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Abstract—Nevertheless the widespread application of finite 
mixture models in segmentation, finite mixture model selection is 
still an important issue. In fact, the selection of an adequate number 
of segments is a key issue in deriving latent segments structures and 
it is desirable that the selection criteria used for this end are effective. 
In order to select among several information criteria, which may 
support the selection of the correct number of segments we conduct a 
simulation study. In particular, this study is intended to determine 
which information criteria are more appropriate for mixture model 
selection when considering data sets with only categorical 
segmentation base variables. The generation of mixtures of 
multinomial data supports the proposed analysis. As a result, we 
establish a relationship between the level of measurement of 
segmentation variables and some (eleven) information criteria’s 
performance.  The criterion AIC3 shows better performance (it 
indicates the correct number of the simulated segments’ structure 
more often) when referring to mixtures of multinomial segmentation 
base variables. 

 
Keywords—Quantitative Methods, Multivariate Data Analysis, 

Clustering, Finite Mixture Models, Information Theoretical Criteria, 
Simulation experiments.  

I. INTRODUCTION 
LUSTERING analysis’ primary use in marketing has 
been for market segmentation, [37]. Finite mixture 

models (FMM) have proven to be powerful tools for clustering 
analysis, namely in the domain of social and behavioural 
science data, [16]. In this context they are commonly referred 
as Latent Segment Models (LSM). 

There have been numerous proposals of information criteria 
for the selection of the number of segments of LSM (model 
selection).  

In the context of market segmentation and social sciences in 
general, applications are common which consider basically 
categorical segmentation base variables. 

The objective of this research is to address the performance 
of specific theoretical information criteria (for LSM selection) 
when dealing with the categorical segmentation base 
variables. A simulation study is conducted for this purpose 
which results may help to support future analysts’ decisions 
concerning the choice of particular information criteria when 
dealing with specific segmentation applications. 

This paper is organized as follows: in section II, we define 
notation and review finite mixture models, segmentation  
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analysis through Latent Segments Models (mixture models) 
and we review previous work on the EM algorithm for the 
estimation of mixture models; in section III, we review several 
model selection criteria proposed to estimate the number of 
components of a mixture (number of segments); in section IV, 
we present the proposed simulation based approach to 
compare the performance of eleven information criteria; in 
section V we report on simulation results, and finally, in 
section VI we present some concluding remarks.  

II. SEGMENTATION VIA LATENT SEGMENTS MODELS 
[35] illustrated the use of mixture models (here referred as 

Latent Segments Models) in the field of cluster analysis. LSM 
assume that parameters of a statistical model of interest differ 
across unobserved or latent segments and they provide a 
useful means for clustering observations into segments. In 
LSM, segmentation base variables are assumed to be 
described by a different probability (density) distribution in 
each unobserved segment. These probability (density) 
functions typically belong to the same family and differ in the 
corresponding parameters’ values. In order to present LSM we 
give some notation on Table I. 
 

TABLE I 
NOTATION 

 
 

This approach to segmentation offers some advantages 
when compared with other techniques: provides unbiased 
segments memberships’ estimates and consistent estimates for 

n sample size 
S number of (unknown) segments 

)Y,,Y( P1 L P segmentation base variables (random variables) 
)y,,y(

n1
L measurements  on variables p1 Y,,Y L  

iy measurements vector of individual i on variables p1 Y,,Y L  
),...,1( nzzz = segments-label vectors 

( )iS1ii z,...,zz = binary vector indicating segment membership 
),(x zy= complete data 

p(d)f 
)

probability (density) function 

sθ vector of all unknown p(d)f parameters of  the sth segment 

( )S1...θθ=Θ vector of mixture model parameters, without weights 

)1,,( 1 −= sλλλ L vector of weights (mixing proportions) 

isτ probability that an individual i belongs to the sth segment, given iy  

),( Θ= λψ vector of all unknown mixture model parameters  

)ˆ,ˆ(ˆ Θ= λψ estimate of the vector of all unknown parameters 

L likelihood function, L(ψ ) 
LL log-likelihood function, log L(ψ ) 

cLL complete-data log-likelihood function  

ψn number of mixture model parameters 
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the distributional parameters, [17]; it provides means to select 
the number of segments, [34]; it is able to deal with diverse 
types of data (different measurement levels), [40].  

The mixture model approach to segmentation assumes that 
data are from a mixture of an unknown number S of segments 
in some unknown proportions, Sλλ ,,1 L . The data 

),...,(
1 n

yyy =  are assumed to be a p-dimensional sample 

of size n, from a probability distribution with density: 

     )
1

|()|( ∑
=

=
S

s siysfsiyf θλψ ,                                    (1) 

where the mixing probabilities satisfy: 

0>sλ , s = 1, ..., S, and 1
1

=∑
=

S

s sλ                                      (2) 

The complete set of parameters we need to estimate, to specify 
the mixture model is  
 

{ } { } { }ss θθλλλλψ ,,   and  , 1,,  , ,  11 LL =Θ−=Θ=
. 

 
The log-likelihood function for the parameters is: 
 

)|(
1 1

 log  )(  log siysf
n

i

S

s sL θλψ ∑
=

∑
=

=                                 (3) 

Developments in the area of multivariate mixtures are few 
and mostly concentrated on mixtures of multivariate normal, 
[7]. The particularization of mixture models for multinomial, 
normal multivariate and mixed models can be seen in works 
such as [22], [41], and [24], respectively. 

When dealing with Mixture Models for segmentation 
purposes, we may define each complete data observation, 

)iz,y(ix i= , as having arise from one of the segments of the 

mixture (1). Values of segmentation base variables iy  are 

then regarded as being incomplete data, augmented by 
segment-label variables, isz ,  that is, )isz,...,(ziz i1=  is the 

unobserved portion of the data; isz  are binary indicator latent 

variables, so that s)
i

z(isz =  is 1 or 0, according as to 

whether 
i

y  belongs or does not belong to the sth  segment, for 

i = 1,…,n, and s = 1, …S. 
Assuming that { }iZ  are independent and identically 

distributed, each one according to a multinomial distribution 
of S categories with probabilities Sλλ ,,1 L , the complete-

data log-likelihood to estimate ψ , if the complete data 

)iz,y(ix i=  was observed, [33], is  

 

     
}log)s|i(slog{ 

n

1i

S

1s
is    )(cL log syfz λθψ +∑

=
∑
=

=
 

With the maximum likelihood approach to the estimation of 
ψ , an estimate is provided by a suitable root of the likelihood 
equation: 

                         O   
)L( log 

=
∂

∂

ψ

ψ
 

The maximum likelihood estimate (MLE) cannot be found 
analytically. The maximizations defining MLE are under the 
constraints in (2). 

In order to derive meaningful results from segmentation, the 
mixture model must be identifiable, which simply means that 
an unique solution to the maximum likelihood problem must 
exist ([9]. 

Several researchers have studied consistency property of 
both the unknown number of segments (S) and of the other 
model parameters’ MLE.  

[27] presented one of the earliest works which refers to the 
consistency of MLE for the distributional parameters in a 
LSM and he stated that mixture model estimators are 
consistent and asymptotically normally distributed when 
segmentation variables are assumed to belong to the 
exponential family of distributions. Other researchers 
addressed this issue, like [14], [23], and [21]. 

The consistency of the number of segments’ estimator ( Ŝ ), 
was stated by [31], with a maximum-penalized-likelihood 
method for estimating a mixing distribution, considering 
information criteria AIC and BIC; they showed that this 

method produces a consistent estimator Ŝ , in the sense of 
weak convergence.  

This property of the number of segments’ estimator was 
also discussed in [29], [26], [8], all concluding that the 
estimated number of segments to the true (despite unknown) 
number of segments is consistent. 

Fitting finite mixture models (1) provides a probabilistic 
segmentation of the n entities in terms of their posterior 
probabilities of membership of the S segments of the mixture 
of distributions. Since the MLE of most of the latent segment 
model (1) cannot be found analytically, estimation of LSM 
iteratively computes the estimates of segments posterior 
probabilities and updates the estimates of the distributional 
parameters and mixing probabilities, [30]. 

Expectation-maximization (EM) algorithm, [15], is a widely 
used class of iterative algorithms for ML estimation in the 
context of incomplete data, e.g. fitting mixture models to 
observed data. 

The EM algorithm proceeds by alternately applying two 
steps, until some convergence criterion is met. 

The E-step, on the kth iteration, calculates the complete 
data expected log-likelihood function, given y , defined by 
the so-called Q function where: 
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is the membership probability of pattern iy  in segment s 

(posterior probability) (i=1,…,n, and s =1,…,S). 
The M-step, on the (k+1)th iteration, demands the 

maximization of (3) with respect to ψ , to update the 

parameter estimation, obtaining )1(ˆ +kψ . 

Then, by the Bayesian rule, the ith pattern is 
probabilistically assigned into segment s, after algorithm EM 

convergence, if 
))(

'
ˆ|('

)(
'

ˆ))(ˆ|()(ˆ k
siysfk

s
k

siysfk
s θλθλ >

, 
Sss ,...,1' =≠∀ . 

Since the mixture likelihood L (ψ ) can never be decreased 
during the EM sequence, 

))(ˆ())1(ˆ( kLkL ψψ ≥+
, 

it implies that ))(ˆ( kL ψ  converges to some L for a sequence 

of likelihood values bounded above. Since, typically with 
mixture model approach, the likelihood surface is known to 
have many local maxima the selection of suitable starting 
values for the EM algorithm is crucial, [5] or [28]. Therefore, 
it is usual to obtain several values of the maximized log-
likelihood for each of the different sets of initial values 
applied to the given sample, and then consider the maximum 
value as the solution. Also, in order to prevent boundary 
solutions, the EM implementation may recur to maximum a 
posteriori estimates. 

Selection of LSM solutions may rely on multiple 
Information Criteria, which turns opportune the specific issue 
concerning the selection among the criteria themselves. 

On the other hand, applications are common in the 
segmentation domain, which refer to segmentation base 
variables of different types (different levels of measurement). 
This fact turns relevant the issue concerning the existence of a 
relationship between information criteria’s performance and 
the type of base variables’ measurement level (categorical, 
continuous or mixed). 

In the present study we propose an approach for evaluating 
several Information Criteria’s performances, taking into 
account theirs relationship with base variables’ measurement 
levels, categorical in case. 

Information Criteria all balance fitness (trying to maximize 
the likelihood function) and parsimony (using penalties 

associated with measures of model complexity), trying to 
avoid overfit.  

 
TABLE II 

SOME INFORMATION CRITERIA FOR MODEL SELECTION ON LATENT SEGMENT 
MODELS 

Criteria Definition Author 

AIC ψ2n2LL +−
 

[1] 

AIC3 ψ3n2LL +−
 

[11] 

AICc 1)ψn1))/(nψ(nψ(2nAIC −−++ [25] 

AICu 1))ψnnlog(n/(nAICc −−+ [36] 

CAIC logn)(1ψn2LL ++−
 

[10] 

BIC/ 
MDL 

lognψn2LL +−
 

[39] / 
[38] 

CLC 2EN(S)2LL +−  [3] 

ICL- 
BIC 2EN(S)BIC +  [4] 

NEC L(1)))EN(S)/(L(SNEC(S) −=  [6] 

AWE logn)(3/2ψ2nc2LL ++−
 

[2] 

L 1)/2ψS(n2)S/2log(n/1/12)slog(nλ/2)ψ(nLL ++∑+− [18] 

 
 

Furthermore, fitting a model with a large number of 
segments requires estimation of a very large number of 
parameters and a consequent loss of precision in these 
estimates, [32]. 

Akaike’s Information Criterion and Bayesian Information 
Criterion are, perhaps, the best known Information Criteria. 
These and some other criteria are presented in Table II. 

The general form of information criteria is as follows: 
 CL +− )ˆ(log2 ψ ,                                        (4) 

where the first term is the negative logarithm of the maximum 
likelihood which decreases when the model complexity 
increases; the second term or penalty term penalizes too 
complex models, and increases with the model number of 
parameters. Thus, the selected LSM should evidence a good 
trade-off between good description of the data and the model 
number of parameters. 

The emphasis on information criteria begins with the 
pioneer work of [1], with the Akaike’s information criterion; 
AIC chooses a model with S segments that minimizes (4) with 
C = 2 ψn  .  

Later, [10] suggested the modified AIC criterion (AIC3) in 
the context of multivariate normal mixture models, using 3 
instead of 2 as penalizing term, that is C = 3 ψn . When a 

vector parameter lies on the boundary of the parameter space 
(as in the case of the standard mixture problem), in comparing 
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two models with ψn  and *
ψn  parameters, respectively, the 

likelihood ratio statistic has a non-central chi-square 
distribution with 2( ψn - *

ψn ) degrees of freedom, instead of (

ψn - *
ψn ) considered in AIC. As a result, he obtained a 

penalization factor C = 2 ψn  + ψn .  

Another variant of AIC, the corrected AIC (AICc), is 
proposed by [25], focusing on the small-sample bias 
adjustment (AIC may perform poorly if there are too many 
parameters in relation to the sample size); AICc thus selects a 
model with S segments that minimizes (4) with C =

)1/(2 −− ψψ nnnn .  

Since AICc still tends to overfit as the sample size 
increases, [36] proposed a new criterion – AICu – which 
considers a greater penalty for overfitting, specially as the 
sample size increases. 

The consistent AIC criterion (CAIC) with C = ψn (1 + log 

n) was derived by [10]; it tends to select models with fewer 
parameters than AIC does.  

The Bayesian Information Criterion (BIC) was proposed by 
[39]; initially proposed for linear models, it includes an 
adjustment for sample size and often favors a simpler model; 
it is intended to provide a measure of the weight of evidence 
favoring one model over another, [42]. It refers to C = ψn log 

n, and is equivalent to the MDL - Minimum Description 
Length,  [38]. 

The CLC - Complete Likelihood Classification – criterion, 
[34], was originated from the link between the observed log-
likelihood and log-classification likelihood, LLc = LL – 
EN(S). It considers C = 2EN(S), where the entropy term 
2EN(S) penalizes poorly separated segments, with: 

is log
n

1i

S

1s
 is   )S(EN τ∑

=
∑
=

τ−=
 

In order to account for the ability of the latent segment 
model to give evidence for a segmentation structure of the 
data, [4] considered the integrated likelihood of the complete 
data ( zx, ) or Integrated Classification Likelihood criterion 
(ICL); an approximation, referred to as ICL-BIC by [34], 
chooses a model with S segments that minimizes (4) with C = 
EN(S) + ψn log n. 

[6], suggested the improved NEC (originally introduced by 
[12]); because original NEC cannot be calculated for S = 1, 
they stated that NEC(1) = 1, and so we can choose a model 
with s segments for minimum NEC(s) ≤ 1, (2 ≤ s ≤ S); 
otherwise NEC declares there is no segmentation structure in 
the data.  

[2] have suggested a Bayesian solution to the choice of the 
number of segments, based on an approximation of the 
classification likelihood, the so-called approximate weight of 
evidence – AWE – which penalizes more drastically complex 

models than BIC; so it will select more parsimonious models 
than BIC, except for well separated segments, and chooses a 
model with S segments that minimizes (4) with: 

)log2/3(2)(2 nnSENC ++= ψ . 

Finally, [18] proposed the L criterion for any type of 
parametric mixture model for which it is possible to write an 
EM algorithm; this criterion  chooses a model with S segments 
that minimizes: 

1)/2ψS(n2)S/2log(n/1/12)slog(nλ/2)ψ(nLL +++∑+− . 

AIC and AIC3 are measures of model complexity associated 
with some criteria (see Table II) that only depend on the 
number of parameters; some other measures depend on both 
the number of parameters and the sample size, as AICc, AICu, 
CAIC and BIC/MDL; others depend on entropy, as CLC, and 
NEC; some of them depend on the number of parameters, 
sample size, and entropy, as ICL-BIC, and AWE; L depends 
on the number of parameters, sample size and mixing 
proportions, sλ . 

III. METHODOLOGY 
In this section we present LSM referred to a mixture of 

categorical variables. When all the p (p = 1,...,P) segmentation 
base variables are categorical and the p-th variable has levels 
1,..., pC , indicator variables may be defined as follows:  

⎩
⎨
⎧

=
cpi

cpi
ipcy

 levelat not   is   attribute ,entity for  if 0,

 levelat   is   attribute ,entity for  if  ,1
 

for i = 1,...,n; c = 1,..., pC ; p = 1,...,P 

Let spcθ  be the probability that the p-th variable has level c 

in segment s (s = 1,...,S). The response for entity i, in level c 
may be considered distributed according to a multinomial 
model, consisting of one draw on pC  categories with 

probabilities spcsp θθ ,,1 L , for c = 1,..., pC , if it belongs to 

segment s; thus, conditional on entity i belonging to segment 
s, 

),...,1;1(pCMult~ spcspiy θθ>
 

for each variable p. 
Conditional on entity i belonging to segment s, the density 

function of an observation 
i

y  is given by: 

∑
=

∏
=

∏
=

=∑
=

=
S

s

P

p c

ipcy
spcs

S

s
siysfsiyf

1 1

pC

1
     )

1
|()|( θλθλψ

  
 

where ψ , the vector of unknown parameters is the { }spcθ , 

and { }11,..., −= sλλλ  for s = 1,...,S; p = 1,...,P; c = 1,..., pC .  

IV. SIMULATION EXPERIMENTS 
To evaluate the performance of the information criteria 

presented in Table I and robustness across experimental 
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conditions, a simulation study is conducted. Because special 
care needs to be taken before arriving at conclusions based on 
simulations results, we performed some replications within 
each cell. 

For testing the hypothesis that the segmentation base 
variables type influences the decision concerning the 
information criterion to use, we set up simulation studies for 
the three situations: categorical, continuous and mixed base 
variables.  

As far as segmentation base variables with only categorical 
variables is concerned, the aim of this paper, the experimental 
design controls the number of categories for each variable, the 
number of segments, and the sample size; thus, data sets are 
simulated with two categories for each one of the three 
variables (this originates 23 data sets); we use two levels of 
segments’ number (2, 3), and the sample size assumes the 
levels 400, 1200, and 2000. The simulation plan uses a 23×2×3 
= 24×3 factorial design, with 48 cells (see table 3); For S = 2, 
we fixed the missing proportions at λ1 = 0.5 and λ2 = 0.5; for 
S = 3 we fixed the missing proportions at λ1 = 0.4, λ2 = 0.3, λ3 
= 0.3. Within each cell, five data sets are generated, so we 
work with 240 samples. 
 

TABLE III  
FACTORIAL DESIGN FOR CATEGORICAL SEGMENTATION BASE VARIABLES 

 
In order to avoid local optima in the generated LSM 

estimation process, the EM algorithm is repeated 50 times 
with random starting centers, and the best solution for ML and 
model selection results are kept, with a tolerance level of 10-6 
(the criterion for convergence of EM: difference between log-
likelihood being smaller than 10-6 ). 

V. RESULTS 
The results of the comparative experimental evaluation of 

the performance of eleven information criteria based on the 
proposed simulation study are presented below. They illustrate 
the relationship between the performance of information 
criteria and the segmentation base variables’ type.  

Table IV summarizes the results of information criteria for 
categorical segmentation base variables. This table illustrate 
the percentage of cases when the original (true) number of 
segments is recovered (fit) and also the overall percentages 
corresponding to underfit (percentage of times each criterion 
selects a model with a few number of segments) and overfit 
(percentage of times each criterion selects a model with a high 
number of segments).  
 

 
 
 
 
 

TABLE IV 
SIMULATION RESULTS FOR CATEGORICAL EXPERIMENTS 

 
The performance of AIC3 is very good; it consistently 

performs very well for the samples sizes and segment’s 
number we use. Overall, it finds the correct number of 
segments in 94% of cases.  

Other criteria perform very well, like AICu (overall 92%) 
and AIC and AICc (ex-aequo, overall 90%). The criteria 
which perform worst are excluded. 

We also can see that AIC3 (with AIC and AICu) only 
underfit 6% of the times; on the other side, L criterion underfit 
44% of the times, followed by CAIC (23%) and BIC (21%). 
Thus AIC3 is quite effective when considering categorical 
segmentation base variables. 

VI. CONCLUSION AND DISCUSSION 
We conduct a simulation study which aims to find an 

association between information criteria performance and the 
type of segmentation base variables (categorical) used in 
Latent Segments Models. This relationship is derived from the 
obtained results. 
 

 
Fig. 1 Criteria fit performance in percentage 

 Variables 
Number 
of 
segments

Sample size Factorial 
design 

 X1 X2 X3 2; 3 400; 1200; 2000 
Number 
of 
levels 

2 2 2 2 3 24×3 

  
BIC AIC AIC3 AICc AICu CAIC L 

 Fit 79 90 94 90 92 77 56 

Overall Underfit 21 6 6 6 8 23 44 

Overfit - 4 - 4 - - - 

Sample 
size 

400 44 81 94 81 88 31 13 

1200 94 94 94 94 94 63 50 

2000 94 94 94 94 94 88 69 

Number of 
Segments  

2 88 92 100 92 100 75 75 

3 71 88 88 88 83 54 21 
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In the present study, we conclude that AIC3, AICu and 
AICc show better performance when dealing with categorical 
segmentation base variables (AIC3 selects the true number of 
segments in 94% of the simulated cases).  

This study reinforces the conclusions from a previous study, 
[19] which was based on real data sets. Similar conclusions 
are achieved namely for segmentation base variables with only 
categorical variables (referred to 19 real data sets). 

Fig. 1 illustrates fit (percentage of the true structure 
recovery) referred to all the experiments which are conducted 
in the present study, and the best of used criteria.  
 

 
Fig. 2 Criteria overfit performance in percentage 

 
As we can see from Fig. 2 (criteria select models with more 

segments, in %), AIC is the criterion which overfits more 
often, followed by AICc.  
 
 

 
Fig. 3 Criteria underfit performance in percentage 

 
Fig. 3 (criteria select models with less segments, in percent) 

shows that AIC almost never underfits; next, we have AIC3, 
AICc and AICu. 

Finally, in order to compare the criteria performances, we 
run Friedman tests ([20], because the data consist of b 
mutually independent k-variate random variables (Xi1,…,Xik), 
called b blocks (rows in table 4), i=1,…,b; the random variable 
Xij is in block i (the factors in analysis: overall fit, sample size 
fit, and number of segments fit) and is associated with 
population j (criteria in the Table V’ columns). 

Concerning categorical experiments results (excluding 
underfit and overfit), we run Friedman test for all the criteria 
in Table IV (six observations corresponding to overall fit, 
different sample sizes and number of segments). We test the 
null hypothesis that the seven criteria perform identically 
(have similar medians) for recovery proportions. Since we 
reject the null hypothesis (Monte Carlo p-value of 0.001) we 
conclude that the criteria performance differs significantly 
(e.g. using α = 0,01).  

In order to seek for pairs significantly differences we 
conduct Friedman Multiple Comparisons, [13]. Criteria j and 
j’ are considered to have different performance if the 
inequality: 

[ ]2
1

21

2
)1)(1(
)(2

1);1)(1(' || −−
−

−−−>− kb
FFb

kbji tRR α                    (5) 

is satisfied, where 
21);1)(1( α−−− kbt  is the value of distribution t 

with (b-1)(k-1) degrees of freedom, F1 and F2 are given by: 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:3, 2010

370

 
 

 

[ ]
2

1 1
1 )(∑∑

= =

=
b

i

k

j
ijXRF  and ∑

=

=
k

j
jb RF

1

21
2 , with 

)(
1

∑
=

=
b

i
ijj XRR , 

 
where R(Xij) is the rank, from 1 to k, assigned to Xij within 
block i. 
 

TABLE V  
MATRIX FOR MULTIPLE COMPARISONS  

 
 

[ ]2
1

21

2 )1)(1(
)(2

1);1)(1( −−
−

−−− kb
FFb

kbt α  = 6.26 

 
Table V shows all the jj RR −'  values. The test yields 

significantly differences performances for AIC3 and AICc 
(|RAIC3-RAICc| = 7 is greater than 6.26), but there are no 
significant differences between AIC3 and AICu (|RAIC3-
RAICu| = 4 is less than 6.26). 

To sum up, considering the results obtained in the 
simulation study and tests, the information criteria to be used 
in latent segments model selection are: 

- AIC3 and AICu if all the segmentation base variables are 
categorical.  
We think these simulation study results are particularly 

useful to help analysts selecting appropriates information 
criteria for LSM when dealing with specific segmentation 
problems. Further research should be conducted in order to 
provide new results in this area, namely considering additional 
information criteria. 
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