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Abstract—The stability test problem for homogeneous large-scale 

perturbed bilinear time-delay systems subjected to constrained inputs 
is considered in this paper. Both nonlinear uncertainties and interval 
systems are discussed. By utilizing the Lyapunove equation approach 
associated with linear algebraic techniques, several delay-independent 
criteria are presented to guarantee the robust stability of the overall 
systems. The main feature of the presented results is that although the 
Lyapunov stability theorem is used, they do not involve any Lyapunov 
equation which may be unsolvable. Furthermore, it is seen the 
proposed schemes can be applied to solve the stability analysis 
problem of large-scale time-delay systems. 
 

Keywords—homogeneous bilinear system; constrained input;  
time-delay, uncertainty; transient response; decay rate.  

I. INTRODUCTION 
T is known that not only engineering areas such as nuclear, 
thermal, and chemical processes but also physical systems 
such as biology, socio-economics, and ecology, may be 

modeled as bilinear systems [3, 22]. During the past decades, a 
number of contributions hence have been devoted to the study 
of bilinear systems [1, 2, 4-19, 21, 23-27]. Of those works, the 
stability analysis problem has been studied in [7, 8, 10, 12, 17, 
19, 23]. Furthermore, in [1, 2, 4-6, 9, 11, 13-16, 18, 21, 24-26], 
the stabilizing controller design for bilinear systems have been 
proposed. In practice, due to the information transmission, 
natural property of system elements, computation of variables, 
etc, time delay(s) exist(s) in real-life systems [20]. Besides, 
when modeling a control system, system perturbations that are 
occurred as a result of using approximate system model for 
simplicity, data errors for evaluation, changes in environment 
conditions, aging, etc, also exist naturally. Therefore, time 
delay(s) and perturbations ought to be integrated into the model 
of bilinear systems. Recently, the research of bilinear systems 
with time-delay and/or perturbations has also been of great 
interest. In [12, 23, 29], the stability test problem for bilinear 
time-delay systems has been discussed. In [15] and [21], global 
stabilization controller design for bilinear systems with time 
delay has been proposed. Furthermore, the stabilization 
controller design for perturbed bilinear systems has been 
discussed in [11, 26]. The stability analysis of bilinear systems 
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with time-delay and perturbations has been addressed in [19]. 
However, it seems that only few works have deal with the 
stability analysis for large-scale bilinear systems without 
time-delay and perturbations [10, 27]. As mentioned in the 
above descriptions, time-delay and perturbations should be 
considered in system model. Thus, this paper studies the 
stability analysis problem for large-scale perturbed bilinear 
time-delay systems with constrained inputs. Two kinds of 
perturbation are discussed: nonlinear perturbation and interval 
matrices. Several criteria that assure the robust stability of the 
overall systems are derived by using the Lyapunov equation 
approach associated linear algebraic techniques. It is shown 
that the obtained criteria do not involve any Lyapunov equation 
which maybe unsolvable. Furthermore, it is also seen that the 
presented schemes can be applied to the stability analysis of 
large-scale perturbed time-delay systems. Finally, we give 
numerical examples to demonstrate the applicability of the 
proposed results. 

The following symbol conventions are used in this paper. 
Symbols ℜ , TA , ( )Aλ , ( )Tx t , ( )x t , and A , respectively, 
means real number field, transpose of matrix A, the maximal 
eigenvalue of a symmetric matrix A, transpose of vector )(tx , 

norm of vector )(tx  with ( )
1

2( ) ( ) ( )Tx t x t x t= , and induced 

norm of matrix A with 
1

2( )TA A Aλ= . Furthermore, ( )Aμ  
represents the matrix measure of A and is defined as 

( ) (( ) 2)TA A Aμ λ= + .  

II. SYSTEMS WITH NONLINEAR PERTURBATIONS 
Consider a homogeneous large-scale perturbed bilinear 

time-delay system S which is described as an interconnection of 
N subsystems 1 2, , , NS S SK  represented by  

1 1

: ( ) ( ) ( ( ), ) ( )
N N

i i i i ij j ij ij j ij
j j

j i

S x t A x t f x t d t A x t d
= =

≠

= + − + −∑ ∑&

1

( ) ( ), 1, 2, ,
im

ik ik i
k

sat u t B x t i N
=

+ =∑ K  (1) 

where ( )ix ⋅ ∈ nℜ  and ( )iku ⋅ ∈ ℜ   represent the state vector and 
the input, respectively, iA , ijA , and ikB  are constant matrices 
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with appropriate dimensions, 0ijd >  for all i and j with 

0iid =  denote the communication delays in the 
interconnections of the large-scale system S, and 

( ( ), )ij j ijf x t d t−  represent nonlinear perturbations having the 

following properties: 
 ( ( ), ) ( )ij j ij ij j ijf x t d t x t dε− ≤ −  (2) 

where ijε  are positive constants. The constrained inputs 

( )iksat u t  are saturating functions and defined as follows. 

 
( ), ( )

( )
sgn( ( )), ( ) 0

ik ik ik
ik

ik ik ik ik

u t if u t U
sat u t

U u t if u t U

⎧ ≤⎪= ⎨
> >⎪⎩

 (3) 

where ikU  denote positive constants. From (3), one has 
 ( )ik iksat u t U≤ ,  1, 2, ... , ik m=  (4) 
Define constants iβ , 1, 2, ,i N= K  as 

 2

1

im
T

i ik ik ik
k

U B Bβ
=

≡ ∑ . (5) 

Lemma 1[28]: For the Lyapunov equation 
 TA P PA Q+ = −  (6) 
where A is a Hurwitz matrix and Q is a given positive definite 
matrix, the unique positive solution P has the upper bound 

 
2 ( )

Q
P

Aμ
≤

−
 (7) 

in which ( ) 0Aμ < . 
Then the application of Lemma 1 associated with the Lyapunov 
stability theorem and linear algebraic techniques, we have the 
following result. 
Theorem 1: If the following conditions are met for 

1, 2, ,i N= K  

 ( ) 2

1

2 1 0
N N

T
i i i ji ji ji i

j j i

A N m A Aμ ε β
= ≠

⎛ ⎞
⎜ ⎟+ + + + + <
⎜ ⎟
⎝ ⎠
∑ ∑      (8) 

where iN  denote the number of 0ijA ≠  corresponding to the 

i-th subsystem with 1, 2, ,j N= K , then the full order 
large-scale perturbed bilinear time-delay system (1) with the 
constraints (3) is robustly stable. 
Proof: For convenience, we use ix , iku , and ijf  to represent 

( )ix t , ( )iku t , and ( ( ), )ij j ijf x t d t−  for all i and j, respectively, 

in the following and later descriptions. Condition (8) infers that 
( ) 0iAμ <  which means that matrices iA  are stable. Then, one 

can conclude that for a given positive constant qi, the Lyapunov 
equation  
 2T

i i i i iA P P A q I+ = − , 1, 2, ,i N= K  (9) 
has a unique positive definite solution iP . The Lyapunov 
function ( ( ), )iV x t t  for large-scale system S is chosen as 

1

( ( ), ) ( ( ), )
N

i i i
i

V x t t V x t t
=

= ∑    

2

1 1

( ) ( )
ij

N N tT T T
i i i j ij ij ij j

t d
i j

j i

x P x x s A A I x s dsε
−

= =
≠

⎧ ⎫
⎪ ⎪⎪ ⎪⎡ ⎤= + +⎨ ⎬⎣ ⎦
⎪ ⎪
⎪ ⎪⎩ ⎭

∑ ∑∫ (10) 

wherer iP  satisfies the Lyapunov equation (9). Taking the 

derivative of ( ( ), )iV x t t  along trajectories of (1) gives 

2

1 1

( ( ), )
N N

T T T T
i i i i i i i j ij ij ij j

i j
j i

V x t t x P x x P x x A A I xε
= =

≠

⎧
⎪⎪ ⎡ ⎤= + + +⎨ ⎣ ⎦⎪
⎪⎩

∑ ∑& & &  

 2

1

( ) ( )
N

T T
j ij ij ij ij j ij

j
j i

x t d A A I x t dε
=
≠

⎫
⎪⎪⎡ ⎤− − + − ⎬⎣ ⎦
⎪
⎪⎭

∑  

1 1 1 1

( )

T

N N N m

i i ij ij j ij ik ik i i i
i j j k

j i

A x f A x t d sat u B x P x
= = = =

≠

⎧⎡ ⎤⎪⎢ ⎥⎪= + + − +⎢ ⎥⎨
⎢ ⎥⎪
⎢ ⎥⎪⎣ ⎦⎩

∑ ∑ ∑ ∑

  
1 1 1

( )
N N m

T
i i i i ij ij j ij ik ik i

j j k
j i

x P A x f A x t d sat u B x
= = =

≠

⎡ ⎤
⎢ ⎥

+ + + − +⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∑ ∑ ∑  

 2

1

N
T T

j ij ij ij j
j
j i

x A A I xε
=
≠

⎡ ⎤+ +⎣ ⎦∑  

2

1

( ) ( )
N

T T
j ij ij ij ij j ij

j
j i

x t d A A I x t dε
=
≠

⎫
⎪⎪⎡ ⎤− − + − ⎬⎣ ⎦
⎪
⎪⎭

∑  

 

1 1 1

( )
N N N

T T T T
i i i i i i ij i i i i ij

i j j

x A P P A x f P x x P f
= = =

⎧⎪= + + +⎨
⎪⎩

∑ ∑ ∑  

    
1

( )
N

T T
j ij ij i i

j
j i

x t d A P x
=
≠

+ −∑
1

( )
N

T
i i j ij ij

j
j i

x P x t d A
=
≠

+ −∑  

 
1 1

m m
T T
i ik ik i i ik ik i

k k

x sat u B P P sat u B x
= =

⎡ ⎤
+ +⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∑  

 2

1

N
T T

j ij ij ij j
j
j i

x A A I xε
=
≠

⎡ ⎤+ +⎣ ⎦∑  

2

1

( ) ( )
N

T T
j ij ij ij ij j ij

j
j i

x t d A A I x t dε
=
≠

⎫
⎪⎪⎡ ⎤− − + − ⎬⎣ ⎦
⎪
⎪⎭

∑  (11) 

We have 

 2

1 1 1

( 1)
N N N

T T T T
ij i i i i ij i i i i ij ij

j j j

f P x x P f N x P x f f
= = =

+ ≤ + +∑ ∑ ∑  (12) 
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1 1

2

1

( ) ( )

( ) ( )

N N
T T T
j ij ij i i i i j ij ij

j j
j i j i

N
T T T

i i i i i j ij ij ij j ij
j
j i

x t d A P x x P x t d A

N x P x x t d A A x t d

= =
≠ ≠

=
≠

− + −

≤ + − −

∑ ∑

∑
 (13) 

 1 1

2 2

1

( )

m m
T T T
i ik ik i i i i ik ik i

k k
m

T T T
i i i i i ik ik ik i

k

x sat u B P x x P sat u B x

m x P x x sat u B B x

= =

=

+

≤ +

∑ ∑

∑
 (14) 

Substituting the above relations into (10) yields 

 { 2

1

( ( ), )

( ) ( 1)

i
N

T T T
i i i i i i i i i i

i

V x t t

x A P P A x N x P x
=

≤ + + +∑

&

 

           
1

N
T

ij ij
j

f f
=

+∑ 2T
i i i iN x P x+

1

( ) ( )
N

T T
j ij ij ij j ij

j
j i

x t d A A x t d
=
≠

+ − −∑  

 2 2

1

( )
m

T T T
i i i i i ik ik ik i

k

m x P x x sat u B B x
=

+ + ∑  

 

2

1

2

1

( ) ( )

N
T T

j ij ij ij j
j
j i

N
T T

j ij ij ij ij j ij
j
j i

x A A I x

x t d A A I x t d

ε

ε

=
≠

=
≠

⎡ ⎤+ +⎣ ⎦

⎫
⎪⎪⎡ ⎤− − + − ⎬⎣ ⎦
⎪
⎪⎭

∑

∑
 

 

2

1 1

( ) ( 1)
N N

T T T T
i i i i i i i i i i ij ij

i j

x A P P A x N x P x f f
= =

⎧⎪≤ + + + +⎨
⎪⎩

∑ ∑  

  2 2

1

N
T T T T T

i i i i j ij i ij j i i i i i i i
j
j i

N x P x x A A x m P x x x xβ
=
≠

+ + + +∑  

 2 2

1 1

( ) ( )
N N

T T
ij j j ij j ij j ij

j j
j i j i

x x x t d x t dε ε
= =
≠ ≠

⎫
⎪⎪+ − − − ⎬
⎪
⎪⎭

∑ ∑  

  2 2

1 1

( ) ( 1)
N N

T T T T
i i i i i i i i i i ij j j

i j

x A P P A x N P x x x xε
= =

⎧⎪≤ + + + +⎨
⎪⎩

∑ ∑  

 2 2

1

N
T T T T T

i i i i j ij ij j i i i i i i i
j
j i

N x P x x A A x m P x x x xβ
=
≠

+ + + +∑  

 2

1 1

2
N N

T
i i ji

i j

x q ε
= =

⎧⎪≤ − +⎨
⎪⎩

∑ ∑ 2(2 1)i i iN m P+ + +  

1

N
T
ji ji i i

j
j i

A A xβ
=
≠

⎫
⎪⎪+ + ⎬
⎪
⎪⎭

∑  (15) 

From Lemma 1 and (9), we hav 

( )
i

i
i

q
P

Aμ
≤

−
,  1, 2, ,i N= K  (16) 

Substituting this inequality into (15) leads to 

 2
2

1 1

( ( ), )

2 (2 1)
( )

i

N N
T i
i i ji i i

ii j

V x t t

q
x q N m

A
ε

μ= =

⎧ ⎛ ⎞⎪≤ − + + + + ⎜ ⎟⎨
⎝ ⎠⎪⎩

∑ ∑

&

  

1

N
T
ji ji i i

j
j i

A A xβ
=
≠

⎫
⎪⎪+ + ⎬
⎪
⎪⎭

∑  (17) 

Let iq  be selected as 

 
2 ( )

2(2 1)
i

i
i i

A
q

N m
μ

=
+ +

 (18) 

Then (17) becomes 

 ( )2
2

1 1 1

( ( ), )

2 1

i

N N N
iT T

i ji ji ji i i
i ii j j

j i

V x t t

A
x A A x

N m
μ

ε β
= = =

≠

⎧ ⎫
⎪ ⎪⎪ ⎪≤ + + −⎨ ⎬

+ +⎪ ⎪
⎪ ⎪⎩ ⎭

∑ ∑ ∑

&

(19) 

Therefore, it is seen that the condition (8) can guarantee 
( ( ), )iV x t t&  is negative and the large-scale system S is robustly 

stable. Thus, the proof is completed. □ 
Remark 1: It is seen that if 0ikB =  for all i and k, then system 
(1) become a perturbed large-scale system which is described 
as an interconnection of N subsystems 1 2, , , NS S SK  
represented by 

 
1 1

: ( ) ( ) ( ( ), ) ( )
N N

i i i i ij j ij ij j ij
j j

j i

S x t A x t f x t d t A x t d
= =

≠

= + − + −∑ ∑& (20) 

where  1, 2, ,i N= K . Then, according to the proof of 
Theorem 1, we can obtain the following result without proof. 
Corollary 1: The perturbed large-scale system described by (20) 
is robustly stable if for 1, 2, ,i N= K , 

 ( ) 2

1 1

2 1 0
N N

T
i i ji ji ji

j j
j i

A N A Aμ ε
= =

≠

⎛ ⎞
⎜ ⎟

+ + + <⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∑           (21) 

III. LARGE-SCALE BILINEAR INTERVAL SYSTEMS 
Consider a homogeneous large-scale bilinear interval system 
S%  which is described as an interconnection of N subsystems 

1 2, , , NS S S% % %K  represented by 
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1 1

: ( ) ( ) ( ) ( ) ( )
imN

i i i i ij j ij ik ik i
j k
j i

S x t A x t A x t d sat u t B x t
= =
≠

= + − +∑ ∑% % % %& (22) 

where 1, 2, ,i N= K , ( )ix ⋅ ∈ nℜ , 0ijd ≥ , and ( )iku ⋅ ∈ ℜ  

are the same as those in system (1), [ ]i ipqA a=% % , [ ]ij ijpqA a=% % , 

and [ ]ik ikpqB b= %%  are interval matrices with appropriate 

dimensions and the properties: 
 [ , ]i i iA N U V∈%  with [ ], [ ]i ipq i ipqU u V v= = . (23) 

 [ , ]ij ij ijA N U V∈%  with [ ], [ ]ij ijpq ij ijpqU u V v= =  (24) 

 [ , ]ik ik ikB N E F∈%   with [ ], [ ]ik ikpq ik ikpqE e F f= =  (25) 

Functions [ , ]i iN U V , [ , ]ij ijN U V , and [ , ]ik ikN E F  present that 

the set of all matrices iA% , ijA% , and ikB  satisfying 

 , ,ipq ipq ipq ijpq ij ijpq ikpq ikpq ikpqu a v u a v e b f≤ ≤ ≤ ≤ ≤ ≤% % (26) 

where , 1, 2, ... ,p q n= . Define 

 ˆ ˆ[ ]
2

i i
i ipq

U V
A a

+
= ≡  and [ ]

2
i i

i ipq
V U

L l
−

= ≡  (27) 

where , 1, 2, ... ,p q n= .  
Then the system (22) can be represented as 

 
1

1

ˆ ˆ: ( ) ( ) ( ) ( )

( ) ( )
i

N

i i i i i ij j ij
j
j i

m

ik ik i
k

S x t A A x t A x t d

sat u t B x t

=
≠

=

= + Δ + −

+

∑

∑

% %&

%

 (28) 

where ˆ
iAΔ  denotes parametric uncertainty with the property: 

 ˆ
i iA LΔ ≤  (29) 

which means ˆ ˆ[ ]i ipqA aΔ = Δ  and ˆipq ipqa lΔ ≤  for 

, 1, 2, ,p q n= K . Define 

 [ ]ij ijpqA a=  with max( , )ijpq ijpq ijpqa u v≡  (30) 

 [ ]ik ikpqB b=  with max( , )kij ikpq ikpqb e f≡% . (31) 

This results in 
 ij ijA A≤%  and ik ikB B≤% . (32) 

Then due to the well-known facts that A A≤  and 

( ) ( )A Aμ μ≤ , we have 

 ij ij ijA A A≤ ≤% % , ik ikB B≤% , and 

 ˆ ˆ( ) ( ) ( )i i iA A Lμ μ μΔ ≤ Δ ≤  (33) 

Furthermore, we also define the following constants 

 
22

1

m

i ik ik
k

U Bβ
=

≡ ∑ , 1, 2, ,i N= K .  (34) 

Let iN%  denote the number of 0ijA ≠%  corresponding to the i-th 

subsystem with 1, 2, ,j N= K . Then in light of Theorem 1, 

(33), and (34), we have the following result. 
Theorem 2: If the following conditions are satisfied for 

1, 2, ,i N= K  

 ( ) 2

1

ˆ ( ) 0
N

i i i i ji i
j
j i

A L N m Aμ μ β
=
≠

⎛ ⎞
⎜ ⎟

+ + + + <⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

∑%    (35) 

then the large-scale bilinear interval system (22) with the 
constraints (3) is robustly stable. 
Proof: By the relation ( )A Bμ + ( )Aμ≤ ( )Bμ+ , we have 

 
( ) ( ) ( )

( )
ˆ ˆ ˆ ˆ ˆ ˆ( ) ( )

ˆ ( )

i i i i i i

i i

A A A A A A

A L

μ μ μ μ μ

μ μ

+ Δ ≤ + Δ ≤ + Δ

≤ +
 (36) 

Then, from (34) and (35), it is obviously that matrices ˆ ˆ
i iA A+ Δ  

are stable. We choose the Lyapunov function ( ( ), )iV x t t  for 
the large-scale system (22) as 

 
1

( ( ), ) ( ( ), )
N

i i i
i

V x t t V x t t
=

= ∑

1 1

( ) ( )
ij

N N tT T
i i i j ij ij j

t d
i j

j i

x P x x s A A x s ds
−

= =
≠

⎧ ⎫
⎪ ⎪⎪ ⎪= +⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

∑ ∑∫ % %  (37) 

wherer iP  , 1, 2, ,i N= K  , satisfies the following Lyapunov 
equation 
 ˆ ˆ ˆ ˆ( ) ( ) 2T

i i i i i i iA A P P A A q I+ Δ + + Δ = −  . (38) 

Then the solutions iP  have the bounds 

 ˆ ˆ ˆ( ) [ ( ) ( )]
i i

i
i i i i

q q
P

A A A Lμ μ μ
≤ ≤

− + Δ − +
. (39) 

Taking the derivative of ( ( ), )iV x t t  along trajectories of (28) 
results in 

 

1 1

( ( ), )i

N N
T T T T

i i i i i i j ij i ij j
i j

j i

V x t t

x P x x P x x A P A x
= =

≠

⎧
⎪⎪= + +⎨
⎪
⎪⎩

∑ ∑

&

% %& &
 

 
1

( ) ( )
N

T T
j ij ij i ij j ij

j
j i

x t d A P A x t d
=
≠

⎫
⎪⎪− − − ⎬
⎪
⎪⎭

∑ % %  

       {
1

ˆ ˆ ˆ ˆ[( ) ( )]
N

T T
i i i i i i i i

i

x A A P P A A x
=

= + Δ + + Δ∑  

1 1

( ) ( )
N N

T T T
j ij ij i i i i j ij ij

j j
j i j i

x t d A P x x P x t d A
= =
≠ ≠

+ − + −∑ ∑% %

 
1 1

m m
T T
i ik ik i i ik ik i

k k

x sat u B P P sat u B x
= =

⎡ ⎤
+ +⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∑% %  
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1 1

( ) ( )
N N

T T T T
j ij ij j j ij ij ij j ij

j j
j i j i

x A A x x t d A A x t d
= =
≠ ≠

⎫
⎪⎪+ − − − ⎬
⎪
⎪⎭

∑ ∑% % % % (40) 

By the similar ways as that of the proof of Theorem 1, we 
obtain 
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From (43), it is seen that the condition (35) can assure the 
robust stability of the system S% . Thus, the proof is completed. □  
Remark 2: Obviously the Lyapunov equation (39) is unsolvable. 
However, by utilizing the upper bound of the solution iP , it is 
seen that an interesting consequence of the proposed schemes is 
that all obtained robust stability conditions do not involve any 
Lyapunov equation although the Lyapunov stability theorem is 
used. 
Remark 3: Setting 0ikB =%  for all i and k in the system S% , S%  
becomes a large-scale interval time-delay system and its 
subsystems are described as 
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In light of Theorem 2, we obtain directly the following result. 
Corollary 2: If the following conditions are satisfied 
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ˆ ( ) 0
N

i i i ji
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then the large-scale time-delay system (44) is robustly stable. 

IV. ILLUSTRATIVE EXAMPLES 
Demonstrations are given as below. 

Example 1: Consider a large-scale bilinear perturbed 
time-delay system (1) as 
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Assume 11 211.2, 1.0U U= = , and 31 1.5U = . For this case, it 
is seen that 1 21, 2, 2,im N N= = =  and 3 1N = . Now by the 
stability condition (8), we can estimate the perturbation bounds 
that can guarantee the asymptotic stability of this large-scale 
system as 
 2 2 2

11 21 31 0.6354ε ε ε+ + <  

 2 2
12 22 1.3931ε ε+ <  

 2 2 2
13 23 33 1.8151ε ε ε+ + <  

Example 2: Consider the following large-scale bilinear interval 
system: 
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It is seen that 1 2 3 1 21, 2, 2, 2, 1,m m m N N= = = = =  and 

3 2N = . For this case, we assume 11 212.5, 1.5,U U= =  

22 311.5, 1.2,U U= =  and 32 1U = . Then, according to the 
stability condition (35), we have 

 ( ) 2
1 1 1 1 31 1

ˆ ( ) 0.5568A L N m Aμ μ β⎛ ⎞+ + + + = −⎜ ⎟
⎝ ⎠

%  

( ) 2 2
2 2 2 2 12 32 2
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⎝ ⎠
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3 3 3 3 13 23 3
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⎝ ⎠

%  

Therefore, this large-scale bilinear interval system is stable. 

V. CONCLUSIONS 
The stability analysis problem for homogeneous perturbed 

bilinear time-delay systems with constrained inputs has been 
addressed in this paper. By using the Lyapunov equation 
approach associated with linear algebraic techniques, several 
delay-independent criteria that guarantee the robust stability of 
overall systems have been proposed. Although the Lyapunov 
stability theorem is utilized, it is not necessary to solve any 
Lyapunov equation for the obtained conditions. It is also shown 
that these results can be applied to solve the stability analysis 
for large-scale time-delay systems. Finally, illustrative 
examples have been given to demonstrate the applicability of 
the presented schemes. We believe that this work is helpful for 
controller design of large-scale perturbed time-delay systems.  
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