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On The Elliptic Divisibility Sequences over Finite
Fields
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Abstract—In this work we study elliptic divisibility sequences over
finite fields. Morgan Ward in [11, 12] gave arithmetic theory of elliptic
divisibility sequences. We study elliptic divisibility sequences, equiv-
alence of these sequences and singular elliptic divisibility sequences
over finite fields Fp, p > 3 is a prime.
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I. PRELIMINARIES.

A divisibility sequence is a sequence (hn) (n ∈ N) of
positive integers with the property that hm|hn if m|n. The
oldest example of a divisibility sequence is the Fibonacci
sequence. There are also divisibility sequences satisfying a
nonlinear recurrence relation. These are the elliptic divisibility
sequences and this relation comes from the recursion formula
for elliptic division polynomials associated to an elliptic curve.

An elliptic divisibility sequence (or EDS) is a sequence of
integers (hn) satisfying a non-linear recurrence relation

hm+nhm−n = hm+1hm−1h
2
n − hn+1hn−1h

2
m (1)

and with the divisibility property that hm divides hn whenever
m divides n for all m ≥ n ≥ 1.

There are some trivial examples such as the sequence of
integers Z

0, 1, 2, 3, 4, 5, 6, · · ·
is an EDS but non-trivial examples abound. The simplest EDS
is the sequence

0, 1, 1,−1, 1, 2,−1,−3,−5, 7,−4,−28, 29, 59, 129,
−314,−65, 1529,−3689,−8209,−16264, 83331,
113689,−620297, 2382785, 7869898, 7001471,
−126742987,−398035821, 168705471, · · · .

This is the sequence A006769 in the On-Line Encyclopedia
of Integer Sequences maintained by Neil Sloane.

EDSs are generalizations of a class of integer divisibility
sequences called Lucas sequences, [10]. EDSs were interesting
because of being the first non-linear divisibility sequences
to be studied. Morgan Ward wrote several papers detailing
the arithmetic theory of EDSs [11, 12]. For the arithmetic
properties of EDSs, see also [2, 3, 4, 5, 9]. Shipsey and Swart
[6, 9] interested in the properties of EDSs reduced modulo
primes. The Chudnovsky brothers considered prime values
of EDSs in [1]. Rachel Shipsey [5] used EDSs to study
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some applications to cryptography and elliptic curve discrete
logarithm problem (ECDLP). EDSs are connected to heights
of rational points on elliptic curves and the elliptic Lehmer
problem.

A solution of (1) is proper if h0 = 0, h1 = 1, and h2h3 �= 0.
Such a proper solution will be an EDS if and only if h2, h3, h4

are integers with h2|h4. An EDS which do not satisfy one (or
more) of these conditions is called improper elliptic divisibility
sequence. The sequence (hn) with initial values h1 = 1, h2, h3

and h4 is denoted by [1 h2 h3 h4].
An integer m is said to be a divisor of the sequence (hn) if

it divides some term with positive suffix. Let m be a divisor of
(hn). If ρ is an integer such that m|hρ and there is no integer
j such that j is a divisor of ρ with m|hj then ρ is said to be
rank of apparition of m in (hn).

Elliptic divisibility sequences are a generalization of a class
of divisibility sequences studied earlier by Edouard Lucas. In
fact many of Ward’s results about EDSs were prompted by
similar results discovered by Lucas for his sequences.

Let α be a rational number, and let a and b the roots of the
polynomial x2 − αx+ 1. If a �= b let (ln) be the sequence

ln =
an − bn

a− b

for n ∈ Z. If a = b define

ln = nan−1.

Then (ln) is called a Lucas sequence with parameter α. Ward
said that the Lucas sequence (ln) is an EDS if and only if α is
an integer. Lucas sequences are special case of a type of EDS
called a singular EDS. The following definition will show us
that which EDSs are singular.

Discriminant of an elliptic divisibility sequence (hn) is
defined by the formula

Δ (h2, h3, h4) =
1

h8
2h

3
3

⎡
⎣ (h4

4 + 3h5
2h

3
4 + (3h8

2 + 8h3
3)h

2
4

+h7
2(h

8
2 − 20h3

3)h4

+h4
2h

3
3(16h3

3 − h8
2)

⎤
⎦ .

An elliptic divisibility sequence (hn) is said to be singular
if and only if its discriminant Δ(h2, h3, h4) vanishes. Now we
see that when two EDSs are equivalent so we need to know
following definition:

Definition 1.1: Two elliptic divisibility sequences (hn) and
(h′n) are said to be equivalent if there exists a constant θ such
that

h′n = θn2−1hn

for all n ∈ Z.
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Ward used diophantine equations to characterize singular
EDSs in terms of their initial values in the following theorem:

Theorem 1.1: [12] An elliptic divisibility sequence (hn)
with h2h3 �= 0 is singular if and only if there exist integers r
and s such that

h2 = r, h3 = s(r2 − s3), h4 = rs3(r2 − 2s3).

Ward proved further that Lucas sequences with h2h3 �= 0
are singular in the following theorem.

Theorem 1.2: [12] An elliptic divisibility sequence (hn)
with h2h3 �= 0 is a Lucas sequence with parameter α if and
only if it is a singular solution with r = α and s = 1 in
Theorem 1.1.

If (hn) is a singular elliptic divisibility sequence with s �= 1
then we have the following result:

Theorem 1.3: [12] Let (hn) be a singular EDS, and let α =
r
√

s
s2 and θ2 = s, where r and s are the integers given in

Theorem 1.1. Let (ln) be a Lucas sequence then hn = θn2−1ln
for all n ∈ Z

This theorem tells us that every singular EDS is a Lucas
sequence or is equivalent to a Lucas sequence.

We will now give a short account of material that we need
about elliptic curves, all of the theory of elliptic curves can
be found in [6, 8]. Consider an elliptic curve defined over
the rational numbers determined by a generalized Weierstrass
equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

with the coefficients a1, · · · , a6 ∈ Z. Define quantities by

b2 = a2
1 + 4a2,

b4 = 2a4 + a1a3,

b6 = a2
3 + 4a6,

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4,

c4 = b22 − 24b4,
Δ = −b22b8 − 8b34 − 27b26 + 9b2b4b6.

Ward proved that EDSs arise as values of the division
polynomials of an elliptic curve. We will write ψn(P ) for ψn

evaluated at the point P = (x1, y1). The following theorem
shows us the relations between EDSs and the elliptic curves.

Theorem 1.4: [5] Let (hn) be an elliptic divisibility se-
quence with initial values

[1 h2 h3 h4].

Then there exists an elliptic curve

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x,

where a1, · · · , a4 ∈ Z, and a non singular rational point P =
(x1, y1) on E such that ψn(x1, y1) = hn for all n ∈ Z,

where ψn is the n−th polynomial of E. Define quantities when
a1 = 0,

a3 = h2,

a4 =
h4 + h5

2

2h2h3
, (2)

a2 =
h3 + a2

4

h2
2

and when a1 = 1,

a4 =
h4 − h2

2h3 + h5
2

2h2h3
, (3)

a2 =
h3 + a1a3a4 + a2

4

h2
2

.

Ward showed that the discriminant of the elliptic divisibility
sequence is equal to discriminant of elliptic curve associated
to this sequence in the following theorem.

Theorem 1.5: [12] Let (hn) be an elliptic divisibility se-
quence in which h2h3 �= 0, and let E be an associated elliptic
curve with (hn). Then the discriminant of (hn) is equal to
discriminant of elliptic curve E.

Ward also showed that there is a similar relation between
singular EDSs and the singular curves.

Theorem 1.6: [5, 12] Let (hn) be a singular elliptic divisi-
bility sequence with h2h3 �= 0, in the notation Theorem 1.1,
then elliptic curve

E : y2 + ry = x3 + 3sx2 + 3s2x

has a cusp and

a3 = r, a2 = 3s, a4 = 3s2 ⇔ r2 = 4s3.

II. THE NUMBER OF THE ELLIPTIC DIVISIBILITY
SEQUENCES, EQUIVALENT SEQUENCES AND SINGULAR

SEQUENCES OVER Fp.

In this section we will consider the elliptic divisibility
sequences over a finite field. Firstly, we define the elliptic
sequences and then elliptic divisibility sequences over Fp,
where p > 3 is a prime.

Definition 2.1: An elliptic sequence over Fp is a sequence
of elements of Fp satisfying the formula

hm+nhm−n = hm+1hm−1h
2
n − hn+1hn−1h

2
m.

If (hn) is an elliptic sequence over Fp, then (hn) is
an elliptic divisibility sequence over Fp since any non-zero
elements of Fp divides any other. Therefore the term elliptic
sequence over Fp will mean, in this paper, elliptic divisibility
sequence over Fp. Let (hn) be an EDS over Fp then we denote
this sequence by (hn(p)).
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Note that as in the integral sequences, elliptic divisibility
sequences over Fp satisfy the further conditions that h0 =
0, h1 = 1 and two consecutive terms of (hn) can not vanish
over Fp and if some term is zero then multiples of this term
is zero too, that is; if h2 = 0 then h4 = 0 and so h2n = 0 for
all n ∈ N. This relation is shown below:

Lemma 2.1: Let (hn(p)) be an elliptic divisibility sequence
with rank ρ over Fp. Then hρn ≡ 0(p).

Proof: Let (hn(p)) be an elliptic divisibility sequence
over Fp. If (hn(p)) has rank ρ, then hρn ≡ 0(p) since hρ

divides hρn for ρ divides ρn.

Now, we will give some basic facts about EDSs over finite
fields. We consider the number of the elliptic divisibility
sequences over Fp and then we determine singular elliptic
divisibility sequences and number of these sequences.

Theorem 2.1: The number of the elliptic divisibility se-
quences over Fp is p3 − p2 + p.

Proof: If (hn(p)) is an EDS with h0 = 0 and h1 = 1,
then there are p alternatives for choosing the terms h2, h3 and
h4. Therefore, we may think there are p3 elliptic divisibility
sequences over Fp, but we know that h2 is a divisor of h4. So,
if h2 = 0, then we may have h4 = 0. Thus we must subtract
the sequences with h2 = 0 and h4 �= 0. Similarly we find
number of this sequences is p(p− 1). So we have

p3 − p(p− 1) = p3 − p2 + p

sequences over Fp.

Theorem 2.2: The number of the improper elliptic divisi-
bility sequences over Fp is p2.

Proof: If h2 �= 0, then there are p− 1 alternatives for the
second term and since the third term may equals to zero there
are p alternatives for choosing the term h3 for every h2 with
h2 �= 0. Therefore there are p(p− 1) alternatives for the pairs
h2 �= 0 and h3. On the other hand, if h2 = 0 and h3 �= 0, then
there are p − 1 alternatives for choosing these pairs. Finally
considering the case where h2 = 0 and h3 = 0 we see that
there are

(p− 1)p+ (p− 1) + 1 = p2

improper elliptic divisibility sequences over Fp.

Theorem 2.3: The number of the proper elliptic divisibility
sequences over Fp is (p− 1)2p.

Proof: If (hn(p)) is a proper EDS, then we know that
h2 �= 0 and h3 �= 0. So there are p−1 alternatives for choosing
the terms h2 = 0 and h3. Thus we have (p − 1)2 sequences
only considering these terms. Considering that h2 is a divisor
of h4 and there are p alternatives for choosing the term h4 we
see that the number of the proper elliptic divisibility sequences
over Fp is (p− 1)2p.

From now on, we will call singular curves of first type if
these curves have cusp the case where c4 = 0, and singular
curves of second type if the curves have node where c4 �= 0.

Theorem 2.4: For every prime p > 3 the sequence [1 2 3 4]
is associated to curve E : y2 + 2y = x3 + 3x2 + 3x and all
singular sequences equivalent to [1 2 3 4] are associated to
first type singular curve and they are birationally equivalent
to singular curve E : y2 = x3. Moreover the number of such
sequences is p− 1.

Proof: If we substitute h2 = 2, h3 = 3 and h4 = 4 in
the equations (1), (3), then we have the singular curve E :
y2 + 2y = x3 + 3x2 + 3x. Now we find the curve associated
to the sequence to equivalent to [1 2 3 4] . So, putting θ =
1, 2, · · · , p− 1 in the equation

h′n(p) = θn2−1hn(p)

we see that all sequences (h′n(p)) are associated to first type
curves and they are birationally equivalent to singular curve
E : y2 = x3.

We know that the sequence [1 2 3 4] is singular then there
exist integers r and s such that

h2 = r = 2, h3 = s(r2 − s3) = 3, h4 = rs3(r2 − 2s3) = 4.

Similarly since (h′n(p)) is a singular sequence we want to
show that there exists r′ and s′ such that

h′2 = r′, h′3 = s′(r′2 − s′3), h′4 = r′s′3(r′2 − 2s′3).

Since h′2 = θ3h2 we have r′ = rθ3 and so r′ = 2θ3. Now
we determine the number s′. To do this we use the fact that
r′ = 4s′3. If we substitute r′ = 2θ3 in this equation we find
that s′ = θ2.

By Theorem 1.6 we know that “(hn(p)) is a singular elliptic
divisibility sequence then (hn(p)) is associated to curve E :
y2 + ry = x3 + 3sx2 + 3s2x if and only if r2 = 4s3 ”and
since 4 ∈ Qp (where Qp denotes the set of quadratic residues
in modulo p) we have

4s3 ∈ Qp ⇔ s3 ∈ Qp

and so s ∈ Qp. Thus there are two y values for every s and
so there are 2|Qp| = p− 1 sequences.

Example 2.1: Consider the sequence [1 2 3 4] in F5. Then
for θ = 1, 2, 3, 4 we have the equivalent sequences

[1 2 3 4], [1 1 3 2], [1 4 3 3], [1 3 3 1]

and these sequences are associated to singular curves

E1 : y2 + 2y = x3 + 3x2 + 3x
E2 : y2 + y = x3 + 2x2 + 3x
E3 : y2 + 4y = x3 + 2x2 + 3x
E4 : y2 + 3y = x3 + 3x2 + 3x

respectively, by using the equations (2) and (3). Notice that
these curves are birationally equivalent to E : y2 = x3.
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Remark 2.5: Note that we give these result for every prime
p > 3 this is because we do not use the equations (2) and (3)
when p = 2 or 3.

First we give the number of the singular proper EDSs over
Fp in the following theorem:

Theorem 2.6: The number of the proper singular elliptic
divisibility sequences (hn) over Fp is (p− 1)(p− 2).

Proof: If (hn(p)) is a proper EDS, then we know that
h2h3 �= 0 and so r, s ∈ F∗

p. Since there are p− 1 alternatives
for the numbers r and s. So there are (p − 1)2 pairs (r, s).
Therefore there are (p − 1)2 alternatives for the pairs (r, s).
On the other hand since s(r2 − s3) �= 0 we have r2 �= s3.
First we find the number of pairs (r, s), where r2 = s3. So
consider two cases either p ≡ 1(6) or p ≡ 5(6).

i) Let p ≡ 1(6). Then since r2 = s3 ∈ K∗
p (where Kp de-

notes the set of cubic residues in modulo p and K∗
p = Kp\{0})

we have p−1
3 alternatives for the numbers r. On the other hand

the numbers s which satisfies the equation r2 = s3 are r2,
r2ω, r2ω2 (where ω = −1+

√
3

2 is the cubic root of unity) for
every r. Therefore there are 3 · p−1

3 = p−1 pairs (r, s) which
satisfies the equation r2 = s3.

ii) Let p ≡ 5(6). Then since r2 = s3 ∈ K∗
p we have p− 1

alternatives for the numbers r. On the other hand the numbers
s which satisfies the equation r2 = s3 is only s = r2 for every
r.

Therefore there are p− 1 pairs. Thus there are

(p− 1)2 − (p− 1) = (p− 1)(p− 2)

singular sequences in both cases.

Corollary 2.7: The number of the first type sequences is
(p− 1) and the number of the second type is (p− 1)(p− 3).

Proof: By Theorem 2.4 we know that there are p−1 first
type sequences. Subtracting these sequences from all singular
sequences we have desired result.

Now we give a theorem to determine equivalence classes of
singular EDSs.

Theorem 2.8: Let (hn(p)) and (h′n(p)) be two singular
elliptic divisibility sequences. Then (hn(p)) and (h′n(p)) are
equivalent if and only if s ∈ Qp, s as in Theorem 1.1.

Proof: We know that “(hn) and (h′n) are equivalent if
and only if there exists a rational constant θ such that h′n =
θn2−1hn for all n ∈ Z ”and by Theorem 1.3 we know that
“(hn) and (h′n) are equivalent singular EDS if and only if
there exists α = r

√
s

s2 and θ2 = s such that h′n = θn2−1hn for
all n ∈ Z”. Therefore we have s ∈ Qp.

Definition 2.2: A singular EDS (hn(p))s with initial values

h2 = r, h3 = r2 − 1, h4 = r(r2 − 2)

is called representative sequence of singular EDSs, where
h2h3 �= 0

It is clear from the definition that every representative
sequence is a sequence of integers or a Lucas sequence.
If s ∈ Qp, then every singular EDS is equivalent to a
representative sequence and so we can classify all singular
EDSs by using these representative sequences. We denote this
equivalence sequence classes by [(hn(p))]. If a singular EDS
(hn(p))s with initial values

h2 = r, h3 = r2 − 1, h4 = r(r2 − 2)

is a representative sequence, then a sequence (h′n(p))s with
initial values

h′2 = −r = −h2, h
′
3 = r2 − 1 = h3, h

′
4 = −r(r2 − 2) = −h4

is also a representative sequence.

Example 2.2: An EDS with initial values [1 3 1 0] is
a representative sequence in F7 and sequences which are
equivalent to this can be find as

[1 3 2 0], [1 3 4 0], [1 4 1 0], [1 4 2 0], [1 4 4 0].

Therefore,

[1 3 1 0] =
{

[1 3 1 0], [1 3 2 0], [1 3 4 0],
[1 4 1 0], [1 4 2 0], [1 4 4 0]

}
.

One may choose the sequence [1 4 1 0] as a representative
sequence, in this case [1 3 1 0] = [1 4 1 0]. The next theorem
will show us that sequences [1 3 1 0] and [1 4 1 0] are
equivalent. All of these sequences are associated to singular
curve which has node and they are birationally equivalent to
singular curve

E : y2 = x3 + 2x+ 2.

Now we see that if the sequences (hn(p))s and (h′n(p))s

are representative sequences, then they are equivalent, so we
can choose one of these as a representative sequence.

Theorem 2.9: Let (hn(p))s be an EDS with initial values

h2 = r, h3 = r2 − 1, h4 = r(r2 − 2)

and let (h′n(p))s be an EDS with initial values

h′2 = −r = −h2, h
′
3 = r2 − 1 = h3, h

′
4 = −r(r2 − 2) = −h4,

then (hn(p))s and (h′n(p))s are equivalent sequences.

Proof: We now find a constant θ such that h2 = θ3h′2,
h3 = θ8h′3 and h4 = θ15h′4. If we substitute h′2 = −h2,
h′3 = h3 and h′4 = −h4 in these equations we have θ3 = −1,
θ8 = 1 and θ15 = −1. Therefore θ = −1.

From now on we will call the sequence ((−1)n−1hn(p))
inverse sequence of (hn(p)) and we give results about
((−1)n−1hn(p)).
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Theorem 2.10: If (hn(p)) is a singular EDS then its inverse
((−1)n−1hn(p)) is also a singular EDS.

Proof: If (hn) is a singular EDS, then Δ(h2, h3, h4) = 0.
Putting −h2 and −h4 instead of h2 and h4 gives that

Δ(−h2, h3,−h4) = 0.

This shows us that ((−1)n−1hn(p)) is a singular EDS.

Theorem 2.11: Let (hn(p)) be an elliptic divisibility se-
quence with h2h3 �= 0, then the number of the representative
sequences so the number of the equivalence sequence classes
is p−3

2 , and there are p − 1 sequences in every equivalence
classes.

Proof: There are p alternatives for the number r since
s = 1 where r and s as in Theorem 1.1. r can not be zero
since h2 �= 0 and h2 = r, and r can not be 1 or −1 since h3 =
r2 − 1 and h3 �= 0. So there are p−3

2 equivalence sequence
classes since the sequences (hn(p)) and ((−1)n−1hn(p)) are
equivalent, and there are 2|Qp| = p − 1 sequences since
θ2 = s.

Theorem 2.12: Let (hn(p)) be a singular sequence. Then
(hn(p)) and its inverse ((−1)n−1hn(p)) are associated to
singular curves

E1 : y2 + h2y = x3 +
h3 + α2

h2
2

x2 + αx

and

E2 : y2 − h2y = x3 +
h3 + α2

h2
2

x2 + αx,

respectively, where

α =
h4 + h5

2

2h2h3

and they are birationally equivalent to the same singular curve
E.

Proof: A singular EDS with initial values [1 h2 h3 h4]
is associated to the singular curve

E1 : y2 + h2y = x3 +
h3 + α2

h2
2

x2 + αx

where α = h4+h5
2

2h2h3
. Putting −h2 and −h4 instead of h2 and

h4 in the last equation we have

E2 : y2 − h2y = x3 +
h3 + α2

h2
2

x2 + αx.

Theorem 2.13: If (hn(p)) is associated to first type singular
curve E : y2 + 2y = x3 + 3x2 + 3x, then representative
sequences of (hn(p)) is sequence of integers [1 2 3 4] and
other one can be chosen the Lucas sequence [1 − 2 3 − 4]
which is inverse of [1 2 3 4].

Proof: By Theorem 1.6, we know that if (hn(p)) is asso-
ciated to a first type singular curve E : y2+2y = x3+3x2+3x,
then r2 = 4s3. Since sequences with s = 1 are representative
sequences we have r = ±2. So for r = −2, (hn(p)) is associ-
ated to first type singular curve E : y2−2y = x3+3x2+3x and
these two curves are birationally equivalent to E : y2 = x3.
Hence we have [1 2 3 4] and [1 − 2 3 − 4] are representative
sequences.
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