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Rotating Stratified Fluid
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of three-dimensional

On the Strong Solutions of the Nonlinear Viscous

Abstract—A nonlinear model of the mathematical fluid dynamics
which describes the motion of an incompressible viscous rotating
fluid in a homogeneous gravitational field is considered. The model
is a generalization of the known Navier-Stokes system with the
addition of the Coriolis parameter and the equations for changeable
density. An explicit algorithm for the solution is constructed, and the
proof of the existence and uniqueness theorems for the strong
solution of the nonlinear problem is given. For the linear case, the
localization and the structure of the spectrum of inner waves are also
investigated.

Keywords—Galerkin ~ method,  Navier-Stokes  equations,
nonlinear partial differential equations, Sobolev spaces, stratified
fluid.

[. INTRODUCTION

E consider a bounded domain Qe R® with a smooth
boundary, and the following nonlinear system of fluid
dynamics

%—a}vz—v]Avl+v’~Vv]+a—p= f,
ot oX,
%+a}vl—v]Av2+v’~Vv2+a—p= f,
ot ,
%—V]AV3+V'-VV3+QV5+a—p= f,
ot 0%,
ov &
a—t“—1/2Av4+v’~Vv4+;/v3 =f,

2
My Dy
OX, OX, OX,

T = (wp:cQ,xg) is the space variable, v(:r,t) = (v'7 v4,'us),

v’(z,t) = (vl,vz,v3) is the velocity field, v, is the
temperature, v, is the density, p(X,t) is the scalar field of the
pressure, f(x,t)=(f, f,, f;, f;, f5) is a known function from
L (Qr), Qr =Qx[0,T), v, >0 is the kinematic viscosity

parameter, v, >0 is the heat conductivity coefficient, and

w,N,Q,y are positive constants. The system (1) describes the
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incompressible
viscous fluid which is rotating over the vertical axis with the
angular velocity @ =[0,0,®], also with consideration of heat

transfer and non-homogeneous stationary distribution of

density which is described by the function e NS . For the
linear non-viscous case, (1) are deduced, for example, in [1],
[2]. For the non-linear case without the stratification and
density, (1) appear, for example, in [3], where the considered
model was used for numerical calculations. There exists a
considerable amount of bibliography dedicated to classical
Navier-Stokes equations, some results may be found in [4]-
[6]. For the simplified case of linearized compressible fluid
without rotation, the system (1) was studied in [7], where the
structure and the localization of the essential spectrum of
normal vibrations were established. Due to the presence of the
fourth and fifth equations for the unknown functions of
density and temperature, and also due to the presence of the
rotation parameter, (1) represent a novelty with respect to
classical Navier-Stokes equations. In [8], the system (1) was
considered without rotation and heat transfer, and there were
established the properties of the existence and uniqueness of
the weak solution.

Our aim is to prove the theorems of the existence and
uniqueness of the strong solution for (1), as well as to
construct an explicit algorithm for that solution.

If we introduce the following notations; 7 = (1/7 v, ) ,

—wu.
p)
" v, A,
1
o v, Av,
My = 5o, vAv = |v,Av,
v s
3 v,Av
N? 28Uy
g

then we can write the system (1) as:

D4 (v-V)i—vAv+My+Vp = f

ot
reQ t>0.

2
divey” = 0, )

We associate the system (2) with the following conditions

=0
0 ()

d
t=0

v |asz -
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in the bounded domain Q; = Qx[0,T].

Let us choose an orthonormal complete set of

functions {uy } in the Hilbert functional space

H = |gp<x) = (991,...,905) :

0
p eW, (Q),divy = 0].

Finally, let us introduce the notations

2

L= max{w,g,;/,N?}, v, =min{v,,v, }.

If we multiply the system (2) by 2v in L,(Q) and

integrate the obtained result by parts and also with respect to
7€[0,T], then we can casily obtain the estimate for the weak

solution:

2

ML+l llq) <C BTN, @

We observe that, due to the vector representation of vAv,
the component Vs is equal to zero in (4). This property will be

also valid for all further estimates which involve the term
v, ||VX||1(Q). Now, let ®(x,t)=(®D,,...,®;) be test functions

from L,(Q;), which for every 0<t<T belong to the

0
Sobolev space W, (€2), and which also satisfy the conditions:

divd'=0, @ _ =0, @[, =0.

oo

For the weak solution V we require the same conditions as
for the functions ®. We will call V(X,t) a weak solution of
the problem (2), (3), if v satisfies the integral identity

QI[_(V’@‘)Jr vlé (Vv, VO, )+v, (VVv,,VO,)+

+(\7,(V’-V)<13)+(Mv,cl))]dxdt = _[ (f,® )dxdt,

)

for all the functions ®. To construct the weak solution, we
will use the Galerkin method. We find the approximate
solutions of the problem (2), (3) in the following form

v ()= D60 (1), (). ©

k=1
In the system (2), we put v =Vv" multiply by u, in sense
of L, (Q) and integrate by parts in Q. In this way, we obtain a

Cauchy problem for the system of ordinary differential
equations of the type

S (e Siet foy - [0 (v Vo)
i1 Q

+I(Mv“,uk)dx: F(t), k=1..,N,
Q

{4,v}= ﬂvli (VV,, VO, )+, (VV4,VCD4)}dX,
F

i=1

k(t):j(f,uk)dx , k>1.

Q
To prove that (7) is solvable uniquely, we have to verify the
“a priori” boundedness of the functions C;' (t) , t€[0,T], in

the norm L, (Q). Evidently, the required property follows

from the inequalities:

N
vx

"VN "1(9) o |i2(QT) <C " f "i:(Qr)

®)
"VN "iZ(QT) =C " f "iz(QT) ’

The relations (8) are obtained by the same reasoning as in
(4). It follows from (8) that the Galerkin approximations (6)

are “a priori” bounded. From the sequence {VN }::1 , keeping
in mind the estimates (8), we can choose the subsequence
{VNK} which is weakly convergent to some function V(X,t) in
L,(Q;), together with its first derivatives with respect to
X, k=1,2,3. The last fact follows from the weak
compactness of bounded sets in the Hilbert space L, (Q;). It
is easy to see that the subsequence {VNk } also tends strongly to

v in sense of L,(Q;), which follows from the generalized
Friedrichs lemma ([9]):

Therefore, the sequence {VNk } tends strongly to v . It can be

easily verified that the mentioned function v(X,t) satisfies

(5); i.e., it is a weak solution of (2). In this way, we have
outlined the general idea of the proof of the following
theorem.
Theorem 1. There exists at least one weak solution for the
problem (2), (3), which can be found as the limit of the
approximations (6).

We will need the following auxiliary result as well.

Theorem 2. Let  be a bounded domain in R*,9Q € C?,
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J§° - a space of smooth solenoidal functions with compact

support, and J21 - the closure of J§° in norm of W21 (Q)
Suppose that v” is a weak solution of the Stokes system;

v € J, and the integral identity holds:

3
Zf<y1ij,V<I>j)dw - f(ﬁ@)da: Vo € J.
j=1Q Q

If fel, (Q), then there exist ¢ € W22 (Q) and
pE W; (Q) such that {v’, p} is the strong solution of the

—Av+Vp=Ff

Stokes system
Y dive =0, vy, =0’

and the following

estimate is valid:
"U/"WQZ(Q) + ||Vp"1:2(§z) = C||f"L2(g'z)‘

Proof. From the Cattabriga theorem [10], we have that
{v',p} is the Stokes

system, v” € W; (Q), pE W; (Q) From the conditions of

strong  solution of the

the theorem, we have

3
Zf(VIij,VCI)j)dm - f(f,d))dx Vb € J°.
Q

j=1Q

Thus, v" is a weak solution. To prove that it is unique, we
have to verify that v" = 0 if {v’,q)} =0 V€ Ji°. Indeed,

0
let @, — v’ in W, . Then, we will have that /]|, . =0,

where

1

) .
i) = I W) = [Zﬂv%‘ [ d”] :

=1 Q

v

In this way, the theorem is proved.

II. PROBLEM FORMULATION

We introduce a real parameter \ and consider the problem

(2), (3)in @ as:

v, +<v'~V)177uAv+Mv+Vp = /\f(t,x)

9
dive’ =0, v_ =0, =0. ©)

v %91

We will obtain the needed solution later by putting A = 1.

Let us assume that the solution {v, Vp} of the problem (9)

is analytic with respect to A near the point A = 0. (Later we
will prove it).
For m > 0, we introduce the following notations.

o™ (t.z)

‘ )\WI,,
= m!
) (1,0) = Z0bmA)
O\ o
o 7,(m)
Vp(t,x,)\) = Z vp m(t,m))\m’
m=0
Vp(m>(t,:L‘) _ 0 U(t,;z:,A)
7)) o

We will define the functions o\™ (tw) as solutions of the

following iterative linear problems.
First, let m = 0 and let us consider the problem

UEO) + (v’(()) ~V)T)(O) N + Mol”) + Vp(o) =0

v o, 0| 0, 4l 1

=0.

t=0 082

We choose v(o) =0, U(O) =0 ,Vp(0> =0 as the
solution of the homogeneous problem (10).

For m = 1, the pair {v(])(t,a:), Vp(l)(t,x)} will be the

solution of the linear problem

vgl) —vAol) 4 )+ Vp(])

divv'(l) =0, vm‘ =0, v(
t=0

:f t7
g Bl

=0.
00

The problem (11) is obtained from (9) by differentiating
once with respect to A and taking into account the values
v(0> =0, Vp(o) = 0. Using the assumption of smoothness
with respect to A\, we differentiate (9) m > 1 times and thus
obtain

o™ vl ™) vptm) = {1 ) (12)

divv'(m) =0, v<m)‘ =0, v(m) =0,
=0 00
where
m—1
(m-1) _ oMb ) ) glmed)
f (t,z)— ],le!<m—j>!(v J V)v om > 2.

Let us consider the auxiliary problem (12) in the linearized
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form —v,Av, = F) (t,m

vtquv+M1)+Vp:f(t,a:> (13)
dive’ =0, v =0 0, v|i)9 =0 From Theorem 2 and the estimates

To establish the properties of weak solutions for the "“"2 e "U "2 - " f||2
problem (13), we repeat the reasoning for the proof of 0

Theorem 1 and thus we can easily prove the following result.

Theorem 3. There exists a unique weak solution v (¢ z) of 2 2 2
d ( ) "Ut "LZ(QT) Q) = C"f"L,Z(QT)
the problem (13) such that v, € L, (QT ) ,
D € I, (QT>7|O‘| =1, v eJ!, v, €J, for almost It follows that there exist the derivatives Di'v" € L, (QT),
every ¢ € (0,T]; and the following estimate holds |a| <2, and also that there exists the function

Vp € L, (QT ) , such that the estimate holds:

"vt ||L2(QT) v |L2(QT) = C"f||L2(QT

[l g, + 22

|| L(Q) +||VP||L2(QT) < C"F,"LZ(Q

where the positive constant C' depends only on 3,7,012. =2

Now, we need to establish the unique strong solvability of
the problem (13).
Theorem 4. There exists a unique strong solution

{v(t,x),Vp(tw)} of (13) such that vt€L2(QT),

Diw e LQ(QT>,|0¢| <2, ve JZl for almost every f{(VQVU47V¢4)7(F/,’(I)l/>}dxdt =0,
Q,
qu/T I/V21£t (QT) . ‘1)//

where the positive constant C' depends only on 3,7,012.
For the test functions ® = 0, we define the weak solution
as:

€(0,T], Vp € L, ( ) and the following estimate holds

ol 0, + %0 D[220,

‘a <2

|asz = (I)”L:T = 0.

) H V2l ) = €l g,

It is easy to see that v GWQZ(Q) for almost every
where the positive constant C' depends only on 3,7, 0.

Proof. From Theorem 3, there exists a weak solution € (07T)7 and that the estimate is valid:

v € VV21 (QT) of (13) such that v € J21 for almost every
. . .. ay < "
t €(0,T]. Since v, € L, (QT), then, by virtue of Fubini Y2 ‘2‘32 "D " - C"F "Lz(QT)
al|<
theorem, the norm "vt "L (@) is finite for almost every
’ in the other terms, we have that every weak solution

t € (0,7]. For the problem (13), we will introduce the 0

notations: " e W) (Q) of the problem
V= (’(}’71)”)7 Vv = (1)171}2’1)3)7 U// = (1;471)5)7 f{(z/2Vv4,Vu4)}dac = f(F”,u”)da: with F// S LZ(Q)’

o= (0,0"), ¥ =(D,0,0,), O =(®,,), ¢ o
F = (FE,E,F,), F"=(F,F), where will be a solution from W, (Q) for fixed values of ¢ € (0,7].
F=—v, —Mv+ f. In this way, we have obtained that the solution

v = (v’, v ) has all the derivatives of the second order such

In this way, we will split the problem (13) into two that D
€L, <2, vy €L Vp € L,
following problems: v (@) |of= <QT ) p (QT )

a) a Dirichlet problem for the linearized Stokes system and the required estimate holds. Thus, the strong solution of

the linearized problem (13) that exists and is unique,

v AV +Vp = F (t, :1:) concludes the proof.

. , , and
dive’ =0, v |asz =0 [II. PROBLEM SOLUTION
. ] ) To construct the strong solution of the main nonlinear
b)a Dirichlet problem for Poisson equation problem, we will use two following helpful results from [11].
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Lemma 1. Let Q be a bounded domain in R®, 9 € C?,

(n+3)

n > 2 <p<oo v>0,T>0. Let, additionally,

E be a Banach space with the norm

Dyt

W =Wl 0+ 3 1P25),

Then, there exists a constant C; > 0 which depends on

n, p,§2, such that the estimate holds:

1

. ! _ntp 3 _ne2
Jlul o] dedt | < cz 12 Ju], o,
Qr

forall u,v € E: u(x,()) = v(m,O) =0, z €.

Lemma 2. Let { B, }::1 be a sequence of non-negative real

m—1

=032>0 and ﬁm <y X ﬁjﬂm_j for
j=1 ’

numbers such that 3,

m > 2, ~v > 0. Then, the series

00 m—1
Z/Bmtm ) Ztm[zﬂﬁm J ]
m=1

converge for 4ﬁw|t| <1.

Now, we shall prove the main result of this paper.
Theorem 5. Let  be a bounded domain in R?, 9 € C?,
fekL, (QT ) and suppose that the condition holds:

51
8C2Cyy T £, g,y =1

where € is the constant from Lemma 1 and C is the

constant from theorem 4. Then, there exists a strong solution
{v(t,:c),Vp(ux)} of the nonlinear problem (2), (3) such

v, ELZ(QT>,

Dt € L(Qr),Ja| <2, Vp € L,(Q). This solution is

unique and is defined by A = 1in (9).
Proof. We apply Theorem 4 to the problem (11) and thus
conclude that there exists a unique strong solution

{v(l),Vp(l)} of (11) such that v’(l) S J21 for almost all
€(0,7), vil) €L(Q),
me S

have the estimate for m = 1:

that U’EJ21 for almost all te(O,T),

va(l) €L, (QT>,|a| <2;

L, (QT ) Additionally, by virtue of Theorem 4, we

S
=
W

)) +VU§<:2D%1)LZ(%) +fwt HLZ(QT) <M

Now, we apply theorem 4 to the problem (12) and obtain
that there exists a unique strong solution {v(m),Vp(m)} of

(12) such that ™) € J, for almost all te(O T),

4" e L, (Qr), ol € L(Qr), GIQ(QT)
From Theorem 4, we also have that for m > 2 the estimate
holds:

o

(m)

IN

o

+ v,
r) Ly(Qr)

L

<ol

L)

Therefore, from (12) and Lemma 1 we have

‘ Jm)
DAL

t
<G (1 T)

771)

<
L(Q)

;ﬂ(f_jy} '],
U

Ot

o

L@ |

where C, (1, T) = CCyy *T".

If we introduce the notations

%

1 m
ﬁm = _' “ 1}5 )
m:

b

7VL

+V

a <2

then we can write the last inequality in the following way:
ﬁm = Ol (VO’T) Z ﬁjﬂmfi'
j=1
therefore, by Lemma 2, the series

(14)

=2,

T

is convergent, if the following condition holds:
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1
Lo | S AP G (v, T)

],

Thus, we obtain

|af<2

e ) ],

< AP[C (v, T )C||f||L2(Q1)

It follows from the assumption of this theorem that

B

? .

IN

Ay T,

In this way, the series (14) will be convergent for |)\| < 2.

Again, let us denote

ot \) = Zvnsl’x)xn, Vp(ta,\) = Epmg’z)xn.
m=0 : m=0 :

Since the series (14) is convergent, it is evident that
v € Jy foralmostall t € (0,T), D0 € L, (Qy ) .|a| < 2for
1A <2

From (12) and Lemma 1, we have

m—1
(Vov )

et Pl Lo S DL

m!

Therefore, it follows from Lemma 2 that the series

o A'ﬂl
>l

m=2

(m-1)

L(Qr)
Converges for |)\| < 2. As a corollary, we have the

, which

m
convergence of the series Y /\—'HV
m
m=2

implies Vp(t,2,A) € L, (Qy ) for || < 2. Due to the above
construction, we have proved that for || < 2 there exists a
strong solution {v(t,z),Vp(t,2)} of the problem (9) such
that o' (t,z,A)€Jy; for almost all te(0,7T),

v € L(Q). Div(taA) € L(Q (t5A) € ().

This solution is analytic with respect to A\ for |/\| < 2.

Considering A =1 in the problem (9), we obtain the
statement of Theorem 5 for the problem (2), (3). Using

standard techniques, it can be easily shown that the strong
solution {v, Vp}of the problem (2), (3), is unique in the

interval (0,7’). After repeating the same considerations £

times, where k = [Z} + 1, we will obtain the uniqueness of
T

the strong solution for the whole interval (O7T); in other

terms, for the domain (). . Therefore, the theorem is proved.

We would like to investigate now some spectral properties
of the differential operator which is generated by linearized
system (2). Additionally, without loss of generality, we
put ¥ = 0. In this way, we consider the system

d”—I/A’U—‘rMU-f—vp:O

L (15)
dive' =0, 2€Q, t>0, v(mzo,
where
W v A,
“h v, Av,
Mv = 985 . vAv = |y Avg .
VoA,
2
N 0
—Z
g

Let us consider the following problem of normal vibrations
V(x,t)=a(x)e™
v (x,t) = %us (x)e™
p(x.t)=us(x)e™, AeC.

We denote U =(U,uUs,u,) and write the system (15) in the
matrix form Lu=0, where L =A-Al,, and

+A -0 0 0 0 9

x

o -vA 0 0 0 <

x,

0

A=l 0 0 A 0 N —|

o,

0 0 0 —»A 0 0

0 0 -N 0 0 0

9 0 9 4 9 0
CC ST

We define the domain of the differential operator A
associated with the considered boundary condition as follows.
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0

D(A)=1{(0,u;) e [W; (Q)]S U e L, (Q): Aue(L,(Q))

6

Evidently, the operator A is a closed operator, and its
domain is dense in (L2 (Q))6 We recall that the essential

spectrum

UGSS

(A)= {l eC:(A-2l1)" isnot of Fredholm type},

is composed of the points belonging to the continuous
spectrum, limit points of the point spectrum and the
eigenvalues of infinite multiplicity [12].

Theorem 6. The essential spectrum of the operator A is

composed of one real point o, (A) = {i} )

1
The proof is based on the concept of ellipticity in sense of
Douglis-Nirenberg [13] and is analogous to the proof of the
Theorem 2 in [14].

IV. CONCLUSION

The results of this paper, particularly the explicit algorithm
for construction of the strong solution, may be applied in the
theoretical and computational study of the Atmosphere and the
Ocean. The essential spectrum depends only on the kinematic
viscosity, which corresponds to the results of [8] for a
different model of barotropic stratified fluid.
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