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Abstract—This paper discusses EM algorithm and Bootstrap 

approach combination applied for the improvement of the satellite 
image fusion process. This novel satellite image fusion method based 
on estimation theory EM algorithm and reinforced by Bootstrap 
approach was successfully implemented and tested. The sensor 
images are firstly split by a Bayesian segmentation method to 
determine a joint region map for the fused image. Then, we use the 
EM algorithm in conjunction with the Bootstrap approach to develop 
the bootstrap EM fusion algorithm, hence producing the fused 
targeted image. We proposed in this research to estimate the 
statistical parameters from some iterative equations of the EM 
algorithm relying on a reference of representative Bootstrap samples 
of images. Sizes of those samples are determined from a new 
criterion called ‘hybrid criterion’. Consequently, the obtained results 
of our work show that using the Bootstrap EM (BEM) in image 
fusion improve performances of estimated parameters which involve 
amelioration of the fused image quality; and reduce the computing 
time during the fusion process. 

Keywords—Satellite image fusion, Bayesian segmentation, 
Bootstrap approach, EM algorithm. 

I. INTRODUCTION 
MAGE fusion is the technique by which a set of input 
images coming from different sensors or modalities or some 

of their features, are combined together to form a single 
composite fused image [1, 2, 12]. It has become an important 
procedure in satellite image analysis and the remote-sensing 
[4]. In the remote sensing domain, every band of data collected 
by a sensor contains some important and unique information. 
We know that a target interferes differently according to the 
length of wave of the incidental energy that where reflected, 
absorbed, and distributed or broadcasted in different 
proportions. The appearance of a target can change easily with 
time, sometimes in some seconds. For several applications, 
using information from different sources of data, guarantees 
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the correct identification of the target and a data picking as 
precise as possible. Specialists of the analysis of satellite 
image use multi-spectral, multi-sensor and multi-temporal 
manners, to fuse several sets of data, in order to extract the 
best possible information of a target or a region. Scientists use 
fused images in several applications, to determine the state of 
vegetation, to supervise variations of temperature in masses of 
water, to localize damage in an underground pipeline, and to 
study the soil and the basement geography. Due to the big 
diversity methods [7, 8, 9, 10], the fusion results fluctuate with 
the selected technique. But in recent years, many researchers 
have begun to focus on studying probabilistic based image 
fused algorithm. Sharma [5, 6] proposed a Bayesian fusion 
method, which is based on estimation theory and assumes all 
distortions follow a Gaussian density. Yang [3] presented an 
algorithm based on the assumption that all distortions best fit 
Gaussian and non-Gaussian. Liu [2] developed the EM 
algorithm only to estimate fused image in the lowest 
frequency band.  

The major problem of these methods is the delay of 
computing time, especially in satellite image (because of big 
memory size). To resolve this problem, we apply a model 
called Bootstrap to the estimation algorithms. It’s a resampling 
method that improves estimator properties notably in small 
samples. Zribi [16] says that to estimate the parameters’ 
models, we replace the observed image by a Bootstrap sample 
of pixels drawn randomly. 

In this paper, we develop a hybrid criterion to determine the 
optimum size of the representative Bootstrap sample [27]. The 
organization of this paper is as follows. In section II, we 
describe the Bootstrap sampling method. In section III , we 
discus the interest of Bootstrap approach in image analysis. In 
section IV, we present the Bootstrap EM algorithm for image 
segmentation and fusion. The metrics of quality comparison 
(blind metrics) between the classical EM and the Bootstrap 
EM (BEM) are given in section V. The results of segmentation 
and fusion of satellite images are shown in section VI. Finally, 
we present our conclusion in section VII.  

 

II. BOOTSTRAP SAMPLING METHOD 
The Bootstrap was introduced by Efron [18] as a tool for 

estimating the sample distribution of statistics when standard 
methods cannot be applied. An important aspect of this 
technique is that it sets researchers free from making 
unverifiable and most likely invalid assumptions about their 

I 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:11, 2008

3701

 

data (e.g. probability distribution) prior to analysis. The basic 
idea underlying the Bootstrap is to produce a random sample 
(called Bootstrap sample), which is obtained by sampling, 
with replacement, from the original pool of data. The 
Bootstrap sample is then used to compute the estimate of the 
parameter the researcher is interested in, and this procedure 
(extraction of the random sample and computation of the 
estimate) is repeated many times in order to create an 
empirical distribution of the statistic. Such a distribution 
usually represents a good approximation of the true (and 
unknown) probability distribution underlying that statistic 
[21]. 

For example to estimate a parameter Ө (like the mean, the 
variance or the quintile…) from a sample of size n, 

),.....,,( 21 nXXXX =  with unknown probability 
distribution F, we generate from X a Bootstrap random 
sample ),.....,,( **

2
*
1

*
nXXXX = . The simulation is made 

according to the empirical distribution function nF  of  X, that 
gives the probability 1/n for every element. The precision of 
the estimator is determined by a simulation of B Bootstrap 
samples from a sample X [20]. 

 

III. IMPORTANCE OF BOOTSTRAP IN IMAGE ANALYSIS 

Many researches have applied the Bootstrap method in 
pattern classification [21, 22]. In this section, we present the 
principle of this method in image and the new representative 
criterion. 

A.  Principle 
In the domain of the Bootstrap, we consider the image as a 

finite population with N observations is that noted by 
),.....,,( 21 NxxxX =  with cr NNN ×= . The rN and the 

cN  represent respectively the line number and the columns 
number of image. Each observation takes its values in a finite 
set of Gray levels G. We suppose that the image is our initial 
sample of unknown law distribution. We draw randomly and 
with replacement a representative Bootstrap sample 

),.....,,( **
2

*
1

*
nxxxX =   from the initial sample. This model 

of sampling gives the possibility to simulate a realization that 
presents a big interest for the evaluation of parameters. Every 
image is characterized by a set ),.....,,( 21 KgggG = of 
levels of different Gray value. A Gray level ig is characterized 
by a prior apparition probability ip in the image. This 
probability can be estimated by its proportion in a Bootstrap 
sample of optimum size determined in our work by a new 
representative criterion. 

B.  A New Representative Criterion  
1) Stratification: By the use of a composite of two 

probabilistic sampling techniques (random simple and 
stratified), we develop a hybrid criterion for the determination 
of the optimum size n of the representative Bootstrap sample. 

 

 
 

 
 
 
 

 
Fig. 1 The process of sampling 

 
In Fig. 1, 1N , 2N ,…….., GN  represent the stratum size 

and 1n , 2n ,……, Gn  represent the sample size where G is 
the number of classes. These stratum sizes and these sample 
sizes verify respectively the following equations: 

                                  ∑
=

=
G

g
gNN

1

                                  (1) 

and 

                                  ∑
=

=
G

g
gnn

1

                                   (2) 

The hybrid criterion [27] is a process of sampling where the 
population is distributed in homogeneous sub-groups or in 
strata (G) and where the drawing of samples is independent in 
every stratum. 

2) Determination of the Optimal Sample Size: We use the 
simple random sampling to draw sub-samples (there is G sub-
samples) from the total population strata. The sub-sample will 
be called “representative” if it assures the proportional 
distribution of individuals, that is to say: 

           (3) 

Improving more the expression of n:  

∑∑
==

×=⇒×=×
G

g g

g
G

g g

g

N
n

G
Nn

N
n

NnG
11

              (4) 

After that, we can apply one of the criterions given in [5] to 
determine the optimal size of a sub-sample drawn from a 
stratum. In this work, we choose the following criterion: a 
sample ),.....,,( **

2
*
1 nxxx  of n size will be representative of the 

entire image only if each Gray level appears at least one time 
during n drawing, thus the following expression is deduced:  

                    gg Kn ×> 4                                       (5) 

gK  represents the Gray level number in a g stratum.  

n1 

N1 N2 

n2 nG

NG 
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The expression of n will be in the following form: 
 

                               ∑
=

×>
G

g g

g

N
K

G
Nn

1

4                          (6) 

 

IV. THE BOOTSTRAP EM ALGORITHM 

A.  The BEM Algorithm for Image Segmentation  
In this section, we present the basic idea of the univariate 

gaussian mixture model and the BEM segmentation algorithm. 

1.  Univariate Gaussian Mixture Model   
In univariate Gaussian mixture model [23], one-dimensional 

observations ix  are assumed to be drawn from K classes. Each 
of them is a Gaussian distributed. The probability density for 
this model is: 

               ∑
=

=
K

k
kikki xfpxf

1
)/()( θ                         (7) 

where t
kkk ),( 2σμθ = , )/(. kkf θ is a Gaussian density with 

mean kμ and variance 2
kσ and ),........,( 1 Kpp is a vector of 

mixture probabilities such that 0≥kp , k=1,……,K and 

1
1

=∑
=

K

k
kp .  

The expression of the Gaussian density )/(. kkf θ is:  

            
2

2

2
)(

2
1)/( k

kx

k
kk exf σ

μ

πσ
θ

−
−

=                      (8) 

The estimation of a priori probabilities kp and function 

parameters kθ  can be realized by using the EM algorithm [24, 
25]. It is an iterative procedure designed to find the maximum 
likelihood estimates [22] in the context on parametric models.   

2.  The BEM Segmentation Algorithm 
The Bootstrap EM (BEM) algorithm is proposed to estimate 

the parameters of mixture from a representative Bootstrap 
sample of a given image [27]. The mixture density of a 
random variable ),.....,,( **

2
*
1

*
nxxxX = is defined by the 

following form: 

               )/()( *

1

*
kk

K

k
k xfpxf θ∑

=

=                       (9) 

The application of the BEM algorithm to image 
segmentation consists in the following steps: 

(a) Determination of the optimal size of Bootstrap 
sample. 

(b) Drawing with replacement of a representative 
Bootstrap sample of size n<N from the totality of the 
image. 

(c) Resampling of B samples from the initial sample. 
(d) Application of the EM algorithm to estimate 

parameters of the simulated Bootstrap samples. 

(i) Initialization: the first step is the initialization of a 
priori probabilities, averages and variances of every 
class.  With the help of the image histogram or the K-
Means Clustering method, we initialize those 
parameters in the following way:   

     
n

np k
k

0
0 ˆˆ = ; ),(ˆ 000

kkk σμθ =                      (10) 

where 0ˆkn  is the total number of observations in the  
class k. 

(ii) Expectation: in this step we estimate the a 
posterior distribution )(ˆ *

i
m
k xp for the pixel *

ix that 
belongs to the class k at the mth iteration by: 

                  ∑
=

=
n

i

m
ki

m
k p

n
xp

1

* ˆ1)(ˆ                        (11) 

(iii) Maximization: at the (m+1)th iteration we can 
estimate the a priori probability 1ˆ +m

kp , the mean 
1ˆ +m

kμ and the variance to each class by:    
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The algorithm stops when the condition: 

            ε<−+ m
k

m
k pp ˆˆ 1                               (15) 
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is satisfied, with ε is a given small number. 

 (e)  Classification: The Bayesian Rule (BR).  
After the mixture identification, the BR is applied in 
order to classify the pixels according to their gray 
level *x : 

        { }[ ])/(maxarg)( *
1

*
kkKk xfpxk θ≤≤=              (16) 

where k( *x ) represents the label of the class of the pixel *x . 

3.  Region Analysis 
The BEM algorithm is applied separately to each input 

image to obtain region maps for each one. The region maps 
for different sensor images are generally different, because 
these images can come from diverse modalities. Input images 
may contain different objects which may appear with different 
shapes on input images [11]. Thus we need to determine a 
joint region map for the merged image. 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Diagram of joint region map generated by the representative 
samples based on segmentation EM algorithm 

B.  The BEM Algorithm for Image Fusion  
We assume that the input images are modeled as the true 

scene corrupted by a Gaussian mixture noise. To determine 
the parameters of distortion, we apply a new method called 
BEM fusion algorithm. 
 

1. Image Formation Model 
The image formation model is determined for each region 

in the joint region map. This model is defined for each pixel 
j=1,……,L in a region [2] as:  

        )()()()()( jjjSjjz iiii εαβ ++=            (17) 

where i=1,…..,q indexes the sensors; L is region size;  Zi(j) is 
the input sensor image region; S(j) is the true scene region 
which we hope to estimate using the fused method; 
βi=+1,−1 or 0 is the sensor selectivity factor which indicate 
that the model acknowledges that a given sensor may be able 
to “see “ this object (βi=+1), may fail to "see" this object 
(βi=0), or may "see" this object with a polarity reversed 
representation(βi=−1),    αi(j) is the sensor bias or the 
formation distortions of sensors, and εi(j) is the random 

distortion. The noise is modeled as a K–term mixture of 
Gaussian probability functions (pdfs) as:  

      )(2
)(

1
2

,

,)(

2
,

2

)(2
1)())(( j

jK

k ik

ikij
ik

i

i
e

j
jjf σ

ε

ε
πσ

λε
−

=
∑=

           (18) 

2.  BEM Fusion Procedure  
The BEM algorithm proposes to estimate the model 

parameters from representative Bootstrap samples of each 
region of images. Therefore, instead of considering the region 
like an observation sample as the fact of the classic EM 
algorithm; the BEM replaces the observed region 

)y,.....,y,y(Y M21=  that has a size equal to M by a m-size 
representative Bootstrap sample )y,.....,y,y(Y *

m
*
2

*
1

* =  
selected randomly. 

The application of the BEM algorithm to images regions 
consists in the following steps: 
We follow the following steps to apply the BEM algorithm 
about images regions  

a) Determination of the optimal size of Bootstrap 
sample of a region.   

b) Drawing with replacement of a representative 
bootstrap sample of size m<M from the totality of a 
region. 

c) Resampling of B samples from the initial sample  
d) Application of the EM algorithm [2, 3, 11] to 

estimate parameters of the simulated bootstrap 
samples.  
Initialization of parameters: the initial values of the 

parameters are needed to start the EM algorithm. We 
estimate for the region of a true scene S(l) that comes 
from the weighted average of the input images. A 
simple initialization of βi is to assume that the region 
appears in each sensor image [2, 3, 11]. In order to   
initialize the distortion parameters the distortion is 
supposed impulsive.  The initialization for the sensor 
bias αi is to come from the average of gray level of 
each source image-region. 

Calculate of conditional probabilities: )]([,, lzg ilik . 
Update selectivity factors:  iβ to iβ ′ .  

Update distortions parameters:   ik ,λ to ik ,λ ′ ; 2
,ikσ  

to 2
,ikσ ′  and iα to iα′ . 

Update true region of a scene:  S(l) to S ′ (l). 
e) Joint of the updated regions of a true scene  
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Fig. 3 Diagram of Bootstrap EM (BEM) fusion 
 

V. PERFORMANCE COMPARISON 

A.  The Probability of Error Classification 
We compare the performance between the classical EM 

algorithm and the proposed Bootstrap EM (BEM) on a 
Gaussian mixture which is composed of three classes. We use 
a significant and easy criterion proposed by Zribi in [17] to 
estimate the probability of error of classification which called   
the rate of misclassifying τ defined by:  

τ = number of misclassified pixels
 total number of pixels

. 

B.  Metrics to Measure the Fusion Quality 
The widespread use of image analysis (segmentation, 

fusion, etc) methods, in military applications, in medical 
diagnostics, in remote sensing, etc, has led to a rising demand 
of applicable quality evaluation metrics in order to compare 
the results gotten with different algorithms [15]. Quality 
evaluation of images processing is often carried out by human 
visual inspection [13].  

In this work, we apply the objective fusion performance 
measures (blind metrics) introduced by Pielle [15]. Piella used 
the image quality index Q0 that was introduced by Wang and 
Bovik in [14] to define some new objective measures for 
image fusion which do not require a reference image: the 
fusion quality index and the weighted fusion quality index. 

We note by Q(a,b,f) the quality index, where a  and b are 
the two input images and f is the fused image and by s(a\w) 
the some saliency of image a in a window w. The s(a\w) 
should reflect the local relevance of image a within the 
window w, and it may depend on (e.g. contrast, sharpness, or 
entropy). We note by λ(ω)  the local weight that indicates the 
relative importance of image a compared to image b. A typical 
choice for λ(ω) is:   

    
w)\(w)\(

w)\()(
bsas

asw
+

=λ          (19) 

then, Q(a,b,f) is defined as: 

  w)\,))((-(1w)\,()((1),,( 0 fbwfaQw
W

fbaQ
Ww

λλ += ∑
∈

       (20) 

where W is the family of all windows. 
From eq. (20), we define the weighted fusion quality index 
Qw(a,b,f) by:  

∑
∈

−+

=

Ww

w

wfbQwwfaQwwc

fbaQ

)]\,())(1()\,()()[(

),,(

00 λλ   (21) 

where,  

                  
∑

∈′

′
=

Ww

wC
wCwc

)(
)()(                              (22) 

and, 
       ))\s(b)\(max()( ωωω += asC        (23) 

We choose the variance and the entropy to calculate the 
relevance s(a\w) of an image. The variance denoted by 2

xσ is 
an arbitrary measurement being used for characterized the 
dispersion (the measure of the homogeneity) of the pixels 
values of an image (or a window (w) in our case) defined by: 

 ( )∑
=

−
−

=
n

i
ix Xx

n 1

22

1
1σ         (24)   

with 

 ∑
=

=
n

i
ix

n
X

1

1            (25)   

where n is the image size; ix  the pixel value; and X the mean 
of pixels values in a window. 
The Entropy denoted by (H) of an image is the measurement 
of information present in an image (or in a window) and is 
defined as follows [26]:  

    ∑
=

−=
L

i
ipipH

0
2 )(log)(        (26) 

where L is the gray level of the image, p(i) is the ratio of the 
number of pixels ni with gray level i and the total number n of 
pixels in the image; p(i)= ni /n. 
 

VI. EXPERIMENTAL RESULTS 
In this section we present some examples of unsupervised 

segmentation and fusion of simulated image and real images. 
The simulated image given in Fig. 4a is a 256*256 pixel 
resolution and it is constituted by three classes. These classes 
are corrupted by a Gaussian white noise of mean m and 
variance v. The default is zero mean noise with 0.01 variance. 
So we obtain the image assigned in Fig. 4b. We identify the 
mixture of three Gaussian laws of the simulated image by the 

Image I 

Image II 

Region 
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EM 
Fusion 

Resampling 

Resampling 

Fused 
image 

 
BEM 
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classical EM algorithm and the proposed Bootstrap EM 
algorithm (see; Fig. 5a and Fig. 5b). 

To calculate the parameters of segmentation or fusion of the 
real images, we used the representative samples with sizes 
determined in Table I. 

 
TABLE I 

OPTIMAL SIZE OF BOOTSTRAP SAMPLE 

Real 
Images 

N  
image size 

G stratum 
number 

K  
Gray levels 

number 

n  
sample 

size 

band_L 250000 4 256 1075 
band_C 250000 4 255 1471 
Band1 30000 4 250 1906 
Band4 30000 4 256 1124 

 
 

TABLE II 
DIFFERENT SIZES OF BOOTSTRAP SAMPLE FOR THE SAME IMAGE 

G 
strata number 

n  
sample size 

3 1076 
4 1124 
5 1288 
6 1386 
7 1445 

Image "Band4 

8 1504 

 
By an over look on tables (Table I and Table II), we notice 

that the hybrid criterion holds in consideration: the size N of 
the image, the distribution of Gray levels in every stratum, and 
the G number of strata, to determine the optimal size of 
sample Bootstrap. The optimal number of strata varies 
according to the image homogeneity. 

Table III shows the percentage of misclassified pixels of 
every class obtained by the classical EM and the new 
approach applied to image Fig. 4a. Table IV represents the 
initial parameters of image Fig. 4a, the estimates of the 
parameters using the two algorithms (EM and BEM) and the 
rate of misclassifying of segmentation error rates.  

To assess the performance of the new approach (BEM) we 
consider two pair of real images; these images are represented 
by 256GLs. 
The first pair of test images is constituted of:  
● “L-band" image (23 cm) (see Fig. 6a) is a satellite image of 
500*500 pixel resolution from JERS-1 (Japan Earth Resources 
- 1 Satellite).  
● “C-band” image (5-6 cm) (see Fig. 6b); this is an image data 
of 500*500 pixel resolution from Radar sat – 7.  
The second pair of test images incorporates:  
● “Band1” image (see Fig. 7a) is an image of 200*150 pixel 
resolution. The spectral response of Band 1 is in the visible 
portion of the electromagnetic spectrum that corresponds with 
blue-green light. This band is capable of being transmitted 
through water and is especially sensitive to particles 
suspended in water. 
● “Band4” image (see Fig. 7b) is an image of 200*150 pixel 
resolution. The spectral response of Band 4 is in the Near 
Infrared (NIR) portion of the electromagnetic spectrum. This 
form of radiation is reflected to a high degree of leafy 
vegetation since chlorophyll reflects much of the NIR that 
reaches it.  

Fig. 6d and Fig. 6e (resp. Fig. 7d and Fig. 7e) show the 
segmented images of Fig. 6a and Fig. 6b (resp. Fig. 7a and 
Fig. 7b) respectively. Fig. 6f (resp. Fig. 7f) shows the joint 
region map of the fused images Fig. 6d and Fig. 6e (resp. Fig. 
7d and Fig. 7e). Fig. 6c (resp. Fig. 7c) is the fused image using 
the classical EM fusion algorithm.  

In order to decrease the great dependence of neighbor pixels 
of the real images, it is more suitable to select randomly 
representative samples from the regions of input images 
instead of considering the total number of pixels. After that, 
we generate some resamples B (artificial samples) from these 
representatives’ samples. Fig. 6g, Fig. 6h and Fig. 6k (resp. 
Fig. 7g, Fig. 7h and Fig. 7k) are the fused images obtained by 
using the BEM fusion algorithm; with a variation of the 
number of artificial samples B. This kind of sample selection 
is considerably reduces the fusion time (see: Table V and 
Table VI). 

The sample selection process in BEM leads to a great 
improvement in maximum likelihood parameter estimation. 
From which comes the improvement of the fused image 
quality (see: Table VII and Table VIII). 

 

VII. CONCLUSION  
We have presented a new Bayesian fusion method based on 

EM algorithm and a Bootstrap approach combination. The 
Bootstrap sampling model that has been used allows an 
estimation of parameters of image from a representative 
sample. The size of optimal sample is determined by the 
proposed new criterion called: hybrid criterion. The results of 
different satellite images presented in this work show the 
advantage of Bootstrap approach in satellite image fusion or 
even in segmentation. The interest in Bootstrap-EM (BEM) 
assessment of satellite images is an original approach which 
was successfully implemented and tested. 

Obtained results of our work show that using BEM 
approach in image fusion improves performances of estimated 
parameters which involve amelioration of the fused image 
quality; and reduce the computing time during the fusion 
process. 
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(c) (d) 

Fig. 4 (a) original image, (b) distorted image, (c) segmented image (b) with classical EM algorithm 
(d) segmented image (b) with BEM algorithm 

 
 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:11, 2008

3707

 

(a) (b) 
Fig. 5 (a) Gaussian mixture obtained by classical EM algorithm, (b) Gaussian mixture obtained by BEM algorithm 

 
 

TABLE III 
THE NUMBER OF MISCLASSIFIED PIXELS FOR CLASSICAL EM AND BEM 

Classical EM Bootstrap EM (BEM) 
class Initial pixel 

numbers Pixels’ number after 
segmentation 

the number of misclassified 
pixels % every class 

 

Pixels’ number after 
segmentation 

the number of misclassified 
pixels % every class 

 
1 31007 30736 271 31043 36 
2 25120 24176 944 24272 848 
3 9409 10624 1215 10221 812 

 
TABLE IV 

PARAMETERS ESTIMATED FROM IMAGE FIG. 2B 
Parameters π1 π2 π3 μ1 μ2 μ3 σ1 σ2 σ3 τ 
theoretical 0.473 0.383 0.143 40 130 200 0 0 0 --- 

Classical EM 0.4690 0.3798 0.151 39.906 128.938 197.946 21.647 22.653 24.020 1.85  
ΒΕΜ 0.481 0.368 0.1498 41.235 130.5 199.956 21.104 22.544 22.642 1.29% 

 
 
 

TABLE V 
TIME OF “BAND_L” AND “BAND_C” IMAGES FUSION UNDER A STATION OF CALCUL (P4) 

 
Fusion approach 

 
Resample number ( B) Nunumber iteration 

 
Compilation Time in seconds  

Classical EM  3 5837.765 
Bootstrap EM (EMB) 2 3 2261.188 
Bootstrap EM (EMB) 10 3 2322.516 
Bootstrap EM (EMB) 100 3 2395.703 

 
TABLE VI 

TIME OF “BAND1” AND “BAND4” IMAGES FUSION UNDER A STATION OF CALCUL (P4) 
 

Fusion approach 
 

Resample number ( B) Nunumber iteration 
 

Compilation Time in seconds  

Classical EM  3 119.93 
Bootstrap EM (EMB) 2 3 21.469 
Bootstrap EM (EMB) 100 3 25.828 
Bootstrap EM (EMB) 1000 3 66.781 
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(a) band_L  image (b) band_C  image (c) Fused image by classical  EM 

   
(d) Image (a) segmented (e) Image (b) segmented (f) Jointe region map 

   
(g) Fused image by BEM ;  B=2  (h) Fused image by BEM;  B=10  (k) Fused image by BEM;  B=100  

 
Fig. 6 fusion results on band_C and band_L images 

 
 

TABLE VII 
COMPARISON OF DIFFERENT QUALITY MEASURE FOR THE COMPOSITE IMAGES IN FIG. 6 

metrics The relevance  
s(a\w) Classical EM BEM; B=2 BEM; B=10 BEM;B=100 

Q The Variance  0.9110 0.9071 0.9451 0.9410 
Qw The Variance 0.9438 0.9479 0.9844 0.9796 
Q The Entropy 0.8990 0.9018 0.9265 0.9231 

Qw The Entropy 0.9051 0.9079 0.9326 0.9293 
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(a) Band1  image (b) Band4 image (c) Fused image by classical  EM 

   
(d) Image (a) segmented (e) Image (b) segmented (f) Jointe region map 

   
(g) Fused image by BEM;  B=2  (h) Fused image by BEM ;  B=100 (k) Fused image by BEM;  B=1000  

 
Fig. 7 Fusion results on Band1 and Band4 images 

 
 

TABLE VIII 
COMPARISON OF DIFFERENT QUALITY MEASURE FOR THE COMPOSITE IMAGES IN FIG. 7 

metrics The relevance  
s(a\w) Classical EM BEM; B=2 BEM; B=100 BEM;B=1000 

Q The Variance  0.84 0.7672 0.7664 0.7656 
Qw The Variance 0.8367 0.7591 0.7568 0.7551 
Q The Entropy 0.8134 0.7565 0.7560 0.7559 

Qw The Entropy 0.8158 0.7586 0.7580 0.7580 
 
  


