the group generated by the n-cycle (1,2,...,n) and the 3-cycle (n,a,b). If the $hcf_{(n,a,b)}=1$, then $G = A_n$. While if n can be an even then $G = S_n$.

THEOREM 2.4 [4] Let $1 \le a < n$ be any integer. Let $G = \langle (1, 2, ..., n), (n, a) \rangle$. If h.c.f.(n, a) = 1, then $G = S_n$.

THEOREM 2.5 [4] Let $1 \le a \ne b < n$ be any integers. Let n be an even integer and let G be the group generated by the (n-1)-cycle (1,2,...,n-1) and 3-cycle (n,a,b). Then $G = A_n$.

ISSN: 2517-9934 Vol:7, No:3, 2013

III. THE RESULTS

THEOREM 3.1 The wreath product $M_{11}wrM_{12}$ can be generated using two permutations, the first is of order 132 and the second is of order 4.

Proof: Let $G = \langle X, Y \rangle$, where: X = (1, 2, 3, 4, ..., 132), which is a cycle of order 252, $Y = (1, 9)(2, 6)(4, 5)(7, 8)(12, 20, 23, 31)(13, 17)(15, 16)(18, 19)(24, 28)(26, 27) (29, 30)(34, 42, 56, 64)(35, 39)(37, 38)(40, 41)(45, 53)(46, 50)(48, 49)(51, 52)(57, 61)(59, 60)(62, 63)(67, 75)(68, 72)(70, 71)(73, 74), which is the product of two cycles each of order 4 and twenty four transpositions. Let <math>\alpha_1 = ((XY)^6[X, Y]^5)^{18}$. Then

$$\alpha_1 = (11, 22, 33, 44, 55, 66, 132),$$

which is a cycle of order 7. Let $\alpha_2 = \alpha_1^{-1} X$. It is easy to show that

$$\alpha_2 = (1, 2, 3, ..., 17)(18, 19, 20, ..., 22) ... (67, 68, 69, 132).$$

which is the product of seven cycles each of order 11. Let: $\beta_1 = (Y^2)^{(XY)^{18}} = (9, 20)(12, 23)(31, 53)(34, 56),$ $\beta_2 = \beta_1 Y^{-1} = (1, 9, 12, 20)(2, 6)(4, 5) (7, 8)(13, 17)(15, 16)(18, 19)(23, 31, 45, 53)(24, 28)(26, 27)(29, 30)(34, 42)(35, 39)(37, 38)(40, 41)(46, 50)(48, 49)(51, 52)(56, 64)(57, 61)(59, 60)(62, 63)(67, 75)(68, 72)(70, 71) (73, 74),$ $\beta_3 = (Y^3\beta_2)^2 = (1, 45)(12, 23), \beta_4 = \beta_3^{(\alpha_2^{-1}\alpha_1^{3})} = (11, 44)(55, 66)$ and $\beta_5 = \beta_4^{\beta_3^{\alpha_2^{-1}}} = (17, 221)(68, 85).$

Let
$$\alpha_3 = \beta_5^{\beta_3}^{(\alpha_2^{-1}\alpha_1)}$$
. Hence $\alpha_3 = (12, 24)(48, 60)$.

Let $\alpha_4 = \gamma X^{-1} \alpha_3^{-1} X$. We can conclude that

 $\begin{array}{l} \alpha_4 = & (1,9)(2,6)(4,5)(7,8)(12,20)(13,17)(15,16)(18,19)(23,3\\ 1)(24,28)(26,27)(29,30)(34,42)(35,39)(37,38)(40,41)(45,53)(4\\ 6,50)(48,49)(51,52)(56,64)(57,61)(59,60)(62,63)(67,75)(68,7\\ 2)(70,71)(73,74), \end{array}$

which is the product of twenty eight transpositions. Let $K = \langle \alpha_2, \alpha_4 \rangle$. Let $\theta: K \to M_{12}$) be the mapping defined by

$$\theta(12i+j)=j \quad \forall \ 1 \leq i \leq 10, \ \forall \ 1 \leq j \leq 12$$

Since $\theta(\alpha_2) = (1, 2, ..., 12)$ and $\theta(\alpha_4) = (1, 9)(2, 6)(4, 5)(7, 8)$, then $K \cong \theta(K) = M_{12}$. Let $H_0 = \langle \alpha_1, \alpha_3 \rangle$. Then $H_0 \cong M_{11}$. Moreover, K conjugates H_0 into H_1 , H_1 into H_2 and so it conjugates H_{16} into H_0 , where

 $H_i = \langle (i,12+i,34+i,51+i,68+i,85+i,102+i,...,221+i)(i,12+i)(34+i,68+i) \rangle$ $\forall 1 \le i \le 10$. Hence we get $M_{11}wrM_{12}) \subseteq G$. On the other hand, Since $X = \alpha_1\alpha_2$ and $Y = \alpha_4\alpha_3^X$, then $G \subseteq M_{11}wrM_{12}$. Hence $G = M_{11}wrM_{12}$.

THEOREM 3.2 The wreath product $(M_{11}wrM_{12})wrC_k$ can be generated using two permutations, the first is of order 132k and an involution, for all integers $k \ge 1$.

Proof: Let $\sigma = (1, 2, ..., 132k)$ and $\tau = (k, 9k)(2k, 6k)(4k, 5k)(7k, 8k)(12k, 20k, 23k, 31k)(13k, 17k)(15k, 16k)(18k, 18k)$

19k)(24k, 28k)(26k, 27k)(29k, 30k)(34k, 42k, 56k, 64k)(35k, 39k)(37k, 38k)(40k, 41k)(45k, 53k)(46k, 50k)(48k, 49k)(51k, 52k)(57k, 61k) (59k, 60k) (62k, 63k)(67k, 75k)(68k, 72k)(70k, 71k). If k=1, then we get the group $M_{11}wrM_{12}$ which can be considered trivial wreath $(M_{11}wrM_{12})wrC_k$ wr<id>. Assume that k > 1. Let $\alpha = \prod_{\tau}^{12} \tau^{\sigma^{\pm}}$, we get an element $\delta = \alpha^{45} = (k, 2k, 3k, ...,$ 132k). Let $G_i = \langle \delta^{\sigma^i}, \tau^{\sigma^i} \rangle$, be the groups acts on the sets $\Gamma_i = \{ i, k+i, 2k+i, \dots, 131k+i \}, \text{ for all } 1 \le i \le k .$ Since $\bigcap_{i=1}^{\kappa} \Gamma_i = \varphi$, then we get the direct product $G_1 \times G_2 \times G_2$... \times G_k , where, by theorem 3.1 each $G_i \cong M_{11} wr M_{12}$. Let $\beta = \delta^{-1} \sigma = (1, 2, ..., k)(k+1, k+2, ..., 2k) ... (76k+1, 76k+2,$..., 132k). Let $H = \langle \beta \rangle \cong C_k$. H conjugates G_1 into G_2 , G_2 into G_3 ,...and G_k into G_1 . Hence we get the wreath $\operatorname{product}(M_{11})wrM_{12})wrC_{K} \subseteq G$. On the other hand, since $\delta \beta = (1, 2, ..., k, k+1, k+2, ..., 2k, ..., 131k+1,$ 131k+2, ..., 132k)= σ , then $\sigma \in (M_{11}wrM_{12})wrC_{k}$. Hence $G = \langle \sigma, \tau \rangle \cong (M_{11} wr M_{12}) wr C_K . \diamond$

THEOREM 3.3 The wreath product $(L_2(11)wrM_{12})wrS_k$ can be generated using three permutations, the first is of order 132k, the second and the third are involutions, for all $k \ge 2$.

Proof : Let $\sigma = (1, 2, ..., 132k)$, $\tau = (k, 9k)(2k, 6k)(4k, 5k)(7k, 8k)(12k, 20k, 23k, 31k)(13k, 17k)(15k, 16k)(18k, 19k)(24k, 28k)(26k, 27k)(29k, 30k)(34k, 42k, 56k, 64k)(35k, 39k)(37k, 38k)(40k, 41k)(45k, 53k)(46k, 50k)(48k, 49k)(51k, 52k)(57k, 61k)(59k, 60k)(62k, 63k)(67k, 75k)(68k, 72k)(70k, 71k)$ and $\mu = (1, 2)(k+1, k+2)(2k+1, 2k+2)$... (131k+1, 131k+2). Since by Theorem 3.2, $<\sigma,\tau>=(M_{11}wrM_{12})wrC_k$ and (1, 2, ..., k)(k+1, k+2, ..., 2k) ... $(131k+1, ..., 132k) \in (M_{11}wrM_{12})wrC_k$ then $\langle (1,...,k)(k+1,...,2k)...(131k+1,...,132k), \mu \rangle \cong S_k$. Hence $G = \langle \sigma, \tau, \mu \rangle \cong (M_{11}wrM_{12})wrS_k$. \diamond

COROLLARY 3.4 The wreath product $(M_{11} wr M_{12}) wr A_k$ can be generated using three permutations, the first is of order 132k, the second is an

ISSN: 2517-9934 Vol:7, No:3, 2013

involution and the third is of order 3, for all odd integers $k \ge 3$.

THEOREM 3.5 The wreath product $(M_{11} wr M_{12}) wr (S_m wr C_a)$ can be generated using three permutations, the first is of order 132k, the second and the third are involutions, where k = am be any integer with 1 < a < k.

Proof : Let $\sigma = (1, 2, ..., 132k)$, $\tau = (k, 9k)(2k, 6k)(4k, 5k)(7k, 8k)(12k, 20k, 23k, 31k)(13k, 17k)(15k, 16k)(18k, 19k)(24k, 28k)(26k, 27k)(29k, 30k)(34k, 42k, 56k, 64k)(35k, 39k)(37k, 38k)(40k, 41k)(45k, 53k)(46k, 50k)(48k, 49k)(51k, 52k)(57k, 61k)(59k, 60k)(62k, 63k)(67k, 75k)(68k, 72k)(70k, 71k)$ and $\mu = (k, a)(2k, k+a)(3k, 2k+a)$... (132k, 131k+a). Since by Theorem 3.2, $<\sigma,\tau>\cong (M_{11}wrM_{12})wrC_k$ and (1, ..., k)(k+1, ..., 2k) ... $(131k+1, ..., 132k)\in (M_{11}wrM_{12})wrC_k$ then

 $\langle (1, \dots, k)(k+1, \dots, 2k) \dots (131k+1, \dots, 132k, \mu \rangle \cong (S_m \text{wr } C_a).$

Hence $G = \langle \sigma, \tau, \mu \rangle \cong (M_{11} wr M_{12}) wr (S_m wr C_a) . \diamond$

THEOREM 3.6 S_{132k+1} and A_{132k+1} can be generated using the wreath product $(M_{11} \ wr M_{12}) \ wr \ C_k$ and a transposition in S_{132k+1} for all integers k>1 and an element of order 3 in A_{132k+1} for all odd integers k>1.

Proof: Let $\sigma = (1, 2, ..., 132k)$, $\tau = (k, 9k)(2k, 6k)(4k, 5k)(7k, 8k)(12k, 20k, 23k, 31k)(13k, 17k)(15k, 16k)(18k, 19k)(24k, 28k)(26k, 27k)(29k, 30k)(34k, 42k, 56k, 64k)(35k, 39k)(37k, 38k)(40k, 41k)(45k, 53k)(46k, 50k)(48k, 49k)(51k, 52k)(57k, 61k)(59k, 60k)(62k, 63k)(67k, 75k)(68k, 72k)(70k, 71k), <math>\mu = (132k+1,1)$ and $\mu' = (1,k, 132k+1)$ be four permutations, of order 132k, 2, 2 and 3 respectively. Let $H = \langle \sigma, \tau \rangle$. By theorem 3.2 $H \cong (M_{11} wr M_{12}) wr C_k$.

Case 1: Let $G = \langle \sigma, \tau, \mu \rangle$. Let $\alpha = \sigma \mu$, then $\alpha = (1,2,...,132k,132k+1)$ which is a cycle of order 132k+1.

By theorem 2.4 $G<\sigma,\tau,\mu'>\cong<\alpha,\mu>\cong S_{132k+1}$. Case 2: Let $G=\langle\sigma,\tau,\mu'\rangle$

By theorem $2.5 < \sigma, \mu' > \cong A_{132K+1}$. Since τ is an even permutation, then $G \cong A_{132K+1}$.

THEOREM 3.7 S_{132k+1} and A_{132k+1} can be generated using the wreath product $L_2(11)wrM_{12}$ and an element of order k+1 in S_{132k+1} and A_{132k+1} for all integers $k\geq 1$.

Proof: Let $G=\langle \sigma, \tau, \mu \rangle$, where, $\sigma=(1, 2, 3, ..., 132)(132(k-(k-1))+1, ..., 132(k-(k-1))+132)$... (132(k-1)+1, ..., 132(k-1)+132), $\tau=(1, 9)(2, 6)(4, 5)(7, 8)(12, 20, 23, 31)(13, 17)(15, 16)(18, 19)(24, 28)(26, 27)(29, 30)(34, 42, 56, 64)(35, 39)(37, 38)(40, 41)(45, 53)(46, 50)(48, 49)(51, 52)(57, 61)(59, 60)(62, 63)(67, 75)(68, 72)(70, 71)(73, 74)$... (132(k-1)+1, 132(k-1)+9) ... (132(k-1)+73, 132(k-1)+74), and $\mu=(132, 154, ..., 132k, 132k+1)$, where k-i>0, be three permutations of order 132, 4 and k+1 respectively. Let $H=\langle \sigma, \tau \rangle$. Define the mapping θ as follows;

$$\theta(12(k-i)+j)=j \quad \forall \ 1 \leq i \leq k \ , \ \forall \ 1 \leq j \leq 12$$

Hence $H = <\sigma, \tau> \cong M_{11} wr M_{12}$. Let $\alpha = \mu \sigma$ it is easy to show that $\alpha = (1,2,3,...,132k+1)$, which is a cycle of order 132k+1. Let

$$\mu' = \mu^{\sigma} = (1,133,...,132(k-1)+1,132k+1)$$
 and $\beta = [\mu, \mu'] = (1,132,132k+1)$.

Since h.c.f(1,132,132k+1), then by theorem 2.3 $G = \langle \sigma, \tau, \mu \rangle \cong \langle \alpha, \beta \rangle$ S_{132k+1} or A_{132K+1} depending on whether k is an odd or an even integer respectively. \Diamond

REFERENCES

- A. M. Hammas and I. R. Al-Amri, Symmetric generating set of the alternating groups , JKAU: Educ. Sci., 7 (1994), 3-7.
- B. H. Shafee, Symmetric generating set of the groups and using the the wreath product, Far East Journal of Math. Sci. (FJMS), 28(3) (2008), 707-711
- [3] B. H. Shafee and I. R. Al-Amri, On the Structure of Some Groups Containing , International Journal of Algebra, vol.6, 2012,no.17, 857-862.
- [4] I.R. Al-Amri, Computational methods in permutation groups , ph.D Thesis, University of St. Andrews, September 1992.
- [5] I.R. Al-Amri, and A.M. Hammas, Symmetric generating set of Groups and , JKAU: Sci., 7 (1995), 111-115.
- [6] J. H. Conway and others, Atlas of Finite Groups, Oxford Univ. Press, New York, 1985.