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Abstract—This is a study on numerical simulation of the 

convection-diffusion transport of a chemical species in steady flow 
through a small-diameter tube, which is lined with a very thin layer 
made up of retentive and absorptive materials.  The species may be 
subject to a first-order kinetic reversible phase exchange with the wall 
material and irreversible absorption into the tube wall.  Owing to the 
velocity shear across the tube section, the chemical species may spread 
out axially along the tube at a rate much larger than that given by the 
molecular diffusion; this process is known as dispersion.  While the 
long-time dispersion behavior, well described by the Taylor model, 
has been extensively studied in the literature, the early development of 
the dispersion process is by contrast much less investigated.  By early 
development, that means a span of time, after the release of the 
chemical into the flow, that is shorter than or comparable to the 
diffusion time scale across the tube section.  To understand the early 
development of the dispersion, the governing equations along with the 
reactive boundary conditions are solved numerically using the Flux 
Corrected Transport Algorithm (FCTA). The computation has enabled 
us to investigate the combined effects on the early development of the 
dispersion coefficient due to the reversible and irreversible wall 
reactions. One of the results is shown that the dispersion coefficient 
may approach its steady-state limit in a short time under the following 
conditions: (i) a high value of Damkohler number (say 10≥Da ); (ii) a 
small but non-zero value of absorption rate (say 5.0* ≤Γ ). 
 

Keywords—Dispersion coefficient, early development of 
dispersion, FCTA, wall reactions. 

I. INTRODUCTION 
ISPERSION in laminar flow through a tube has been 
extensively studied for the past five decades, since the 

classical works by Taylor [1] and Aris [2].  These studies have 
largely been focused on the long-time dispersion phenomena, 
which are well described by the Taylor model.  In contrast, 
studies on the short-time dispersion behaviors have been very 
limited [3, 4].  By short-time dispersion, it means that the 
dispersion has been developing only for a time scale that is 
shorter than or comparable to the diffusion time scale across the 
tube section. The present study on the early-phase dispersion is  
motivated by its applications to (i) transport in human arteries, 
which are typically short tubes, over which the travel time may 
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not be long enough for the long-time behaviors to materialize; 
(ii) chromatographic separation, which are concerned with the 
multiple peaks arising from the non-Gaussian axial 
concentration distribution during an early phase of transport; 
and (iii) the specification of a proper initial condition for a 
long-time dispersion problem.  Despite its practical 
significance, dispersion under the combined effects of kinetic 
reversible phase exchange and irreversible absorption has also 
not been fully investigated in the literature.  

The present study aims to investigate the short-time transient 
dispersion behavior as a function of the wall reaction 
parameters. The classical techniques used to find the long-time 
dispersion, which can be studied analytically by a 
one-dimensional transport model in terms of the 
section-averaged concentration, is not suitable for the present 
study.  It is because the radial variation of the concentration is 
as important as the axial variation during the early development. 
The transport in an early phase is essentially two dimensional, 
thereby making the problem not amenable to the analytical 
approach as can be applied to the long-time one-dimensional 
problem. Therefore, the short-time problem could be solved by 
a well-devised numerical method.  It is also of practical interest 
to look into how the dispersion will develop from the initial 
stage to its long-time Taylor-model limit.  The central questions 
to be addressed are as follows.  How much time does it take to 
approach the long-time limit?  How does the axial 
concentration distribution evolve from non-Gaussian initially 
to Gaussian finally?  To what extent are these two aspects of 
asymptotic matching affected by the kinetic reversible and 
irreversible wall reactions? All these points raised above have 
formed the motivation of this study.  In the present study, 
numerical simulations are performed with a view to look into 
the early phases of dispersion due to axial convection and radial 
diffusion in steady flow along a circular tube, subject to the 
boundary conditions of kinetic reversible phase exchange and 
irreversible absorption on the wall. 

II. MATHEMATICAL MODEL 
For fully-developed steady laminar flow through a straight 

tube of circular section, the equation of transport of a species 
with no chemical reaction in the fluid is  
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where r  is the radial coordinate, z  is the axial coordinate, a  
is the radius of the tube, D  is the molecular diffusion 
coefficient of the chemical in the fluid, and u  is the laminar 
velocity profile given by ( )22 /1 aruu o −= . Here ou  is the 
velocity of the flow at the center of the tube. Then, (1) becomes 
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Along with the transport equation, the boundary conditions 

in the present dispersion problem are 
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Here, ( ), ,C z r t  is the concentration (mass of species 

dissolved per bulk volume of fluid) of the mobile phase, 
( ),SC z t  is the concentration (mass of species retained per 

surface area of wall) of the immobile phase, Γ , k  and α  are 
the irreversible absorption rate, the reversible reaction rate and 
the partition coefficient, respectively.  See Ng [5] for details 
about these boundary conditions. 

Let us introduce the following normalized variables 
(distinguished by an asterisk): 
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by which the transport equation and boundary conditions 
(2)–(4) can be written as follows: 
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The computation gives solutions for a two-dimensional 

concentration field ( )* * * *, ,C z r t .  It is also of interest to express 

the results in terms of some averaged concentrations. The most 
widely used one is 

 

∫=
1

0

**** 2 drrCC                                 (8) 

 
where *C  is the area average concentration. 

 
The dispersion coefficient Dc, which varies with time, is 

given by half the rate of change of the variance of the 
distribution, 2σ :  
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where nμ  is the nth axial integral moment of *C  :  
 

( )* * * 0,1, 2,n
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III. NUMERICAL ALGORITHM 
In the simulations, the chemical is assumed to be released 

initially in the form of a narrow slug into the flow.  It demands 
great care in order to obtain accurate numerical solutions for the 
transport of an impulse input when convection dominates.  
Otherwise, for high Peclet number, a sharp axial concentration 
gradient may result in either numerical smearing, which 
confuses the physical dispersion, or numerical oscillation, 
which corrupts the entire solution.  In this regard, the FCTA is 
adopted to solve numerically the transport equation for the 
present problem.  The advantages of the FCTA over other 
well-known numerical methods (e.g., Lax-Wendroff and 
Crank-Nicholson) for the convection-dominated transport 
problems have been demonstrated by Boris and collaborators 
[6 – 9].  Essentially, FCTA consists of two major stages: a 
convective-diffusive stage (Stage I) followed by an 
antidiffusive or corrective stage (Stage II). Both stages are 
conservative and maintain positivity. The two steps enable 
FCTA to treat strong gradients and shocks without the usual 
dispersive ripples. 
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IV. RESULTS AND DISCUSSION 
All of the results presented here were obtained with the 

following finite difference parameters: 0001.0* =Δt , 
001.0* =Δz , 0333.0*=Δr  and 1000Pe = .  Sufficiently 

small spatial discretizations have been utilized in order to keep 
the accuracy of the results. The initial slug length was fixed 
at ( )* 8 *Sz zΔ= .  To investigate the coupled effects of the 

reversible phase exchange and irreversible absorption, 
simulations have been generated for five cases of different 
parameters as listed in Table I. These parameters include *α , 
Da  and *Γ . While *α  is the ratio of the chemical species 
distributed between the mobile phase and immobile phase, the 
Damkohler number Da  is the ratio of the phase exchange rate 
to the diffusion rate and the *Γ  is the absorption rate.  In 
particular, case 1 is an inert case where 0* =α  and 0* =Γ . 
Cases 2-4 are to show the effects of Da , while cases 3 and 5 
are to show the effects of *Γ . 

Mean breakthrough curves based on the area-average 
concentration for the five cases are presented in Figs. 1– 4 for 
four axial locations ( 05.0* =z , 1.0* =z ,  15.0* =z , and 

25.0* =z ).  In Fig. 1, double peaks show up in cases 1-3, 
which are caused by the strong spatial segregation of 
convection and diffusion regimes.  The first peak is the 
predominance of convection in the central region of the tube. 
Meanwhile, the second peak is due to the development of a 
stronger diffusion influence near the tube wall. However, the 
phenomenon of double-peak does not show up in cases 4 and 5. 
This implies that the second peak arising from the diffusion 
regime will be suppressed by either a high value of the 
Damkohler number, by comparing cases 1-4, or a relative high 
absorption rate, by comparing cases 3 and 5.  In Fig. 2, the 
second peak, which is caused by the diffusion, becomes the 
dominant feature of the mean breakthrough curve in cases 1-3. 
Similarly, the second peak does not show up in cases 4 and 5 
due to relatively fast retentive or absorptive effects.  Also, it is 
found that there is a long tail in case 4. It is because some 
chemical species at the immobile phase will be dispersed back 
to the mobile phase owing to the fast phase exchange rate. 
Therefore, a steady state can be approached in a short time, if 
Da  is high enough (say 10≥Da ).  In Fig. 3, the diffusional 
peak is broadened and has become the main feature of the mean 
breakthrough curve with the last residue of a convection regime 
appearing as a small shoulder on the left of the curve.  In 
addition, area under the distribution is diminished in cases 4 
and 5, corresponding to a fast phase exchange rate and strong 
absorption, respectively.  In Fig. 4, the mean breakthrough 
curves develop toward being symmetrical about the peak, on 
approaching a Gaussian distribution in cases 1–2. Meanwhile, 
despite the fast retentive exchange, a long tail is still seen in 
case 4.  Also, owing to the large absorptive effect, the area 
under the distribution in case 5 becomes smaller compared with 
that in case 3. It happens as the chemical species keeps on being 
depleted by wall absorption. 

Snapshots of the mobile-phase concentration distributions are 
plotted in Figs. 5–8 to illustrate the dispersion behavior of the 
chemical species at four instants of time ( 05.0* =t , 

15.0* =t ,  3.0* =t , and 5.1* =t ).  Fig. 5 shows that the 
area under the distribution curve is markedly diminished for 
both cases 4 and 5, corresponding to fast phase exchange and 
absorption rates, respectively.   Fig. 6 shows a larger spread of 
the distribution in both cases arising from the interaction of 
convection with radial diffusion.  Similarly, the diminishing of 
area under the distribution curves is clearly seen in cases 4 and 
5 as mass is taken away from the flow by either the wall 
retention or wall absorption.  In particular, in case 4 
corresponding to very fast phase exchange, it can be observed 
that an additional peak is exhibited at 01.0* =z . This is a 
result of releasing mass, which has been stored as an immobile 
phase on the wall, back to the flow.  Fig. 7 shows that, for cases 
1–3 and 5, the distribution curves are single-peaked. However, 
double peaks are clearly displayed for case 4, as a result of fast 
phase exchange.  In Fig. 8, it is clear that the skewness is very 
small in case 1, supporting that the Gaussian form is readily 
developed in this case.  In case 4, the leading peak continues to 
broaden to become the dominant feature of the distribution 
without a shoulder. Owing to the fast phase exchange in case 4, 
it approaches a fully-developed state quickly.  On the other 
hand, for case 3 corresponding to slow phase exchange, a 
shoulder and even a second peak at 3.0* =z  are exhibited 
owing to the retentive effect.  This is because a longer time is 
required to approach the fully-developed state if the phase 
exchange is so slow (say 1≤Da ) that it becomes 
rate-determining. In addition, it is clear that the area under the 
concentration distribution curve in case 5 is smaller than that in 
case 3.  This follows from the fact that for a very high wall 
absorption rate (say 10* ≥Γ ), the long-time dispersion will 
not be attained before virtually all mass is taken away from the 
system, and hence it may not have any practical significance. 

TABLE I 
PARAMETERS OF *α , Da  AND *Γ FOR FIVE CASES OF THE SIMULATIONS, 

WHERE CASES 2-4 CORRESPOND TO THE INCREASE OF PHASE EXCHANGE RATE 
AND CASES 3 AND 5 CORRESPOND TO THE INCREASE OF ABSORPTION RATE 

Case *α  Da  *Γ  
1 0 0 0 
2 0.5 0.1 0.1 
3 0.5 1 0.1 
4 0.5 10 0.1 
5 0.5 1 1 

 
 

  

 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:1, No:9, 2007

508

 

 

Dimensionless time, t*

A
re

a
a

v
e

ra
g

e
c
o

n
c
e

n
tr

a
ti
o

n

0 0.1 0.2 0.3 0.4
0

0.05

0.1

0.15

 
Fig. 1 Area-average concentration profiles of the mobile phase at 

05.0* =z for case 1 ( ); case 2( ); 
case 3 ( ); case 4 ( ) and 

case 5 ( ). 
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Fig. 2 Area-average concentration profiles of the mobile phase at 

1.0* =z for different cases as in Fig. 1 
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Fig. 3 Area-average concentration profiles of the mobile phase at 

15.0*=z for different cases as in Fig. 1 
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Fig. 4 Area-average concentration profiles of the mobile phase at 

25.0* =z for different cases as in Fig. 1 
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Dimensionless axial position, z*
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Fig. 5 Snapshot of the concentration distribution of the mobile phase at 

05.0* =t  for different cases as in Fig. 1 
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Fig. 6 Snapshot of the concentration distribution of the mobile phase at 

15.0* =t  for different cases as in Fig. 1 
 
 
 
 
 
 

Dimensionless axial position, z*
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Fig. 7 Snapshot of the concentration distribution of the mobile phase at 

3.0* =t  for different cases as in Fig. 1 
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Fig. 8 Snapshot of the concentration distribution of the mobile phase at 

5.1*=t  for different cases as in Fig. 1 
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Fig. 9 shows the early-time development of the dispersion 
coefficient for the five cases.  The following observations can 
be made. First, the dispersion coefficient tends to a steady value 
very quickly, after 2.0* =t , for case 1 without reactions.  
Second, for cases 2 and 3 corresponding to very slow phase 
exchange rates, their dispersion coefficients will not attain the 
steady-state values in a short time owing to the slow retentive 
effect.  For case 4 corresponding to a fast phase exchange rate, 
the dispersion coefficient rises to a local peak before it 
decreases to approach a steady value by 1* =t . This implies 
that the dispersion coefficient can approach a steady-state limit 
in a short time, if the value of the Da  is high enough (say 

10≥Da ).  Third, by comparing cases 3 and 5, it is clear that 
the dispersion coefficient in case 5 can be momentarily higher 
but eventually smaller than that in case 3.  Observably, an 
increase in the dispersion coefficient in the absorptive case 
does not necessarily correspond to a larger spread of the 
distribution, but instead it can be caused by a diminishing area 
under the distribution curve as mass keeps on being depleted by 
wall absorption.  Therefore, as remarked above, for too large a 
wall absorption rate, the long-time limit of the dispersion 
coefficient may not have practical significance.  Long before 
this limit is attained, all the mass will have been removed from 
the system.  This point deserves further investigation. 

V. CONCLUDING REMARKS  
Applying the FCTA, numerical simulations have been 

performed for the early time-development of mass transport, by 
convection and diffusion, of a chemical species in steady flow 
through a tube under the influences of reversible and 
irreversible wall reactions.  The mean breakthrough curves, 
snapshots of the axial distribution and time evolution of the 
dispersion coefficient as a function of the reaction parameters 
have been investigated.  The following summary can be made.  
First, the second peak of the diffusion regime will be affected 
and restricted by a high value of the Damkohler number and a 
high absorption rate.  Second, it requires a longer time to 
approach a long-time dispersion if the phase exchange rate is so 
slow (say 1≤Da ).  Third, under the following conditions, the 
dispersion coefficient may approach its steady-state limit in a 
short time: (i) a high value of Damkohler number (say 

10≥Da ); (ii) a small but non-zero value of absorption rate 
(say 5.0* ≤Γ ). These results will help us further understand 
the dispersion in its early development. 
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Fig. 9 Dispersion coefficient versus dimensionless time for different 

cases as in Fig. 1 
 

REFERENCES   
[1] G.I. Taylor, “Dispersion of soluble matter in solvent flowing slowly 

through a tube,” Proc. R. Soc. Lond. A, vol. 219, pp.186-203, 1953. 
[2] R. Aris, “On the dispersion of a solute in a fluid flowing through a tube,” 

Proc. R. Soc. Lond. A, vol. 235, pp.67-77, 1956. 
[3] M.J. Lighthill, “Initial development of diffusion in Poiseuille flow,” J. 

Inst. Math. Appl., vol. 2, pp.97-108, 1956. 
[4] P.C. Chatwin, “The initial dispersion of contaminant in Poiseuille flow 

and the smoothing of the snout,” J. Fluid Mech., vol. 77, pp.593-602, 
1976. 

[5] C.O. Ng, “Dispersion in steady and oscillatory flows through a tube with 
reversible and irreversible wall reactions,” Proc. R. Soc. A, vol. 462, 
pp.481-515, 2006. 

[6] J.P. Boris and D.L. Book, “Flux-corrected transport 1. Shasta, a fluid 
transport algorithm that works,” J. Comp. Phys., vol. 11, pp.38-69, 1973. 

[7] D.L. Book, J.P. Boris and K. Hain, “Flux-corrected transport 2. 
Generalizations of method,” J. Comp. Phys., vol. 18, pp.248-283, 1975. 

[8] J.P. Boris and D.L. Book, “Flux-corrected transport 3. Minimal-error fct 
algorithms,” J. Comp. Phys., vol. 20, pp.397-431, 1976. 

[9] J.P. Boris, A.M. Landsberg, E.S. Oran and J.H. Gardner, “LCPFCT-a 
flux-corrected transport algorithm for solving generalized continuity 
equations”, Report NRL/MR/6410-93-7192, National Research 
Laboratory, Washington DC, USA, 1993. 

 
   

  

 


