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 
Abstract—Beam-column elements are defined as structural 

members subjected to a combination of axial and bending forces. 
Lateral torsional buckling is one of the major failure modes in which 
beam-columns that are bent about its strong axis may buckle out of 
the plane by deflecting laterally and twisting. This study presents a 
compact closed-form equation that it can be used for calculating 
critical lateral torsional-buckling load of beam-columns with 
monosymmetric sections in the presence of a known axial load. 
Lateral-torsional buckling behavior of beam-columns subjected to 
constant axial force and various transverse load cases are investigated 
by using Ritz method in order to establish proposed equation. 
Lateral-torsional buckling loads calculated by presented formula are 
compared to finite element model results. ABAQUS software is 
utilized to generate finite element models of beam-columns. It is 
found out that lateral-torsional buckling load of beam-columns with 
monosymmetric sections can be determined by proposed equation 
and can be safely used in design. 
 

Keywords—Lateral-torsional buckling, stability, beam-column, 
monosymmetric section.  

I. INTRODUCTION 

EAM-COLUMNS are members with compressive axial 
forces and transverse loads or moments. Beam-columns 

are mostly loaded in the plane of the weak axis so that bending 
occurs about their strong axis [1]. Primary bending moments 
and in-plane deformations are produced by the end moments 
and transverse loadings  of the beam-column, while axial force 
will produce secondary moments and additional in-plane 
deformations [1]. When the values of the loads on the beam-
column reach a limiting state, the member will experience out 
of plane bending and twisting [1]. At this critical state, the 
compression flange of the member becomes unstable and 
bends laterally while the remainder of the cross section, which 
is stable, tends to restrain the lateral flexure of the 
compression flange. The net effect is that the whole section 
rotates and moves laterally [2]. LTB failure occurs suddenly in 
slender beam-columns with a much greater in-plane bending 
stiffness than their lateral bending or torsional stiffnesses [1]. 
LTB is often the main failure mode for thin-walled structures 
and should be considered in design of slender beam-columns 
with insufficient lateral bracing due to it may occur long 
before the bending stress at the extreme fiber of the section 
reaches to yield point. Fig. 1 illustrates LTB of beam-column 
with I-section.  
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Fig. 1 LTB of beam-column with I-section 
 

The limit state of the applied loads on the beam-column 
members is called as the critical elastic LTB load. The cross 
section of the member, the unbraced length of the member, the 
support conditions, the type of loads acting on the member, 
the vertical positions of the applied loads with respect to shear 
center are effective on LTB behavior of monosymmetric 
beam-columns. The general concept of flexural buckling and 
LTB of structural members has been well presented in many 
textbooks [3]-[9].  

There are three main methods to calculate the critical elastic 
LTB load. The first one is the solution of the differential 
equilibrium equations. The differential equilibrium equations 
obtained for critical LTB load of an axially loaded beam 
subjected to end moment about its major axis can be solved 
and presented in closed form by considering the boundary 
conditions [9]-[11]. However, the analytical solutions are 
either too complex or involve infinite series for load types 
where moment gradient is not constant. In a situation like this, 
the solution of differential equilibrium equations mostly 
requires use of numerical approaches such as finite difference 
[2], [12]-[15], finite integral [16]-[19], finite element [20]-[29] 
or finite strip [30]-[33] methods. The second one is finite 
element analysis (FEA). In FEA, thin walled structural 
member, restrain conditions and loading cases should be 
modeled properly and solved using a relevant FEA software 
[34]. The last one is energy method. Energy method is based 
on the equality between the additional strain energy stored 
during LTB and the additional work done by the applied 
forces. In this method, the LTB load is calculated by 
substituting an approximate buckled shape which satisfies the 
kinematic boundary conditions and corresponds to real mode 
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shape into the energy equation. Kinematic boundary 
conditions are related to geometrical constraints preventing 
one or more deflections or rotations at the support of the 
structural members [9].  

A considerable number of studies dealing with the energy 
methods exist in the literature. Wang and Kitipornchai studied 
LTB of monosymmetric cantilevers using both the Ritz 
method and the finite integral method [35]. They proposed the 
approximate equation to calculate LTB of cantilevers 
subjected to the end moment, the end point load and uniformly 
distributed load. Aydin et al. investigated the LTB loads of 
both mono-symmetric and doubly-symmetric prismatic beams 
for various load cases and positions of applied loads [36]. In 
this work, the obtained results by the energy method were 
validated with ABAQUS FEA and compared with Eurocode 3 
[37] and AISC Specifications [38]. Mohri et al. recomputed 3-
factor formula, which is commonly used for calculation of 
elastic LTB loads of beams, and proposed some improvements 
[39]. Kirac and Yilmaz introduced a simplified parametric 
equation to determine LTB load of European I-section beams 
[40]. The LTB loads of singly and doubly symmetric I-section 
cantilevers were investigated by Andrade et al [41]. Ozbasaran 
et al. developed an alternative design procedure for cantilever 
I-section and also the study included a parametric formula 
based on energy method to calculate LTB load. The proposed 
design procedure was compared with code specifications and 
FEA [42]. Yuan et al. improved an analytical model to 
determine LTB behavior of steel web tapered tee-section 
cantilevers [43]. Kim et al. studied LTB of castellated beams 
[44]. LTB of simply supported channel and Z section purlins 
with top flange horizontally restrained are investigated by 
Zhang and Tong [45]. LTB of tapered thin-walled beams with 
arbitrary cross section are presented by Mohri et al [46]. 

 Related to LTB of beam-columns, Wang and Kitipornchai 
proposed a set of buckling parameters to describe LTB 
behavior of monosymmetric beam-columns under uniform 
moment or eccentric axial loads [47]. Torkomani and Roberts 
derived the energy equations for doubly symmetric beam-
column members by expressing in dimensional and non-
dimensional forms [1]. Magnucka-Blandzi investigated beam-
columns with I-section subjected to a uniformly distributed 
transverse load, small axial force and two different moments 
located at its both ends [48]. Cheng et al. studied flexural 
buckling and LTB of cold-formed channel section beams 
under combined compression and biaxial bending. They also 
concluded the effect of non-symmetric pre-buckling stress due 
to bending about the minor axis distribution on LTB of 
channel beams [49]. Kucukler et al. introduced a stiffness 
reduction method for the flexural–torsional buckling 
assessment of steel beam-columns subjected to major axis 
bending and axial compression [50]. 

In this study, LTB behavior of beam-columns with 
monosymmetric section subjected to constant axial force and 
various transverse load cases were investigated by using 
energy method in order to establish a convenient closed-form 
equation. The coefficients of the closed-form equation are 
calculated for six transverse load types. The presented 

equation takes into account the position of loads acting 
transversely on the beam-column member respect to shear 
center and monosymmetry property of the section, but 
disregards pre-buckling deflections. Numerical examples are 
presented for both mono-symmetric and doubly-symmetric 
sections by considering axial load level, loading positions and 
slenderness of beam-column. FEA is performed to validate 
numerical examples by using ABAQUS software [51]. It is 
seen that the results obtained by presented formula are 
accordant with ABAQUS solutions. It is concluded that elastic 
critical LTB load of beam-columns under small axial forces 
can be calculated by using presented equation.  

II.  ANALYTICAL WORK 

The LTB of monosymmetric beam-columns consists of two 
stages. First, combined transversely and compressive axially 
loaded beam-column bends about its major axis, and then it 
buckles by bending laterally and twisting as the magnitude of 
the loads acting on the beam-column reaches to a critical level. 
Fig. 1 shows the LTB of beam-column with monosymmetric 
I-section subjected to axial force that acts through the centroid 
of the cross section and concentrated force that acts 
transversely at midspan.  
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Fig. 2 LTB of mono-symmetric beam-column (a) side view, (b) a-a 
section 

 
In Fig. 2 (a), L is beam-column length. a-a section of beam-

column is drawn in Fig. 2 (b). S and C show the shear center 
and the center of gravity of the section, respectively. u is the 
lateral displacement of the shear center, v is vertical 
displacement of the shear center and φ is torsional rotation. y0 
is the distance measured from the center of gravity to the shear 
center. By utilizing Vlassov’s model, which assumes that the 



International Journal of Architectural, Civil and Construction Sciences

ISSN: 2415-1734

Vol:10, No:7, 2016

887

 

 

cross section is rigid in its plane, hence there is no distortion 
deformation of the section and the shear deformation in the 
mean surface of the section are negligible [39]. The total 
potential energy of the beam-column given in Fig 1, at a 
slightly buckled configuration can be written as follows by 
disregarding pre-buckling deflections [9]. 
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where E is young modulus, G is shear modulus, A is area of 
cross section, Ix is moment of inertia about strong axis, Iy is 
moment of inertia about weak axis, Cw is warping constant, J 
is torsional constant and Mx is the bending moment about 
strong axis and N is constant compressive axial load. 
Wanger’s coefficient βx associated with a monosymmetry 
property of the cross section is defined by (2) [9]. 
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where, x and y are Cartesian coordinates of the infinitesimal 
area (dA). y0 is positive when the shear center below the center 
of gravity. Wh is work done by loads which are acting outside 
of the shear center. This work results from changing of the 
distance between the application points of the loads and the 
shear center as cross section rotates. Wh can be calculated by 
(3) as: 
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where Hp and Hq are the vertical distance of the acting point of 
the concentrated (P) and uniformly distributed loads (q) 
measured from the shear center, respectively. ɸp is torsional 
rotation at a point in which the concentrated load is applied. In 
(3), Hp and Hq are positive for loads that act in below the shear 
center. 

With the assumption that torsional rotation is small, the 
second order derivative of the lateral displacement u, with 
respect to z can be calculated as [3]: 
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Thus, the strain energy stored in the member due to lateral 
bending, warping and torsion can be written as:  
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The work done by external transverse forces is as: 
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The work done by constant compressive axial forces is as: 
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Finally, the critical lateral torsional buckling load is 

obtained from the following condition: 
 

 1 2U V V   (8) 
 

Finally, the energy equation can be written as: 
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To calculate the elastic critical lateral torsional buckling 

load by (9), a function which satisfies the end conditions of 
the beam-column should be selected. This function also should 
be consistent with the shape of the torsional rotation for the 
critical lateral torsional buckling mode. Assuming that the 
ends of the beam-column cannot rotate about the z-axis but are 
free to warp, the end conditions of beam-column can be 
considered as [3]: 
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In this study, the function of twist angle is chosen as given 

in (11) due to it satisfies boundary conditions stated in (10). 
The energy equations were solved using this function to 
establish closed-form equation. 
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Substituting the chosen twist angle function in to (9) and 

assuming that the vertical position of all transverse loads on 
the beam-column are same (Hp=Hq=H), the energy equation 
can be written in the following form: 
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In (12=, Rcr is the critical load which can be expressed by 
(14) depending on the load type acting on the beam.  

 

 cr
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D1, D2, D3 and D4 parameters can be calculated by integrating 
the chosen function for critical lateral torsional buckling mode 
over the beam length. Finally, buckling load can be obtained 
by (15) as: 
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K1 and K2 parameters in (15) can be expressed as: 
 

 1 2 4xK D HD   (16) 
 
and, 

 2 3 1
y

N
K D D

N
   (17) 

 
In (15), Pcr, qcr and Mcr are critical concentrated load, 

uniformly distributed load and moment, respectively. In this 
study, D1, D2, D3 and D4 integral parameters were calculated 
for six load types shown in Fig. 3 and presented in Table I. 

It is clearly seen from left-hand side of (15) that the critical 
buckling load type varies according to considered loading 
case. For load case 3 in Fig. 3, the critical lateral torsional 
buckling load obtained from (15) is in terms of qcr which 
implies that the critical values of uniformly distributed load 
and concentrated load are qcr and 0.5qcrL, respectively. 
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Fig. 3 Load types 
 

TABLE I 
INTEGRAL PARAMETERS FOR LOAD CASES 

Load Case D1 D2 D3 D4 

P -0.0826542 0.183425 -0.125 0.5 

q -0.0300605 0.143117 -0.0506606 0.25 

q+0.5qL -0.100163 0.234829 -0.161488 0.5 

q+qL -0.211593 0.326542 -0.334816 0.75 

P+P -0.228433 0.591639 -0.221856 0.75 

M -2.4674 2.4674 -4.9348 - 

 

At the end of the analytical work, calculating critical LTB 
of the beam-columns with mono-symmetric section in 
presence of a known axial load can be summarized in three 
steps. First, Ny should be calculated using (13). Then, D1-D4 
integral parameters can be found for considered load case in 
Table I. K1 and K2 can be calculated by using (16) and (17). 
Finally, critical LTB load can be found by substituting 
calculated parameters in closed-form (15). 
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III. NUMERICAL ANALYSIS 

In numerical analysis, effect of axial loads, slenderness and 
the loading positions on the LTB loads of doubly-symmetric 
and mono-symmetric beam-columns are investigated. For this 
purpose, the analytical LTB loads are calculated for different 
values of the axial load by using the presented formula. The 
analytical solutions are compared to numerical simulations. 
ABAQUS finite element software was utilized to validate 
LTB solutions obtained by presented equation. Beam-columns 
were modeled with S8R5 shell elements. S8R5 element has 
eight-nodes and five degrees of freedom at a node [51]. Mesh 
studies have indicated that it would be adequate to use sixty 
elements along the longitudinal direction, eight elements 
through the depth of the web and four elements across the 
width of the flange [40]. Shell finite element model and 
buckled shapes are given in Fig. 4. 

 

 

Fig. 4 (a) Shell finite element model, (b) buckled shape 
 
Fig. 5 illustrates the sections which are used for numerical 

examples. Section A is a doubly-symmetric I-shape. 
Dimensions of Section B is similar to Section A, except width 
of bottom flange. The bottom flange width of Section B is 
reduced to half of its top flange width in order to design 
mono-symmetric beam-column for numerical examples. 
Section properties are shown in Table II.  

In this numerical study, LTB loads of beam-columns were 
determined for three loading positions, which are top flange 
shear center and bottom flange in order to examine effect of 
load height level on LTB behavior of beam-columns. LTB 
loads of beam-column with section A and slenderness L=6000 
mm are calculated for load type 1 as P and load type 4 as qL in 
presence of different axial load varied from N/Ny=0 to 
N/Ny=1. The analytical and numerical solutions are 
comparatively depicted for load type 1 and load type 4 in 
Tables III and IV, respectively. 

 

 

Fig. 5 (a) Section A, (b) Section B 
 

TABLE II 
SECTION PROPERTIES 

Properties Section A Section B 

tf 11.3 mm 11.3 mm 

tw 7.5 mm 7.5 mm 

btf 90 mm 90 mm 

bbf 90 mm 45 mm 

h 200 mm 200 mm 

E 200000 N/mm2 200000 N/mm2 

G 76923 N/mm2 76923 N/mm2 

J 113110 mm4 91466.3 mm4 

Cw 12.222*109 mm6 2.716*109 mm6 

Ix 21.618*106 mm4 16.280*106 mm4 

Iy 1.379*106 mm4 0.779*106 mm4 

A 3364.5 mm2 2856 mm2 

βx 0 131.4 mm 
ay0

 0 -56.6 mm 

tf = flange thickness, tw= web thickness, btf = top flange width, bbf = bottom 
flange width, h= section height, mm=millimeter, N=Newton. ay0 is negative 
when the shear center is above the center of gravity . 

 
TABLE III 

SECTION A UNDER LOAD CASE 1 

Axial Load Loading Position PE AB PE/AB 

 TF 20,7 20,1 1,03 

N/Ny=0 SC 24,2 23,7 1,02 

 BF 28,4 28,0 1,01 

 TF 17,9 17,7 1,01 

N/Ny=0.25 SC 20,5 20,5 1,00 

 BF 23,5 23,7 0,99 

 TF 16,0 15,1 1,06 

N/Ny=0.5 SC 18,0 17,1 1,06 

 BF 20,3 19,3 1,05 

 TF 14,6 12,5 1,17 

N/Ny=0.75 SC 16,2 13,9 1,17 

 BF 18,1 15,5 1,17 

 TF 13,4 10,2 1,32 

N/Ny=1 SC 14,9 11,2 1,33 

 BF 16,5 12,4 1,33 

LTB loads are calculated for P and all units are the same as kilonewton. 
PE=Presented equation, AB= Abaqus, TF=Top flange, SC=Shear center, 
BF=Bottom flange. 
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TABLE IV 
SECTION A UNDER LOAD CASE 4 

Axial Load Loading Position PE AB PE/AB 

 TF 13,1 12,9 1,02 

N/Ny=0 SC 15,2 15,0 1,01 

 BF 17,5 17,4 1,01 

 TF 11,2 11,1 1,01 

N/Ny=0.25 SC 12,7 12,9 0,99 

 BF 14,4 14,7 0,98 

 TF 10,0 9,4 1,07 

N/Ny=0.5 SC 11,2 10,7 1,05 

 BF 12,5 11,9 1,05 

 TF 9,1 7,9 1,15 

N/Ny=0.75 SC 10,0 8,6 1,16 

 BF 11,1 9,5 1,17 

 TF 8,3 6,7 1,24 

N/Ny=1 SC 9,2 6,9 1,32 

 BF 10,1 7,6 1,33 

LTB loads are calculated for qL and all units are the same as kilonewton. 
PE=Presented equation, AB= Abaqus, TF=Top flange, SC=Shear center, 
BF=Bottom flange. 

 
TABLE V 

SECTION B UNDER LOAD CASE 1 

Axial Load Loading Position PE AB PE/AB 
 TF 16,4 16,2 1,01 

N/Ny=0 SC 17,0 16,8 1,01 
 BF 21,4 21,3 1,01 
 TF 13,8 14,6 0,95 

N/Ny=0.25 SC 14,3 15,1 0,94 
 BF 17,4 18,5 0,94 
 TF 12,1 12,7 0,96 

N/Ny=0.5 SC 12,5 13,0 0,96 
 BF 14,9 15,5 0,96 
 TF 10,9 10,6 1,03 

N/Ny=0.75 SC 11,2 10,8 1,03 
 BF 13,2 12,5 1,05 
 TF 10,0 8,6 1,16 

N/Ny=1 SC 10,2 8,8 1,16 
 BF 11,9 10,0 1,18 

LTB loads are calculated for P and all units are the same as kilonewton. 
PE=Presented equation, AB= Abaqus, TF=Top flange, SC=Shear center, 
BF=Bottom flange. 

 
TABLE VI 

SECTION B UNDER LOAD CASE 4 

Axial Load Loading Position PE AB PE/AB 
 TF 10,4 10,3 1,01 

N/Ny=0 SC 10,7 10,7 1,00 
 BF 13,3 13,3 1,00 
 TF 8,7 9,3 0,94 

N/Ny=0.25 SC 8,9 9,5 0,93 
 BF 10,7 11,5 0,93 
 TF 7,6 8,0 0,95 

N/Ny=0.5 SC 7,8 8,2 0,95 
 BF 9,1 9,6 0,95 
 TF 6,8 6,6 1,02 

N/Ny=0.75 SC 6,9 6,8 1,03 
 BF 8,1 7,7 1,04 
 TF 6,2 5,4 1,15 

N/Ny=1 SC 6,3 5,5 1,16 
 BF 7,3 6,2 1,18 

LTB loads are calculated for qL and all units are the same as kilonewton. 
PE=Presented equation, AB= Abaqus, TF=Top flange, SC=Shear center, 
BF=Bottom flange. 

 

Tables III and IV have shown that the greatest differences 
between analytical results obtained by presented equation and 
ABAQUS solutions for Section A subjected to low axial load 
level (N/Ny=0-N/Ny=0.5) are 6% and 7% for load case 1 and 
load case 4, respectively. This difference becomes 33% for 
both load cases with high axial load level (N/Ny=1). 

LTB loads of beam-column with section B and slenderness 
L=6000 mm are calculated for load type 1 as P and load type 
4 as qL in presence of different axial load varied from N/Ny=0 
to N/Ny=1. The analytical and numerical results are 
summarized for load type 1 and load type 4 in Table V and 
Table VI, respectively. 

Results in Tables V and VI have shown that the greatest 
differences between analytical results obtained by presented 
equation and ABAQUS solutions for Section B subjected to 
low axial load level (N/Ny=0-N/Ny=0.5) are 6% and 7% for 
load case 1 and load case 4, respectively. This difference 
becomes 18% for both load cases with high axial load level 
(N/Ny=1). It should be noted that the ratio of analytical results 
obtained by presented equation to abaqus solutions have 
increased as 33% for section A and 18% for section B due to 
the fact that the increment of the axial load level after the 
value of N/Ny=0.5 invalidates the assumption for minor axis 
bending, which are expressed in (4). 

Numerical study also includes the investigation of the effect 
of the slenderness on LTB behavior of beam-columns. LTB 
loads of section A and section B subjected to uniformly 
distributed load are obtained as qL by presented formula for 
different slendernesses varied from L=4000 mm to L=10000 
mm, in presence of constant axial load of N/Ny=0.25 and 
N/Ny=0.5. Analytical results and ABAQUS solutions are 
summarized in Tables VII, VIII for section A and Tables IX 
and X for section B. 

 
TABLE VII 

SECTION A UNDER LOAD CASE 2 FOR N/NY=0.25 

L Loading Position PE AB PE/AB 
 TF 66,6 67,7 0,98 

4000 SC 78,0 79,8 0,98 
 BF 91,5 93,9 0,97 
 TF 42,9 43,6 0,98 

5000 SC 48,8 50,1 0,97 
 BF 55,6 57,3 0,97 
 TF 30,0 30,7 0,98 

6000 SC 33,5 34,4 0,97 
 BF 37,4 38,5 0,97 
 TF 22,2 22,8 0,98 

7000 SC 24,4 25,1 0,97 
 BF 26,8 27,7 0,97 
 TF 17,1 17,6 0,97 

8000 SC 18,6 19,2 0,97 
 BF 20,2 20,9 0,97 
 TF 13,6 14,0 0,97 

9000 SC 14,6 15,1 0,97 
 BF 15,8 16,3 0,97 
 TF 11,1 11,4 0,97 

10000 SC 11,8 12,2 0,97 
 BF 12,6 13,1 0,96 

LTB loads are calculated for qL and all units are the same as kilonewton. 
PE=Presented equation, AB= Abaqus, TF=Top flange, SC=Shear center, 
BF=Bottom flange, L=Beam-column length. 
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TABLE VIII 
SECTION A UNDER LOAD CASE 2 FOR N/NY=0.5 

L Loading Position PE AB PE/AB 

 TF 58,6 55,9 1,05 

4000 SC 67,5 64,4 1,05 

 BF 77,8 74,2 1,05 

 TF 37,8 36,4 1,04 

5000 SC 42,5 40,9 1,04 

 BF 47,7 45,9 1,04 

 TF 26,5 25,7 1,03 

6000 SC 29,2 28,3 1,03 

 BF 32,2 31,1 1,03 

 TF 19,6 19,1 1,03 

7000 SC 21,3 20,7 1,03 

 BF 23,2 22,5 1,03 

 TF 15,1 14,7 1,03 

8000 SC 16,3 15,9 1,03 

 BF 17,5 17,1 1,03 

 TF 12,0 11,7 1,02 

9000 SC 12,8 12,5 1,02 

 BF 13,7 13,4 1,02 

 TF 9,8 9,6 1,02 

10000 SC 10,4 10,2 1,02 

 BF 11,0 10,8 1,02 

LTB loads are calculated for qL and all units are the same as kilonewton. 
PE=Presented equation, AB= Abaqus, TF=Top flange, SC=Shear center, 
BF=Bottom flange, L=Beam-column length. 

 
TABLE IX 

SECTION B UNDER LOAD CASE 2 FOR N/NY=0.25 

L Loading Position PE AB PE/AB 

 TF 53,3 59,5 0,90 

4000 SC 55,4 61,8 0,90 

 BF 70,2 78,7 0,89 

 TF 33,6 36,9 0,91 

5000 SC 34,6 38,1 0,91 

 BF 41,9 46,4 0,90 

 TF 23,1 25,1 0,92 

6000 SC 23,7 25,8 0,92 

 BF 27,8 30,4 0,91 

 TF 16,8 18,2 0,93 

7000 SC 17,2 18,6 0,92 

 BF 19,8 21,5 0,92 

 TF 12,8 13,8 0,93 

8000 SC 13,1 14,1 0,93 

 BF 14,7 16,0 0,92 

 TF 10,1 10,8 0,93 

9000 SC 10,2 11,0 0,93 

 BF 11,4 12,3 0,93 

 TF 8,1 8,7 0,93 

10000 SC 8,3 8,9 0,93 

 BF 9,1 9,8 0,93 

LTB loads are calculated for qL and all units are the same as kilonewton. 
PE=Presented equation, AB= Abaqus, TF=Top flange, SC=Shear center, 
BF=Bottom flange, L=Beam-column length. 

 
Results in Tables IX, X have shown that LTB loads of 

section A and section B with different slendernesses subjected 
to uniformly distributed load calculated using presented 
equation are in good accordance with ABAQUS results. 

 
 

TABLE X 
SECTION B UNDER LOAD CASE 2 FOR N/NY=0.5 

L Loading Position PE AB PE/AB 

 TF 45,8 51,1 0,90 

4000 SC 47,3 52,7 0,90 

 BF 58,6 64,4 0,91 

 TF 29,0 31,6 0,92 

5000 SC 29,8 32,4 0,92 

 BF 35,4 38,2 0,93 

 TF 20,0 21,4 0,93 

6000 SC 20,5 21,9 0,93 

 BF 23,6 25,1 0,94 

 TF 14,6 15,5 0,94 

7000 SC 14,9 15,8 0,95 

 BF 16,9 17,8 0,95 

 TF 11,2 11,7 0,95 

8000 SC 11,3 11,9 0,95 

 BF 12,6 13,2 0,95 

 TF 8,8 9,2 0,96 

9000 SC 8,9 9,3 0,96 

 BF 9,8 10,2 0,96 

 TF 7,1 7,4 0,96 

10000 SC 7,2 7,5 0,96 

 BF 7,8 8,2 0,96 

LTB loads are calculated for qL and all units are the same as kilonewton. 
PE=Presented equation, AB= Abaqus, TF=Top flange, SC=Shear center, 
BF=Bottom flange, L=Beam-column length. 

IV. CONCLUSION 

This paper presents a compact closed-form equation based 
on Ritz Method in order to evaluate LTB behavior of beam-
columns with monosymmetric section subjected to constant 
axial force and various transverse load cases. The effect of 
axial loads, slenderness and loading positions on LTB loads of 
beam-columns are investigated by using proposed equation. 
Abaqus finite element software was utilized to validate LTB 
loads obtained by presented equation. It can be concluded that 
the results obtained by presented equation are in good 
accordance with ABAQUS results for low axial load level 
(N/Ny=0-N/Ny=0.5). Thus, proposed formula can be safely 
used in design of beam-column members under small axial 
load. However, buckling loads calculated using presented 
equation have become more conservative than abaqus solution 
due to the fact that the increase in axial load level after value 
of N/Ny=0.5 voids the assumption for minor axis bending 
which are used for the derivation of the proposed closed-form 
equation. 
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