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Abstract—The solvated electron is self-trapped (polaron) owing 

to strong interaction with the quantum polarization field. If the 
electron and quantum field are strongly coupled then the collective 
localized state of the field and quasi-particle is formed. In such a 
formation the electron motion is rather intricate. On the one hand the 
electron oscillated within a rather deep polarization potential well 
and undergoes the optical transitions, and on the other, it moves 
together with the center of inertia of the system and participates in 
the thermal random walk. The problem is to separate these motions 
correctly, rigorously taking into account the conservation laws. This 
can be conveniently done using Bogolyubov-Tyablikov method of 
canonical transformation to the collective coordinates. This 
transformation removes the translational degeneracy and allows one 
to develop the successive approximation algorithm for the energy and 
wave function while simultaneously fulfilling the law of conservation 
of total momentum of the system. The resulting equations determine 
the electron transitions and depend explicitly on the translational 
velocity of the quasi-particle as whole. The frequency of optical 
transition is calculated for the solvated electron in ammonia, and an 
estimate is made for the thermal-induced spectral bandwidth. 
 

Keywords—Canonical transformations, solvated electron, width 
of the optical spectrum.  

I. INTRODUCTION 
TS is well known [1] that the optical spectrum of a solvated 
electron in ammonia consists of a broad featureless 

asymmetric band with a long tail extended to the short-wave 
length region. There is vast literature on the possible 
mechanisms of broadening the optical spectrum of solvated 
electrons. However, the question of a contribution to the 
broadening from the translational degrees of freedom and 
from the corresponding velocities is still unanswered. In this 
work the thermal motion of quasi-particle as a whole is 
analyzed in the context of its effect on the broadening of the 
optical absorption band. The theory suggested is based on the 
model of solvated electron in ammonia. The electron is self-
trapped (polaron) owing to strong interaction with the 
quantum polarization field, which is generated by the dipole 
ammonia molecules librating around their equilibrium 
positions.   
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II. MATHEMATICAL METHOD 
    To analyze the effect of translational motion of the solvated 
electron on its optical spectrum, one must separate in the 
Hamiltonian the translation-invariant degrees of freedom from 
the coordinates describing the motion of the quasi-particle as 
whole and derive the velocity dependent equations for the 
electron transitions. If the electron and quantum field are 
strongly coupled then the collective localized state of the field 
and particle is formed. In such a formation the electron motion 
is rather intricate. On the one hand the electron oscillated 
within a rather deep polarization potential well and undergoes 
the optical transitions, and on the other, it moves together with 
the center of inertia of the system and participates in the 
thermal random walk. The problem is to separate these 
motions correctly, rigorously taking into account the 
conservation laws. This can be conveniently done using 
Bogolyubov-Tyablikov [2,3] method of canonical 
transformation to the collective coordinates. This 
transformation removes the translational degeneracy and 
allows one to develop the successive approximation algorithm 
for the energy and wave function while simultaneously 
fulfilling the law of conservation of total momentum of the 
system.  Some of the transformed variables are generalized 
coordinates whose canonically conjugated momenta are the 
integrals of motion, which are defined by the symmetry 
properties of the original Hamiltonian and, hence, ultimately 
ensure fulfillment of the conservation laws. Following the 
Bogolyubov-Tyablikov  method, we reformulate the adiabatic 
theory of the particle strongly interacting with the quantum 
field. The resulting equations determine the electron 
transitions and depend explicitly on the translational velocity 
of quasi-particle. 
   Within the effective mass one-electron continual 
approximation the Hamiltonian of the electron-phonon system 
has the form 
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where the interaction form-factor is defined as 
2/12/1)0( ))(/ /4( Vfuff iV πω= , 2/1)/*2( fmu ω=  and the 

dimensionless coupling constant is cαγ =2 , 
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fsc ue ωεεα 2)/1/1( /2−= ∞ ;  m* is the isotropic effective 

mass of electron, fω is the frequency of the long-wave length 

longitudinal optical vibrations of the polar medium; ∞ε and 

sε  are the high-frequency and low-frequency dielectric 
constants of the isotropically polarizable dielectric continuum, 
and r is the electron coordinate. For convenience, the system 
is assumed to be enclosed in a finite volume V. 
    In order to develop the iterative procedure for calculating the 
eigenfunctions and energy eigenvalues of Hamiltonian (1) we modify 
the canonical transformation of coordinates. For this purpose the 
electron coordinate is written as the vector sum of two variables 
                                  qλr += γ/     ,                                  (2) 
where q is independent of r and means the coordinate of the 
center of gravity of the system, and λ describes the electron 
motion relative to the center. Before developing the 
perturbation theory, let us introduce in Hamiltonian (1) 
instead of the phonon creation and annihilation operators, the 
complex phonon coordinates qf and the corresponding 
operators of conjugated momentum pf :  
    2/)( γ+

−+= fff bbq ,     2/)( fff −
+ −= bbip γ ,   (3) 

which satisfy the commutation rule '' ffff δipq =−],[ . Using 

Eqs. (2) and (3) and taking into account that 
λ/λrλ/r ∂∂=∂∂∂∂=∂∂ γ/)(/  one can transform Hamiltonian 

(1) as 
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Hamiltonian (4) is translation-invariant. According to Eq. (3) 
the operator of the total momentum of the system can be 
written as ∑∂∂=∂∂−

f
fffrq - pq/-ii i/ , so that it is a 

strict integral of motion. It then follows that the q vector 
indeed means the coordinate of the center of gravity of the 
system. Because of a smallness of the last term in Eq. (4), the 
effect of interaction of the electron with the quantum field 
reduces mainly to the appearance of a potential well whose 
depth depends on the magnitude of the dimensionless 
coupling constant. As a result of the strong interaction, the 
quasi-particle is characterized by its own internal structure. 
The appropriate internal states can be coupled to one another 
by the electronic transitions. 
    The interaction of phonons with the charged particles is 
known to shift the equilibrium positions of the field oscillators 
relative to their unperturbed values. We thus supplement 
transformation (2) by the transformation of the field 
coordinates qf: 
                             ,)exp()/( frfff iQuq −+= γ  

                            *
ff −= uu ,       f−

+ = QQ f  .                     (5) 

The translation-invariant Qf variables allow for the quantum 
fluctuations of the field near its new self-consistent classical 
value, which is determined by the set of c-numbers uf to be 
evaluated in the follows. Note that the introduction of new 
coordinates (2) results in the appearance of three extra degrees 
of freedom in comparison to the original system. We therefore 
impose three additional conditions on the Qf coordinates, 
which can be chosen in a linear form without loss of 
generality:  

                                        ∑ =
f

ff
*f 0Qv     .                           (6) 

This requirements, allow one to retain the number of 
independent variables after introducing the new electron and 
field coordinates. The vf values can be chosen in such a way 
that the orthonormalization condition 
                ∑ =

f αββα δff uvff * ,        3,2,1, =βα                (7) 

is fulfilled together with the requirement that ff vv −=* . The 

coordinate transformations (2) and (5) provide fulfillment of 
the conservation law for the total momentum. Hamiltonian (4) 
can be further transformed after the operator of momentum pf 
is expressed in the terms of the new variables q, λ and Qf : 
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Putting uf independent of qk and differentiating (5) with 
respect to qk we get 
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The derivative kq q∂∂ / is found by inserting (5) in the 
additional condition (6) and differentiating the identity 
obtained. The result is 
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The equation for the partial derivative of q with respect to qk 
is obtained from Eq. (10) taking into account transformation 
(5) and the condition (7) 

               
k

f
*
f

f

kq*
k

k

q
ffk

q

q
Qvvi

q
ie

∂

∂
∑

∂

∂
−= )(

1

γ
   .           (11) 

This equation can be solved by iteration, with 1/γ as a small 
parameter. The following solution is then obtained within an 
accuracy of the terms on the order of 1/γ2: 

...])()(1)(1[ **
2

* ++−=
∂
∂ ∑∑ lf

i QQvvvQvvvie
q l

*
fk

lf,
f

*
fk

f

*
k

kq

k

flflkfkfkq
γγ

  
                                                                              .              (12) 
Using the transformation of variables (2), one determines the 
partial derivative ff qλ qq ∂∂−=∂∂ // γ . Now, using this 

equality and equations (12), one finally obtains the following 
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expansion series for the fq∂∂ /  operator in terms of the λ, q, 

and Qf variables 
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where fP  stands for the field generalized momentum; the 

latter is expressed as a linear combination of the fQi ∂∂− /   

momentum:  ∑ ∂∂−∂∂=
k

kk
*
fff kf QuvQi //P . 

    As the q coordinate is a cyclic variable, the corresponding 
canonically conjugated operator of momentum q∂∂− /i  
(which coincides with the total momentum of the system) 
commutes with Hamiltonian (4). Correspondingly, the q∂∂ /  
operator will be further replaced throughout by the total 
momentum P. in order to allow for the momentum even in the 
first approximation, we introduce the I vector such that P = 
γ2I. As a result, translational effects appear even in the first 
order. The total eigenfunction of the system can then be 
written as 
              ),()/exp(),,( 2

ff λIqqλ QiQ ΦΨ = γ .                (14) 

This function realizes a certain representation of the 
translation group and corresponds to the state with a fixed 
total momentum P of the system. It is convenient to perform, 
according to [3], one more unitary transformation of the wave 
function with respect to the Qf variable and rewrite the total 
wave function as  

∑ Φ=Ψ
f

QiQsiQ ),(exp()exp(),( )/2
ffff λIqqλ, γγ ,   (15) 

The complex numbers ff −= ss*  and can be chosen in a way 
to satisfy the condition 
                                        ∑ =

f
fff 0su .                              (16) 

Transformation (15) can be used to expand the collective 
coordinates Hamiltonian in descending powers of the γ 
parameter: 
                           ....01

2
2 +++= HHHH γγ  ,                 (17) 

where the following notations are used: 
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We also require that 
                         fC-If/ f

*
fff iuivs =+ )(ω   .                 (21) 

The physical meaning of the C vector will be given below.  
Let us expand the total wave function Φ and energy E in 
powers of γ: 
                       ....012

2 +++= EEEE γγ ,                  
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11

+ΦΦΦ=Φ ++
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   .                    (22) 

Upon substituting (22) in the equation HΦ = EΦ with 
Hamiltonian (17) and collecting the terms with the same γ 
powers, we obtain the following set of equations: 
                               0202 Φ=Φ EH , 

                  12011201 Φ+Φ=Φ+Φ EEHH , 

    021120021120 Φ+Φ+Φ=Φ++Φ Φ EEEHHH , ...     (23) 
Because the H2 operator acts only on the field variables Qf  the 
zero-order wave function can be written in a multiplicative 
form )()(),( 00 ff λλ QQ χϕ=Φ , where )( fQχ is an arbitrary 

function of the Qf coordinates. Taking into account that the 
functions Φ0 and Φ1 are ortonormal, one has from the second 
equation in (23): 0||)( 1220 =Φ− EHλϕ  so that the 

)( fQχ  function obeys the following equation: 

)()()(||)( 1010 ff QEQH χχλϕλϕ = . This equation has a 

regular solution χ(Qf) only if )(||)( 010 λϕλϕ H  is equal to 
zero, because the H1 operator is linear in the Qf variables. 
Taking into account the form of Hamiltonian (19) and the 
obvious requirement that E1 = 0, one obtains from (23) the 
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following relation for determining the uf  values for an 
arbitrarily chosen χ(Qf): 
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The equation is derived under the assumptions that the 
operators fP  satisfy the condition ∑ =

f
fff 0Pu  that directly 

follows from the fP  definition. Substituting the additional 

requirement (21) and the condition (7) in (24) and assuming 
that the ground electronic state is described by the wave 
function )(0 λϕ , one finds from Eq. (24) the self-consistent 
classical field components 
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In the strong coupling limit, the H2 term in the Hamiltonian 
expansion (17) dominates and bears nontrivial information 
about the system. Using transformations (21) and taking into 
account that Hamiltonian H2 depends only on the λ variable, 
one can write the energy eigenvalue of the state as  
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is introduced. The first two terms in Eq.(26) define the 
internal energy of the quasi-particle. 
   The equation for determining the lowest energy state wave 
function )(0 λϕ has the form 
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Using Eq. (25), it can be recast as 
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which parametrically depends on the C vector.  
Let us now clarify the physical meaning of the C vector. For 
this purpose, we differentiae E2 in (26) with respect to C 
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The C∂∂ /2W derivative can be found using Eq. (27). This can 
be done by differentiating (27) with respect to C, 

−∑
∂

∂
+

∂

∂
∑+ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
0

(0)0(0)
2

22
2

ϕ
ϕ γλ

αα

γλλ /f

f

f
f

f

/f
ff

p i
* e

C

u
V

C
ieuV

m
   

    00
20

2 =
∂

∂
−

∂

∂
−

αα

ϕ
ϕ

C
W

C

W
     .                                          (30) 

 The average of Eq. (30) for the state with the wave function 
)(0 λϕ is 
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Using the value obtained of the classical field component 

fu (25), equation (31) can be transformed to 
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Then, instead of (31), the required derivative can be 
represented as 
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Substituting Eq. (33) into (30), we get 
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We now determine the I vector. For this purpose, let us 
multiply condition (21) by fuf and sum over the wave vector f. 
After applying the requirement (7) and condition (16), we 
obtain the following expression for the I vector: 
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  Let us differentiate (35) with respect to the C vector, 
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One can easily see from a comparison of Eq. (34) with (36) 
that  

                  ∑
∂

∂

∂

∂
=

α β

α
α

β C

I
C

C

E2 ,   α, β=1, 2, 3.                   (37) 

We finally obtain  
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Consequently, the following result is obtained after using the 
definition for the total momentum P = γ2I: PC ∂∂= /2

2 Eγ . 

However, by definition, P∂∂ /2E  is merely the velocity v. 
Therefore, the C vector is related to the translational velocity 
of quasi-particle by expression:  
                          v2

2
2 / γγ =∂∂= PС E ,                             (39) 
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and determines, to the γ2 factor, the mean velocity of the 
center of inertia of system. Hence, the energy eigenvalue (28) 
of the self-consistent ground electronic state W2 explicitly 
depends on the translational velocity of the quasi-particle. 
    Let us now determine the translational effective mass of the 
quasi-particle. Using (26) and assuming that the velocity of 
the center of inertia is small, which ordinary holds for thermal 
motion, we expand the energy eigenvalue of the system in 
series 
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The quantities that correspond to the zero translational 
velocity of quasi-particle are labeled by superscripts in 
formula (40). After substituting relation (39) in (40), the 
following expression is finally obtained for the ground state 
energy of the system: 
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The last term in (41) can be regarded as the kinetic energy of 
the translational motion of the particle as a 
whole: 2/** 2vmEkin = , where the notation m** stands for the 
ground state translational mass of the quasi-particle, 

                       =∑=
f f

fff

ω

γ
2(0)4

** ||)(

3

u
m       

∑
f f

f ffλλf/λ
3

2
00

2(0)4 )(|)(|)exp(|)(||

3 ω

ϕγϕγ iV|2
   .      (42) 

If the electron is trapped by the polarization field, the 
interaction of the particle with the field fully “consumes” the 
rest mass of an electron. Indeed, it follows from the order-of-
magnitude analysis of the variables in Eq. (42) that the 
effective mass m**≈ γ8m* >>m* is dominated by the field 
inertia. 
    The translational mass m** can be calculated using (42) if 
the wave function )(0 λϕ  is known. It can be found by solving 
the nonlinear integro-differential equation (27). However, in 
practice, it is convenient to determine the ground state wave 
function using a direct variational method and varying the 
total energy functional 
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The approximate analytic form of a trial variational wave 
function )(0 λϕ  of a nondegenerate ground state can be 
established by expanding the exponential in equation (27). 

Upon restricting ourselves to the quadratic terms in the 
resultant series, we obtain the oscillator equation 
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whose solutions are the Hermite polynomials. These functions 
can be regarded as good approximations to the wave functions 
of the ground and low excited states of a system with large γ. 
Therefore, for slow translational motion of particle we choose 
the trial ground state wave function in the following analytic 
form: 24/1663

0 )2/exp()()( αγλγαπλϕ −= − , where α is the 
variational parameter. Such an approximation for the trial 
function is consistent with the results of the shifted – 1/N – 
expansion numerical technique that was applied in [4] and 
technique solving of nonlinear integral equation [5,6] to the 
analysis of equation (43). 
    It was established earlier that the optical transition from the 
ground to the lowest lying electronic p-state is most probable 
(oscillator strength of 0.77 [7,8]). Because the transition time 

sE 151
0 10)/( −− ≈Δ=τ  is much shorter than the orientation-

relaxation time s1310−≈τ of the ammonia molecules, the 
optical transition can be considered as vertical, i.e., 
proceeding at a fixed value (0)

fu of the classical component of 

the polarization field in the lowest electronic state. According 
to this premise and based on equation (28), the initial 
electronic state is described by the equation: 

   −∑−
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ − )()(||)(

|
2

2 000

2(0)

*

2

λλλ
|p

f

/f/f

f

f ϕϕϕ
ω

γλγλλ ii ee
V

m
 

       =∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛− )()(||)(
|

2 0

2

00

2(0)

λ
fC

λλ
|

ff

/f/f

f

f ϕ
ω

ϕϕ
ω

γλγλ ii ee
V

  

                     )(0
)1(

0
)0(

0 )( λϕWW + ,                                     (45) 
whereas the final state of electronic optical transition obeys 
the equation     
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In equations (45) and (46), the translational velocity of quasi-
particle is assumed to be small, i.e., 22)( ff ω<v and only 

quadratic terms are retained in the expansion of the potential. 
The wave function of the excited electronic p-state is chosen 
in the form 
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where  β is the variational parameter. 
   It is convenient to transfer from (45) to the equations 
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Here (0)
fρ and (k)

fρ are the Fourier transforms of electron 

densities in the ground and excited electronic states. In the 
adopted approximation, the frequency of the most active 
electronic dipole transition can be written as 
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0 )()( kkkkk WWWW Ω+Ω=−+−=Ω ,   (49)                                          

where the second term depends on the quasi-particle velocity, 
whereas the first term determines the optical transition 
frequency at the band maximum in the state with the zero 
center-of-mass velocity. The frequency )1(

0kΩ  can be found 
from equation (48) 
                             2
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III. RESULTS 
    Such an approach in the phototransition calculation is 
justified if the impurity absorption spectrum lies between the 
IR-absorption region of oscillating dipoles and the absorption 
region of the strongly bound electrons of base material. These 
criteria are fulfilled for the additional electrons in ammonia. 
We assume that the solvated electrons in ammonia are in 
thermal equilibrium and that the quasi- particle distribution 
over the velocities v is Maxwellian: 

2)/(3
0

2/3 0)( vvvv −−−= eF π , where **2
0 /2 mkT=v . Then, the 

full width at half maximum of the optical absorption band is 
related to the standard deviation D as 2ln222/1 DW = .  In 
this approximation, the intensity is symmetrically distributed 
relative to the )0(

0Ω frequency. The band becomes 
asymmetric in the presence of photo transitions to high-lying 
electron excited states [7]. With the Maxwellian velocity 
distribution, the variance is 

2**2
0

2
0

2
0

2 )/(6 mkTSD kkk =Ω−Ω= . Then, the band 

width W1/2 is equal  
               2ln3)/(||4 **

02/1 mkTSW k= .                       (52) 
The approach presented to estimating the broadening of the 
optical band is valid if the inequality v)0(

0/ kct Ω>>  is 
fulfilled, where t is the mean free path time of the quasi-
particle, and c is the light velocity. This inequality is fulfilled 
for the transition frequencies and temperatures of interest. 
   The width W1/2 of the optical spectrum of the solvated 
electron in ammonia can be numerically estimated if the 
numerical parameters of the theory are given. At low 
concentrations of the solvated electron, the dielectric constants 
ε∞ and  εs can be set equal to their values in pure ammonia; 
i.e., ε∞ = 1.756 and εs =22.7. The electron effective mass m* is 
usually determined from a comparison of the experimental 
and theoretical positions of the absorption band maximum. At 
sufficiently low temperatures, the transition frequency is 
dominated by the first term in (49). Indeed, for the 
experimental measurements at temperature T = 225 K [1], we 
have the ratio 
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In this estimate, it is taken into account that, according to 
formula (42), the effective mass of the solvated electron is m** 
= 0.02γ8m*. Therefore, the translational velocity contributes 
only insignificantly to the optical transition. It is mainly 
determined by the )0()0(

0
)0(

0 kk WW −=Ω   term.   A comparison 
of the theoretical position of the band maximum with its 
experimental value 0.88 eV  [1,8] yields the value of  m* = 
1.73m for the electron effective mass, where m is the mass of 
a free electron.  
     Let us estimate numerically the contribution from the 
translations of quasi-particle as whole to the full width at half 
maximum of the optical spectrum. For definiteness, we use the 
following parameter  values: 113

0 108.5 −×= sω [1],  γ2 = 13.5. 
Then, formulas (51) and (52) yield the value of W1/2 = 0.23 eV 
for the contribution from the thermal motion of the quasi-
particle, which represents an appreciable part of the 
experimentally observed value 0.46 eV [1,8]. The remaining 
part in the broadening of the optical spectrum of the solvated 
electron is likely to be due to the fluctuations of the 
polarization field [9]. Formulas (51) and (52) can be also used 
to calculate the temperature band-width coefficient; it 
occurred to be equal to eV/K1003.1/ 3

2/1
−×=dTdW . The 

experimentally measured [10,11] range (0.6-1.6)×10-3 eV/K 
of the temperature coefficient is in satisfactory agreement with 
the calculated value. 
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