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Abstract—In this study, data loss tolerance of Support Vector
Machines (SVM) based activity recognition model and multi activity
classification performance when data are received over a lossy
wireless sensor network is examined. Initially, the classification
algorithm we use is evaluated in terms of resilience to random data
loss with 3D acceleration sensor data for sitting, lying, walking and
standing actions. The results show that the proposed classification
method can recognize these activities successfully despite high
data loss. Secondly, the effect of differentiated quality of service
performance on activity recognition success is measured with activity
data acquired from a multi hop wireless sensor network, which
introduces high data loss. The effect of number of nodes on the
reliability and multi activity classification success is demonstrated
in simulation environment. To the best of our knowledge, the effect
of data loss in a wireless sensor network on activity detection success
rate of an SVM based classification algorithm has not been studied
before.

Keywords—Activity recognition, Support Vector Machines,
acceleration sensor, wireless sensor networks, packet loss.

I. INTRODUCTION

EOPLE with limited physical capabilities, such as elderly

and disabled people, have difficulty in leading a life
without getting help. Assistive technology tools and services
emerge as a way of replacing human assistance so that
individuals, experiencing physically overwhelming situations,
can live more freely. As a subgroup of assistive technology
tools and services, ambient care systems are responsible for
detecting what people are in need of and providing them with
the required help. Ambient care systems implement detecting
the type of necessary assistance thanks to activity monitoring
systems.

Activity monitoring systems are extensively studied in
health care, particularly in detecting falls [1], chronic disease
management [2] [3]. rehabilitation systems [4]. disease
prevention [5] [6] and health status monitoring [7]. Ensuring
steps are implemented, conforming to what is planned in
production facilities, also raises activity monitoring as an
essential utility in process control, since activity monitoring
can help detect whether production steps are in the correct
order or not, such as in water purification plants, increasing
output quality. Postures of operators, pursuing bomb disposal
missions, affect performance of cooling systems embedded
in operators’ suits [8], which employs activity monitoring as
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a security tool as well. Young and healthy people can also
benefit from activity monitoring systems as well as people
with physical difficulties, since activity monitoring is studied
also in sports domain, as a way of preventing injuries [9],
therefore increasing performance of sportsmen.

Being composed of data collection and classification
modules, activity monitoring systems collect activity data with
mainly environmental and wearable sensors, then feed the
acquired data to classification module for identifying types
of actions. Environmental sensors, attached to the objects, are
embedded within the environment. As people interact with
these items, sensors generate events, which form the activity
data, by this way, environmental sensors can help detect
complex activities. However, they may not be sufficient when
used standalone, because they have to be deployed anywhere
people may exist, which complicates the design. Also, daily
routines of people may contain activities which do not require
interaction with these sensors. Wearable sensors do not require
interaction with objects and they do not interfere with privacy,
contrary to sensors such as cameras. They do not limit people’s
actions, either. Accelerometer and gyroscope are widely used
wearable sensors.

In an activity monitoring system model, the classification
task can be carried out on the data collection unit as well as
on a server in a network environment. In a network model
with gateway, at least one sensor unit transmits the data or
the results inferred from the data to the gateway. In this
system model, the classification process is realized in the
gateway, if the sensors transmit the data to the gateway. In
the case that results inferred from the data are transmitted
instead of the data itself, the classification is carried out on
the sensor units. In both models, losing packets throughout
data communication affects the success of activity monitoring
component. In Fig. 1, an example activity monitoring network
architecture, with activity data being processed on the gateway,
is illustrated. Smart phone is an intermediate transmission unit
in this configuration, being responsible for sensor data fusion
and relaying the fused data to the gateway. In the displayed
setting, a person wears various sensors on the body and a
sensor is also embedded in the environment, as illustrated with
the circle marked by an arrow.

In this study, we evaluate the effect of packet loss
on the activity recognition success, in the case that our
classification module is executed on the gateway. The SVM
based classification algorithm used in assessing the effect
of packet loss, is developed in our previous studies [10],
which is an SVM based algorithm. Our algorithm embeds
feature extraction into classification stage, also does not
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Fig. 1 An activity monitoring network with smart phone as data fusion and relaying unit

necessitate experimenting with multiple features to find the
best classifying features, contrary to other approaches utilizing
SVM. To further investigate in what aspects our algorithm
outperforms some related studies, the readers are referred to
[10].

Data loss resilience of our classification algorithm is firstly
analyzed for random loss. After demonstrating that the method
is resistent to high loss rates, as the results imply, our analysis
proceeds with evaluating the method on packet loss patterns
we produced in a multi hop wireless sensor network simulation
environment. It is assumed that the multi hop sensor network
transmits the sensor data to the sink in our network model.
Classification algorithm classifies data received from each
node at the sink, where each node represents data acquired
from a different person. In the wireless network simulation
environment, channel transmission and routing operations
are performed with quality of service supported cross layer
communication protocol (XLCP) [11], which we developed in
our previous studies. Activity recognition analysis is shown in
terms of packet transmission reliability, which depens on the
number of nodes in wireless network.

In our analysis, we considered both packet level loss (in
random loss case) and event level loss, where lost data contains
the piece of information regarding the identified type of
activity (loss patterns generated in multi hop wireless sensor
network simulation environment). The study by Alemdar et.
al. [12] addresses the importance of packet level and event
level reliability, adding that periodic traffic requires mainly
packet level reliability, whereas generating alarms for activities
which signal emergency, such as falls, raises event reporting
as a crucial item. They also mention that crosslayer protocols
are necessary to achieve reliability for various types of traffic
and for making activity monitoring service accessible in
farther regions, multi-hop communication is required in terms
of delivering the sensor data, which also emphasizes the
importance of our study.

In the literature, there exist error correction methods
and studies targeting reconstruction of the lost data [13]

[14]. However, these methods are not suitable for resource
constrained network environments. For these environments,
high classification success with partial data is important
in terms of resource effectiveness. As a study on the
effect of network loss, Radiosense [15] investigated how
transmission power, packet transmission rate and correction
frame parameters affect the performance in terms of
classification accuracy, delay and energy cost. Nevertheless,
the effect of block losses, which result from packet loss
in the network level, on activity classification has not
been studied for SVM classification method before. This
study complements the study by Demir et. al. [11], in
terms of potential collective utilization for differentiating
emergency voice traffic in WSN. A more detailed description
of the application scenario, which further clarifies how our
work presented here can be integrated in the voice traffic
differentitation subject, is given in Section III-A. Marzencki
et. al. [16] proposed a wireless sensor network based activity
monitoring system with reliability support. In a mesh network
structure, they assign the routing tasks of a failing node to a
healthy neighbour, adding that overall data communication is
not affected thanks to this mechanism. Shah et. al. [17] also
follows data relaying for reliability in the multihop wireless
sensor network they designed for monitoring cardiac activity
remotely. They experiment with at most two hop networks and
two interfering nodes, yielding a reception ratio above 0.985,
reception ratio being the ratio of number of packets received
and the number of packets sent. Though reception ratio they
obtain is high, maximum number of hops being 2 may not
be sufficient for many wireless sensor network applications in
activity monitoring. Hence, a classification algorithm resilient
to higher data loss is necessary to compansate for the increased
data loss. In addition, when deploying the activity monitoring
system in real life conditions, activity data continuously stream
in real time. Hence, activity data capturing should go on
even for the period, starting at the instance of node failure
and finishing at the instance of detecting the healthy node.
Furthermore, data loss may result from instantaneous signal
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deteriorations in the healthy node, instead of node failure,
meaning that the node may be up and running but the
transmitted signal may carry a degenerate piece of information.
Hence, packet level and event level data loss should also be
considered, showing the effect of these types of data loss on
activity detection success, which is the focus of our study.
To the best of our knowledge, the effect of data loss in a
wireless sensor network on activity detection success rate of
a classification algorithm has not been studied before.

The contents of the following sections are stated next:
The classification algorithm, experimental methodology and
network service model are elaborated in Section II, 1II and
ITI-A respectively. Findings and analysis are explained in
Section V and finally, conclusions derived from our study are
given in Section VI.

II. SVM BASED CLASSIFICATION ALGORITHM

Our Support Vector Machines based classification algorithm
carry out both feature extraction and data classification phases
at the same time. In our method, SVM training phase is
used in feature extraction operation. In SVM training phase,
processing training data of two classes, a hyperplane, which
seperates these classes, is formed. In prediction stage, whether
the test data are located in the positive region of the hyperplane
or not is determined. Data being located in the positive or
negative region mean being classified as positive or negative
respectively. If there are n classes to differentiate, the number
of hyperplanes to generate is 2 times the number of binary
combinations of n. According to the method we propose,
for distinguishing between more than two classes (multi
class categorization), the action sample is determined to
belong to the class, which generates the greatest number of
hyperplanes, classifying the sample as positive. Since SVM
is a method discriminating between only two classes, in the
feature extraction phase of our method, each action sample
is compared against reference action. Extracted features are
input to training and prediction stages of the already existing
SVM algorithm.

As the training module, for each binary permutation of
the action set, a pattern P is generated as in (1), M initially
representing a matrix with no elements, where N stands for
number of training samples for an action. Depicting feature
extraction scheme, the operation fe is explained in (6) and (7)
in detail. In (1), using Q operator, features of each training
sample in the action set, designated by T'S;, are generated and
merged, to form the matrix M, which eventually represents
the whole feature set for an action. <M, CT(M, C(V)).X>
tuple gives the pattern P. CT, being the core training operation,
generates the seperating hyperplane for an action, after solving
systems of linear equations. In CT, number of support vectors,
designated as C(V), is equal to number of training samples.
The solution X is generated by X < F’x B operation, where
F’ is the pseudo inverse of coefficient matrix F, and B is the
vector of binary labels.

M« Q(M, fe(TS;),Y1<i< N (1

Formation of F and B are designated in (2) and (3)
respectively. (.) is used to indicate dot product operator. In
(2), F;j, mean the element with row i and column j in matrix
F whereas M, show row j of matrix M, also K is the Kernel
function used in order to map its input data to a higher
dimensional space.

F;j = K(M;).K(M,),V1<i,j < C(V) 2

Vector B stores binary class labels and b; designates
elements of B.

1,V1 <i < C(V)

b;z{ 1 Ve § i <G v

Let V be a 4-tuple vector, then Z=K(V) is a 5-tuple vector,
whose elements are shown in (4).

v;,V1<i<4
F |

Zi = 1
i T )
1+ e

n=1

X and w form the seperating hyperplane parameters, which
introduce the result of CT module. w, being initially zero, is
calculated as in (5).

w4 w+xpx K(M;),V1 <i<C(V) (5)

Feature extraction scheme, designated as fe, gets an action
sample A, which is in the form of an acceleration matrix. Each
row of A corresponds to a 4-tuple composed of x, y, z axis
acceleration values and sequence number of the tuple in the
sample. |A[, being the numbr of rows in A, reference action
matrix E is generated as in (6).

Ei +<1,1,1,i >V1<i<|A]| (6)

Then, Kernel function is applied on acceleration matrix and
reference action, as in (7). Finally, C(V) is set to number of
rows in M and CT(M, C(V)).w yields the features of A.

M; =

{ K(A;),V1<i<|A @

K(E;_ja), YAl +1 < i < 24|

For prediction scheme, a test sample is exposed to fe
operation. Let V be the feature vector generated from the test
sample.The function d, taking two vectors as input, appends
the input vector with smaller number of elements with zero,
until the two vectors become of equal size, then returns
them.The value of sum, being initially zero, is determined as
in (8), where vy and vy are calculated with (9).

sum ¢ sum + x; * (v1.0),V1 < i < C(V) (8)

If sum is a positive number, the sample is determined to be
in the positive class, similarly, it is classified to be negative if
sum is a negative number.

[1,02] « d(K(M;), K(V)),V1 <i < C(V) 9)
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III. EXPERIMENTAL METHOD

In our activity recognition model, it is assumed that
classification algorithm executed on the gateway, to which
sensor data are transmitted. Activity data, composed of 3D
acceleration vectors, are transmitted to the server in network
packets and classification algorithm assigns the action to a
class after receiving the whole vector corresponding to the
action. The activity set contains sitting, standing. lying and
walking actions. In data collection phase, 3D accelerometer
inside TI Chronos e¢Z430 watch is located on the left thigh
for sitting, standing and lying activities, as shown in Fig. 2,
whereas it is worn on the left wrist for walking action.
Training data are not lossy while test data are lossy, meaning
that training data are not exposed to data loss schemes we
experimented. In the testbed, configuration parameters are
set as follows: Acceleration data are transmitted at 33 Hz
frequency. Training and test data last for 2.5 s. Number of
samples per activity is 15 and 10 for training and testing
respectively.

Fig. 2 Sensor placement on the body

A. Network Service Model

As previously stated in Section I, this work introduces
the potential to be integrated to an emergency voice traffic
differentiation study in WSN. The network service model, we
presented here, is realized on the application scenario within
a health care building context. One floor of this building is
selected as the monitoring terrain and equipped with acoustic
sensors on pre-defined spots, with beds of the residents,
considering the size of the rooms. Placing the sink node in
the middle, where a lounge and a control room are located,
20mx20m terrain contains 24 sensor nodes deployed in total.
Network topology structured on the terrain is shown in Fig. 3.
3D acceleration sensors worn by the residents also participated
in monitoring, by periodically transmitting the sensor data. For
voice commands, acoustic sensor data are sampled with a fixed
frequency and bit depth. With universal asynchronous receiver
transmitter (UART) interface, this digitized data are transferred
to the wireless source node, then voice data segments are
injected into network packets and transmitted to the sink
through the same network as an emergency class.

Each of the fixed sensor nodes, distributed in an area,
transmit periodic activity data, received from a user, to the
sink, Classification procedure is carried out at the sink in
order to identify the activity at each node. The cross layer
link and network protocol, which we developed in Matlab
environment, provides quality of service support so that
sensor data created at the source reach the sink in the most
effective way. A node initially listens to the radio channel

for a specific amount of time to determine whether the radio
channel is in use or available, when there exists a data
packet to transmit. If the channel is in use, sensor node
starts running a specific timer. As long as the channel is
in use, timer applies exponential back-off. If the channel is
available, the node gets access to the channel, in a similar
way to CSMA/CA (Carrier Sense Multiple Access / Collision
Avoidance) algorithm [18], and transmits the data packet.
In order to find a route, cost for each channel is evaluated
and the route is determined, considering the cost analysis.
RTS-I (Request to Send-Indicator) packet is recevied by all
nodes, which are close to the sink. Nodes receiving RTS-I
packet, calculate a cost value, using SNR (signal-to-noise
ratio) values of the packets they receive, available energy level,
instantaneous data communication speed and buffer length.
Calculated cost value is placed in CTS-Q (Clear to Send)
packet and transmitted. Nodes, calculating a higher cost value,
gain higher priority in getting access to the channel, compared
to those calculating a lower cost value, and they transmit
CTS-Q packet. If a node determines a higher cost value,
while listening to the channel, than the cost value it calculated
regarding a packet, that node transmits the CTS-Q packet with
a specific probability. The node transmitting RTS-I packet,
receive CTS-Q packets for a specific amount of time. When
the time expires, it sends the DATA packet to the node which
transmits the highest cost value in CTS-Q packet. A node
receiving DATA packet, if ACK option is selected, transmits
ACK to the node, which sends DATA packet. In the case
that ACK is selected, an attempt is made to transmit DATA
packet at as many trials as the maximum retransmit count.
DATA packets, for which maximum retransmit count is filled
up, are dropped from the buffer. Associated, transitive and
unassociated packet receipt model, which is given in [19], is
used as the radio model. In this model, it is assumed that NRZ
coding and NCFSK modulation are used for SNR value (x(d))
, belonging to a point at distance d, and packet loss rate (p),
at distance d for a packet with length f, is calculated as given
in (10).

1 x(d
p=1—-(1- §r’:rp_ 5 v ]Hf (10)

IV. SIMULATION ENVIRONMENT

Sensor nodes are placed over an area of 2500 m2 (50m x
50m), using uniform distribution such that void regions are
prevented from slipping. All of these sensor nodes transmit
55 bytes of activity data in total at 2.7 second periods. 55
byte data are composed of general protocol cost (13 bytes),
data segment offset (2 bytes) and activity data (40 bytes).
RTS-1, CTS-Q and ACK packets occupy 20, 20 and 15
bytes respectively. Bandwidth is 250 Kbps in the network
environment where the coordinate of sink node is (25m,0m).
The reason why transmission period is 2.7 seconds is the
following: In a preliminary work of ours on real time activity
monitoring, for performing the activities in a natural pace,
a period of 2.7 seconds had to be given to the person
who practices the activity. Though sitting, standing and lying
activities can be regarded as actions, which can be completed
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Fig. 3 Activity monitoring network topology

in a smaller amount of time, our activity set also contains
walking action, duration of which highly depends on the
human subject’s pace in moving. As a result of calculating
the size of samples coming from acceleration sensor for 2.7
seconds, we found that payload belonging to the activity data
should occupy 40 bytes. In each simulation, 40, 60, 80 and 100
sensor nodes are injected in the area. 5 different topologies
are simulated for each number of nodes seperately and in
performance evaluations, their average is calculated. For each
node count, number of activity data packets transmitted is 10
times the node count. As an example, for node count 40, 10x40
activity data packets; for node count 100, 10x100 activity
data packets are transmitted. The following are performance
metrics used in measuring the effect of packet loss on activity
recognition success:

o Classification Success Percentage: Correct recognition
percentage of the simple actions in lossy environment.
Two different loss models, which are random loss and
loss obtained from network simulation, are experimented
in lossy environment.

e Reliability: The ratio of the total number of unique
packets, received at the sink, to the total number of
packets sent from all nodes.

V. ANALYSIS AND FINDINGS

40 activity test samples are obtained, repeating each of four
actions 10 times. Variation in correct classification success of
each action depending on data loss is analysed for different
data loss percentage (R). When data loss rate is below 50%,
our method recognizes the activities with 100% accuracy.
This observation shows that our method introduces high loss
tolerance. Then, classification success is measured for the
cases where random loss rate is 50%, 60% and 70%.

In network simulation tests, the number of nodes, on which
activity is identified successfully, is calculated, in the case
that each node of the network sends the same activity. The
convergence between packet loss reliability of the network

for different node counts and activity classification success
is considered.

A. Random Loss

Variation in correct classification success of the activities
depending on random packet loss is given in Fig. 4. These
values are calculated as in (11). Expressions used in the
equation are explained below:

o test no: shows test sample being processed and

corresponds to the value n.

o p: number of random loss sequences generated for test

with no n (p is 10 in our results)

o S(n,i): becomes 1 if test sample n is correctly classified

in random loss sequence i, becomes 0 otherwise.

« y(n,p): successful recognition percentage of test n (over p

different random loss sequences). Corresponds to success
percentage values in Fig. 4.

P
> S(n.i)
y(n,p) = =—— (1)
p

In (12), the elements of the set I form the random loss

sequence. Expressions in the equation are clarified below:

e T'73: a4 matrix composed of acceleration values,
containing / rows and 3 columns. (t(:,i) being ith column
of T3, are acceleration values measured along x, y and
z axes respectively.)

o t(i,2): ith row of T3

o L: random loss sequence function

I=L(T"3 R) = {i1,42,43, ... itz R/100} (12)

The function L randomly selects as many acceleration
vectors as R% of the number of 3D acceleration vectors in the
test sample and marks as lost packet. The function E, which
removes the lost packets from the test sample, is given in (13).
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Fig. 4 Variation in correct classification success of the activities depending on random packet loss

E(T=3, 1) = {TW-1D=3); ¢ 1 vi(i,:) e T} (13)

B. Network Environment

In this section, activity classification is analyzed in network
simulation environment. In random loss case, each lost packet
carries a 3D acceleration vector, whereas in the case that loss
is obtained with network simulation, the number of vectors
carried by the lost packet is more than one, due to the network
packet size. For comparing the two loss models, multi vector
packet loss is mapped to single vector packet loss, using (14).
Expressions utilized in the equation are explained below:

« I: number of 3D vectors in the test sample.

« c: number of packets carrying the simple action in its

entirety.

« f: the number of packets failing to reach its destination

(fF<o)
i
R= J‘:;lll;-iJ-.r:l{][] (14)

Correct recognition percentage of each activity, for N
nodes, is shown in Table I. The fact that no significant
change is introduced in activity recognition success, though
node count increases, shows that our classification method is
scalable in the network model.

C. Reliability Analysis

As the simulation results show, network reliability values,
for 40, 60, 80 and 100 nodes, are found to be 0,48, 0,51,
0,45 and 0,39 respectively. This observation shows that packet
loss rate is very high in the wireless sensor network with
quality of service support. However, despite these high loss
rate values, the activity classification model we propose yields
very successful results, thanks to its high loss resilience.

Classification success percentages obtained in simulations,
which are given in Table I, show that network reliability
and activity classification success have a parallel relationship
in activities except lying. It can be seen that a network
environment, where quality of reliability service is at most
51%, is not sufficient for recognizing lying action, nevertheless
the same service quality is adequate for sitting, standing and
walking. A potential reason for this could be that randomness
factor in network loss, introduced by simulation environment,
can affect lyving action more that the other actions we study.

VI. CONCLUSION

In this study, data loss tolerance of accelerometer and
Support Vector Machines based activity classification is shown
for four different actions, with random loss analysis and
wireless sensor network simulation. In addition, activity
data transmission reliability of sensor nodes and activity
classification success of the method in network environment
is analyzed. It is shown that our SVM based classification
method is suitable for network environments with high loss
rates. The fact that training data are not lossy while test
data are lossy, makes our method even stronger. According to
the scalability test results, though highest network reliability
success is obtained when the node count is 60, no significant
change is observed in activity recognition success depending
on node count increase, which shows that the method we
propose is scalable in node count. As the results show, while
sitting, standing and walking actions can be recognized with
very high accuracy in the network environment; recognition
success decreases for lving, which implies that the required
reliability service quality should be more than 50%, for
recognizing lving action. Inspecting this outcome signals that
lying action is more influenced by random losses, being
also supported by our results on random loss. In our future
studies, reliability service quality, required for increasing
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TABLE 1
ACTIVITY RECOGNITION SUCCESS PERCENTAGE IN NETWORK SIMULATION

Activity N=40 N=60 N=R0  N=100

Lying 512 500 509 513

Sitting 99.9

100 99,9 99,6

Standing 97.0 978 96,6 94 4

Walking 99,8

correct recognition success for lying action, will be explored.
Moreover, the reason why data loss influences lying action
more than the other actions, will be studied.
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