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Abstract—We examine the maximum theorem by Berge from the
point of view of Bishop style constructive mathematics. We will show
an approximate version of the maximum theorem and the maximum
theorem for functions with sequentially locally at most one maximum.
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I. INTRODUCTION

WE examine the maximum theorem by Berge ([1]) from
the point of view of constructive mathematics á la

Bishop ([3], [5], [6]). In the next section we will show an
approximate version of the maximum theorem, and in Section
3 we will prove the maximum theorem for functions with
sequentially locally at most one maximum.

II. APPROXIMATE MAXIMUM THEOREM

In classical mathematics the famous Berge’s maximum
theorem (see [1], [4], [7]) is expressed as follows;

Let X , Y be metric spaces, let f be a continuous
function from X × Y to the set of real numbers R,
and let F be a compact valued continuous (upper and
lower hemi-continuous) multi-function (multi valued
function or correspondence) from X to the set of
nonempty subsets of Y . Consider a maximization
problem;

maximize f(x, y) subject to y ∈ F (x). (1)

This has a solution, and
1) the function ϕ = maxx∈X,y∈F (x) f(x, y) from

X to R, is continuous in X , and
2) the multi-function Φ = {y ∈ F (x)|f(x, y) =

ϕ(x)} from X to the set of nonempty subsets
of Y is upper hemi-continuous.

In constructive mathematics, however, we can not prove that
the maximization problem (1) has a solution in a compact set
F (x) even if f is uniformly continuous with respect to y in
F (x). Instead we can prove that f has the supremum in F (x)
(see Corollary 2.2.7 in [6]). The supremum supy∈F (x) f(x, y)
of f in F (x) satisfies

sup
y∈F (x)

f(x, y) ≥ f(x, y′) for all y′ ∈ F (x),

and

for any ε > 0 there exists y′ ∈ F (x) such that

sup
y∈F (x)

f(x, y) ≤ f(x, y′) + ε.

Y. Tanaka is with the Faculty of Economics, Doshisha University, Kyoto,
602-8580, Japan, e-mail: (yasuhito@mail.doshisha.ac.jp).

In constructive mathematics compactness of a set means
total boundedness with completeness, and a nonempty set is
called an inhabited set. A set S is totally bounded if for each
ε > 0 there exists a finitely enumerable ε-approximation to
S. A set is finitely enumerable if there exist a natural number
N and a mapping of the set {1, 2, . . . , N} onto that set. An
ε-approximation to S is a subset of S such that for each x ∈
S there exists y in that ε-approximation with |x − y| < ε.
Completeness of a set, of course, means that every Cauchy
sequence in the set converges. A set S is inhabited if there
exists an element of S.

Note that in order to show that S is inhabited, we
cannot just prove that it is impossible for S to be
empty; we must actually construct an element of S
(see page 12 of [6]).

We present some definitions. Let X and Y be metric spaces.
Definition 1 (Continuity of functions): A function f from

X to Y is continuous at x ∈ X if for each ε > 0 there
exists δ > 0 such that |f(x) − f(x′)| < ε for all x′ ∈ X
with |x − x′| < δ. If f is continuous at every x ∈ X , it is
continuous in X . δ depends on x and ε.

Definition 2 (Uniform continuity of functions): A function
f from X to Y is uniformly continuous if for each ε > 0
there exists δ > 0 such that for all x, x′ ∈ X , if |x− x′| < δ,
then |f(x)− f(x′)| < ε. δ depends on only ε.

Definition 3: (Graph of multi-functions and uniformly
closed graph) A graph of a multi-function F from X to the
set of inhabited subsets of Y is

G(F ) = ∪x∈X{x} × F (x).

If G(F ) is a closed set, we say that F has a closed graph. It
implies the following fact.

Consider sequences (xn)n≥1 and (yn)n≥1 such that
yn ∈ F (xn). If xn −→ x, then for some y ∈ F (x)
we have yn −→ y.

This means

For each ε > 0 if there exists n0 such that |xn −
x| < ε when n ≥ n0, then there exists n′

0 such that
|yn − F (x)| < ε, that is, |yn − y| < ε for some
y ∈ F (x) when n ≥ n′

0.

n0 and n′0 depend on x and ε. Further we consider a uniform
version of this property for multi-functions, and call such a
multi-function a multi-function with uniformly closed graph,
or say that a multi-function has a uniformly closed graph. It
means that n0 and n′0 depend on only ε not on x.

The closed graph property of multi-functions is closely
related with upper hemi-continuity. But, we do not use such
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a terminology. We define continuity of multi-functions as
follows;

Definition 4 (Continuity of multi-functions): A multi-
function F from X to the set of inhabited subsets of Y is
continuous if

1) it has a uniformly closed graph, and
2) For every sequence (xn)n≥1 such that xn −→ x and

y ∈ F (x), there exist a sequence (yn)n≥1 such that
yn ∈ F (xn) and yn −→ y.
This means

For each ε > 0 if there exists n0 such that |xn −
x| < ε when n ≥ n0, then there exists n′

0 such that
|yn − y| < ε when n ≥ n′

0.

This definition is equivalent to the condition called the
lower hemi-continuity. Again we do not use such a
terminology. n0 and n′0 depend on x and ε. Further we
consider a uniform version of this property. It means
that n0 and n′0 depend on only ε not on x.

As stated above the supremum

sup
y∈F (x)

f(x, y). (2)

of f exists. We define

ϕ(x) = sup
x∈X,y∈F (x)

f(x, y).

It is a function from X to R, and define

Φ(x) = {y ∈ F (x)|ϕ(x) ≥ f(x, y) ≥ ϕ(x)− ε}.
It is a multi-function from X to the set of inhabited subsets
of Y .

We show the following theorem.
Theorem 1: Let X , Y be metric spaces, let f be a uniformly

continuous function from X × Y to R, and let F be a
compact valued continuous multi-function from X to the set
of inhabited subsets of Y . Then,

1) ϕ is uniformly continuous in X , and
2) Φ has a uniformly closed graph.

Proof: Consider sequences (xn)n≥1 in X and (yn)n≥1 in
Y such that yn ∈ Φ(xn), xn −→ x and yn −→ y. yn ∈ Φ(xn)
means yn ∈ F (xn) and f(xn, yn) ≥ ϕ(xn) − ε. Since F
is a continuous multi-function, we have y ∈ F (x), and for
every y′ ∈ F (x) there exist sequences (xn)n≥1 and (y′n)n≥1

such that y′n ∈ Φ(xn), xn −→ x and y′n −→ y′. Assume
f(x, y′) > f(x, y) + ε. Then, f(xn, y′n) > f(xn, yn) + ε for
sufficiently large n. But it contradicts yn ∈ Φ(xn) because
f(xn, yn) ≥ ϕ(xn) − ε and ϕ(xn) ≥ f(xn, y

′
n) imply

f(xn, yn) ≥ f(xn, y
′
n) − ε, and so f(x, y) ≥ ϕ(x) − ε and

y ∈ Φ(x). Since F has a uniformly closed graph, Φ also has
a uniformly closed graph.

Consider x, x′ ∈ X and y ∈ Φ(x), y′ ∈ Φ(x′). We have
|ϕ(x) − f(x, y)| ≤ ε and |ϕ(x′) − f(x′, y′)| ≤ ε. Therefore,
if |f(x, y) − f(x′, y′)| < ε, we have |ϕ(x) − ϕ(x′)| < 3ε. It
means that ϕ is uniformly continuous because f is uniformly
continuous.
3. The maximum theorem for functions with sequentially
locally at most one maximum

In the previous section we have proved an approximate
version of the maximum theorem. In this section by reference
to the notion of sequentially at most one maximum in [2] we
consider a property of functions which is called sequentially
locally at most one maximum.

Let M be the supremum of a function f in a compact set X .
The notion that f has at most one maximum in [2] is defined
as follows;

Definition 5 (At most one maximum): For all x, y ∈ X , if
x �= y, then f(x) < M or f(y) < M .
On the other hand, sequentially at most one maximum also in
[2] is defined as follows;

Definition 6 (Sequentially at most one maximum): All se-
quences (xn)n≥1, (yn)n≥1 in X such that |f(xn)−M | −→ 0
and |f(yn)−M | −→ 0 are eventually close in the sense that
|xn − yn| −→ 0.

Next we define a notion sequentially locally at most one
maximum. According to Corollary 2.2.12 of [6] about total
boundedness of a set we have the following result.

Lemma 1: If a set X is totally bounded, for each ε > 0
there exist totally bounded sets H1, H2, . . . , Hn, each of
diameter less than or equal to ε, such that X = ∪n

i=1Hi.
The definition of the notion sequentially locally at most one

maximum is as follows;
Definition 7: (Sequentially locally at most one maximum)

Let M = sup f in X . There exists ε̄ > 0 with the following
property. For each ε > 0 less than or equal to ε̄ there exist
totally bounded sets H1, H2, . . . , Hm, each of diameter less
than or equal to ε, such that X = ∪m

i=1Hi, and if for all
sequences (xn)n≥1, (yn)n≥1 in each Hi, |f(xn)−M | −→ 0
and |f(yn)−M | −→ 0, then |xn − yn| −→ 0.

Now we show the following lemma, which is based on
Lemma 2 of [2].

Lemma 2: Let f be a uniformly continuous function from
a compact set X to R. Assume supx∈Hi

f(x) =M for some
Hi ⊂ X defined above. If the following property holds:

For each δ > 0 there exists ε > 0 such that if x, y ∈
Hi, f(x) ≥M−ε and f(y) ≥M−ε, then |x−y| ≤
δ.

Then, there exists a point z ∈ Hi such that f(z) = M , that
is, f has the maximum.

Proof: Choose a sequence (xn)n≥1 in Hi such that
f(xn) −→ M . Compute N such that f(xn) ≥ M − ε for
all n ≥ N . Then, for m,n ≥ N we have |xm − xn| ≤ δ.
Since δ > 0 is arbitrary, (xn)n≥1 is a Cauchy sequence in
Hi, and converges to a limit z ∈ Hi. The continuity of f
yields f(z) =M .

Next we show the following lemma, which is based on
Proposition 3 of [2].

Lemma 3: Each uniformly continuous function f from X
to R, which has sequentially locally at most one maximum,
has the maximum.

Proof: Choose a sequence (zn)n≥1 in Hi defined above
such that f(zn) −→M . In view of Lemma 2 it is enough to
prove that the following condition holds.

For each δ > 0 there exists ε > 0 such that if x, y ∈
Hi, f(x) ≥M−ε and f(y) ≥M−ε, then |x−y| ≤
δ.
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Assume that the set

K = {(x, y) ∈ Hi ×Hi : |x− y| ≥ δ}
is inhabited and compact (see Theorem 2.2.13 of [6]). Since
the mapping (x, y) −→ min(f(x), f(y)) is uniformly contin-
uous, we can construct an increasing binary sequence (λn)n≥1

such that

λn = 0 ⇒ sup
(x,y)∈K

min(f(x), f(y)) > M − 2−n,

λn = 1 ⇒ sup
(x,y)∈K

min(f(x), f(y)) < M − 2−n−1.

It suffices to find n such that λn = 1. In that case, if f(x) >
M − 2−n−1, f(y) > M − 2−n−1, we have (x, y) /∈ K and
|x− y| ≤ δ. Assume λ1 = 0. If λn = 0, choose (xn, yn) ∈ K
such that min(f(xn), f(yn)) > M − 2−n, and if λn = 1, set
xn = yn = zn. Then, f(xn) −→ M and f(yn) −→ M , so
|xn − yn| −→ 0. Computing N such that |xN − yN | < δ, we
must have λN = 1. We have completed the proof.

This lemma means that f(x, y) has the maximum in F (x),
that is, maxy∈F (x) f(x, y) exists. We define

ψ(x) = max
x∈X,y∈F (x)

f(x, y).

It is a function from X to R, and define

Ψ(x) = {y ∈ F (x)|f(x, y) = ψ(x)}.
It is a multi-function from X to the set of inhabited subsets
of Y .

Now we show the following theorem which is the maximum
theorem for functions with sequentially locally at most one
maximum.

Theorem 2: Let X , Y be metric spaces, let f be a uniformly
continuous function with sequentially locally at most one
maximum from X × Y to R, and let F be a compact valued
continuous multi-function from X to the set of inhabited
subsets of Y . Then,

1) ψ is uniformly continuous in X , and
2) Ψ has a uniformly closed graph.

Proof: Consider sequences (xn)n≥1 in X and (yn)n≥1 in
Y such that yn ∈ Ψ(xn), xn −→ x and yn −→ y. yn ∈ Ψ(xn)
means yn ∈ F (xn) and f(xn, yn) = ψ(xn). Since F is a
continuous multi-function, we have y ∈ F (x), and for every
y′ ∈ F (x) there exist sequences (xn)n≥1 and (y′n)n≥1 such
that y′n ∈ Ψ(xn), xn −→ x and y′n −→ y′. Assume f(x, y′) >
f(x, y). Then, f(xn, y′n) > f(xn, yn) for sufficiently large n,
But it contradicts yn ∈ Ψ(xn), and so f(x, y) = ψ(x) and
y ∈ Ψ(x). Since F has a uniformly closed graph, Ψ also has
a uniformly closed graph.

Since ψ(xn) = f(xn, yn) −→ f(x, y) = ψ(x), ψ is
uniformly continuous because f is uniformly continuous.

The maximum theorem is widely used in mathematical
economics. If we consider f as a utility function of a consumer
and F his budget constraint, then Theorem 2 implies the ex-
istence of the demand correspondence which has a uniformly
closed graph.
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