
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:9, 2008

1806

On the Construction of m-Sequences via Primitive
Polynomials with a Fast Identification Method

Abhijit Mitra

Abstract—The paper provides an in-depth tutorial of mathematical
construction of maximal length sequences (m-sequences) via prim-
itive polynomials and how to map the same when implemented in
shift registers. It is equally important to check whether a polynomial
is primitive or not so as to get proper m-sequences. A fast method to
identify primitive polynomials over binary fields is proposed where
the complexity is considerably less in comparison with the standard
procedures for the same purpose.

Keywords—Finite field, irreducible polynomial, primitive polyno-
mial, maximal length sequence, additive shift register, multiplicative
shift register.

I. INTRODUCTION

F INITE fields are ubiquitous in computer science and
communications. They help form a foundation for such

areas as coding theory and cryptography, as well as they
are a fundamental building block in discrete mathematics
[1]. Yet finite fields are often covered in EE or CS course
curriculum only in brief for some specific purpose. This
paper thus deals with a broad but gentle introduction to
finite fields, i.e., Galois fields. One significant application of
finite fields is to generate sequences: in particular, maximal
length sequences (m-sequences, in short). Properties of finite
fields transfer readily to certain properties of m-sequences like
correlation, span, linear complexity, and so forth. As a stan-
dard tool for computer scientists and engineers, m-sequences
especially have their roles as pseudo noise sequences with
a thorough application in spread spectrum communications.
Treatments of m-sequences are, however, often focused only
on the generation of the sequence in terms of shift registers
while leaving out the basic relationship of m-sequences and
finite fields that may be germane or even essential to an
application. We focus on the relation in this paper and show
the instrumentality of primitive polynomials over a finite field
in generating m-sequences. Also, we propose a fast method
to identify primitive polynomials over binary fields where
the complexity is significantly less in comparison with the
standard procedures.

The organization of the paper is as follows. In Section 2, we
deal with the fundamentals of algebraic operations to introduce
the notion of Galois field and primitive polynomials that is
needed for our purpose. Section 3 shows the construction
of m-sequences from primitive polynomials and how to map
the same when implemented in shift registers. The standard
method along with the proposed simplified approach for

Manuscript received August 01, 2008.
A. Mitra is with the Department of Electronics and Communication Engi-

neering, Indian Institute of Technology (IIT) Guwahati, Guwahati – 781039,
India. E-mail: a.mitra@iitg.ernet.in.

identifying a primitive polynomial is given in Section 4. The
paper is concluded in Section 5 by summarizing the important
concepts discussed herein. An easy way of practically gener-
ating Gaussian sequences from such m-sequences is discussed
in the Appendix.

II. FUNDAMENTALS OF ALGEBRAIC OPERATIONS

We discuss here about finite fields, starting from the very
basic notion of fields, along with the construction of such
fields with the help of primitive polynomials. As we explain
later, these primitive polynomials play an important role in
generating m-sequences.

A. Fields

A field is an algebraic structure [2] in which the operations
of addition, subtraction, multiplication, and division (except
by zero) can be performed, and satisfy the usual rules. More
precisely, a field is a set F with two binary operations +
(addition) and . (multiplication) defined on it, in which the
following laws hold.
(A1) a + (b + c) = (a + b) + c (associative law for addition)
(A2) a + b = b + a (commutative law for addition)
(A3) There is an element 0 (zero) such that a + 0 = a ∀a
(A4) ∀a, there is an element −a such that a + (−a) = 0
(M1) a.(b.c) = (a.b).c (associative law for multiplication)
(M2) a.b = b.a (commutative law for multiplication)
(M3) There is an element 1 (6= 0) such that a.1 = a ∀a
(M4) ∀a 6= 0, there is an element a−1 such that a.a−1 = 1
(D) a.(b + c) = (a.b) + (a.c) (distributive law)

Using the notion of elementary group theory (i.e., an
Abelian group is a commutative group; homomorphism is
a function that maps the elements of one group to another
group with certain property; isomorphism is a homomorphism
that is also a bijection mapping; and, automorphism is an
isomorphism that maps a group onto itself), we can condense
these nine axioms into just three [3]:
(1) The elements of F form an Abelian group with the
operation + (called the additive group of F);
(2) The non-zero elements of F form an Abelian group under
the operation . (called the multiplicative group of F);
(3) Multiplication by any non-zero element is an automor-
phism of the additive group.

Depending upon the number of elements in it, a field is
called either a finite or an infinite field. The examples of infinite
field include Q (set of all rational numbers), R (set of all real
numbers), C (set of all complex numbers) etc. On the other
hand, a field with distinct q elements is called a finite field,

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:9, 2008

1807

TABLE I
ADDITION AND MULTIPLICATION TABLES FOR GF (3)

+ 0 1 2 . 0 1 2
0 0 1 2 0 0 0 0
1 1 2 0 1 0 1 2
2 2 0 1 2 0 2 1

or, Galois1 field and is denoted by GF (q). We discuss about
construction of such fields, which is of our interest of this
article, as well as the application of such fields below.

B. Galois Fields

Every Galois field contains a subfield that has a prime num-
ber of elements and this field is called the prime subfield or the
basefield. Mathematically, this can be represented as: assuming
q to be a prime number, the integers modulo q (denoted by
Zq) form a Galois basefield GF (q), i.e., its elements are the
congruence classes of integers (mod q), with addition and
multiplication induced from the usual integer operations. In
other words, the elements of GF (q) are {0, 1, 2, ..., q − 1} ∈
Zq and these integers follow all the nine properties (A1)-(D)
as given above with respect to mod q. The simplest possible
example is GF (2) which is a binary basefield with elements
{0, 1} with + and . defined on it as 0+0 = 0, 0+1 = 1+0 = 1,
1 + 1 = 2 = 0 (mod 2), 0.0 = 0, 0.1 = 1.0 = 0, 1.1 = 1. The
example of a ternary basefield GF (3) is shown in Table 1 with
addition and multiplication tables with respect to mod 3 where
{0, 1, 2} have been used as representatives of the congruence
classes.

With the above definition and examples of Galois field, the
immediate question that comes into reader’s mind is, whether
such a field can exist for any general finite integer t, where t is
not a prime number. We deal with this answer in the following.

The characteristic of a field, not necessarily finite, is the
value of prime q such that adding any element to itself q
times results in 0. If no such q exists, then the field is said
to be characteristic 0. For example, Q, R and C are all
characteristic 0 fields. In fact, the set of numbers in GF (q)
generated by repeatedly adding 1 is closed under both addition,
multiplication, subtraction and division, and is isomorphic to
Zq . This is not true for any t. For example, Z6 cannot be a
Galois field as in Z6, we have 2.3 = 0 (mod 6) which shows
that neither 2 nor 3 can have inverses. However, following
some elementary results in group theory, one can find that if
a 6= 0 (mod q), where a ∈ GF (q), then aq−1 = 1. Multiplying
both sides by a shows that aq−a = 0 for a 6= 0. Since this is
also true for a = 0, we see that every element in Zq satisfies
the following polynomial equation

xq − x = 0 (1)

which has q roots with each root being exactly the elements
in Zq . Putting q = qm above yields the equation xqm −x = 0.
This, in turn, means construction of a GF (t) is possible with
the above closure property, if and only if t = qm where m is
any positive integer. A Galois field GF (qm) is therefore said

1Evariste Galois, 1811-1832, who although dying young and only publish-
ing a handful of papers, wrote seminal works in group and field theory.

TABLE II
THE ELEMENTS OF THE FIELD GF (24) AS POWERS OF u AND AS

DIFFERENT POLYNOMIALS

u3 u2 u1 1 Power of u
0 0 0 1 u0

0 0 1 0 u1

0 1 0 0 u2

1 0 0 0 u3

0 0 1 1 u4

0 1 1 0 u5

1 1 0 0 u6

1 0 1 1 u7

0 1 0 1 u8

1 0 1 0 u9

0 1 1 1 u10

1 1 1 0 u11

1 1 1 1 u12

1 1 0 1 u13

1 0 0 1 u14

0 0 0 1 u15 = u0 = 1

to be an extension of basefield GF (q), with qm elements and
with addition and multiplication done in the usual way with
respect to mod q. It then follows that GF (qm) has a m element
basis over GF (q). That is, there exist m distinct elements
u0, ..., um−1 ∈ GF (qm) such that each of the qm elements
of GF (qm) can be expressed as a0u0 + ... + am−1um−1 for
some (unique) coefficient ai ∈ GF (q). As GF (qm) is a prime
power field, let us assume for the moment that its elements
are generated by power addition and thus, {1, u1, ..., um−1}
form the basis of GF (qm) for some u. Then,

um − am−1u
m−1 − ...− a0 = 0 (2)

since um must be a linear combination on the basis. This
shows that we can multiply two arbitrary elements in GF (qm)
by expressing the elements in the basis, multiplying them as
polynomials in u and reducing the result by the relation in (2).

As an illustration, let us see how to construct GF (24) such
that {1, u1, u2, u3} is a basis over GF (2) with the relationship

x4 + x + 1 = 0. (3)

That is, letting u be a root of this equation, we get the basic
relationship u4 = u+1 with respect to mod 2. This means all
the 24 = 16 elements of GF (24), {1, u1, u2, ..., u15}, can be
expressed in terms of linear combinations of {1, u1, u2, u3}
for some (unique) ai ∈ GF (2) using (3). For example, u5 =
u.u4 = u.(u + 1) = u2 + u. Similarly, all the other elements
can also be represented by a polynomial expression where
the highest degree of the polynomial is 3. The polynomial
expressions, as the coefficients of {1, u1, u2, u3}, are given
in Table 2 for this example. We observe from Table 2 that
beyond uqm−2, the higher powers of u repeat the elements of
GF (qm) which comes from the closure property as given in
(1). It is also seen that all zero coefficients cannot be a valid
expression for any ui.

C. Primitive Polynomials over GF (qn)

It is shown in (1) that Galois field elements can be expressed
in terms of polynomials and more explicitly in (2) which also

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:9, 2008

1808

TABLE III
A SET OF PRIMITIVE POLYNOMIALS UP TO DEGREE 30 FOR BINARY

FIELDS

degree (n) p(x)
1 x + 1
2 x2 + x + 1
3 x3 + x + 1
4 x4 + x + 1
5 x5 + x2 + 1
6 x6 + x + 1
7 x7 + x + 1
8 x8 + x6 + x5 + x + 1
9 x9 + x4 + 1
10 x10 + x3 + 1
11 x11 + x2 + 1
12 x12 + x7 + x4 + x3 + 1
13 x13 + x4 + x3 + x + 1
14 x14 + x12 + x11 + x + 1
15 x15 + x + 1
16 x16 + x5 + x3 + x2 + 1
17 x17 + x3 + 1
18 x18 + x7 + 1
19 x19 + x6 + x5 + x + 1
20 x20 + x3 + 1
21 x21 + x2 + 1
22 x22 + x + 1
23 x23 + x5 + 1
24 x24 + x4 + x3 + x + 1
25 x25 + x3 + 1
26 x26 + x8 + x7 + x + 1
27 x27 + x8 + x7 + x + 1
28 x28 + x3 + 1
29 x29 + x2 + 1
30 x30 + x16 + x15 + x + 1

indicates that all the elements have different polynomial rep-
resentations with respect to a basic relationship. We thus now
investigate more into the form of polynomials for generating
any GF (qn). Analogous to expression (2), let us define a
general polynomial p(x) of order n over a GF (qn) as

p(x) = anxn + an−1x
n−1 + ... + a1x + a0 (4)

where, as earlier, all the coefficients ai, i = 0, 1, ..., n are
members of GF (q), i.e., integers ranging from 0 to q−1 with
an = a0 = 1. The polynomial of (4) is called irreducible
in GF (qn) if p(x) cannot be factored into a product of
lower-degree polynomials. An irreducible polynomial p(x) ∈
GF (qn) of degree n is said to be primitive if the smallest
positive integer l for which p(x) divides h(x) = xl − 1 is
l = qn − 1. For binary fields (GF (2n)), a set of primitive
polynomials up to n = 30 is shown in Table 3, which is quite
sufficient for most of the purposes. Primitive polynomials of
much higher degree can be found in [4].

At this point, another question might come to reader’s mind:
whether there exist irreducible and primitive polynomials of
degree n for each n. The answer to this question is ‘Yes’. Note
that, not only one, there exist more than one irreducible and
primitive polynomials for any degree n > 1. These are usually
calculated using Mobius functions and Euler ϕ functions,
respectively. For example, β2(n) is defined as the number
of primitive polynomials of degree n (∈ GF (2n)) and the
mathematical relation of this with Euler function ϕ(2n−1) is
β2(n) = ϕ(2n−1)

n where ϕ(2n − 1) is defined as the number
of positive integers not exceeding 2n − 1 and coprime to

2n−1. However, discussion about this is beyond the scope of
this article. Interested readers can find the rather complicated
proofs on these in [5].

With the help of primitive polynomials, we can construct a
class of linear recurring sequences, called m-sequence [6]-[7],
which is highly important in a number of applications mainly
including spread spectrum communications. We describe be-
low the generation process of such sequences by primitive
polynomials.

III. CONSTRUCTION OF MAXIMAL LENGTH SEQUENCES

Let us assume a class of finite length sequences that are
recurring and thus periodic in nature. By a periodic sequence,
we mean a countably infinite list of values s = (s0, s1, ...)
such that si+N = si ∀ N ≥ 1 and i ≥ 0, where N refers
to the period of the sequence. Our aim is, however, to find
out a relation between such linear recurrence and primitive
polynomials so as to generate m-sequences from primitive
polynomials.

A. Linear Recurrence

In general, any linear recurrence of order n is given by

si+n =
n−1∑

k=0

aksi+k, ∀i ≥ 0. (5)

Let us assume that si ∈ GF (2n) for computational purposes
and ak ∈ GF (2), i.e., we are mainly interested in binary field
and its extensions. It is clear that in (5), specifying the initial
values (sn−1, ..., s1, s0) completely specifies the sequence.
Indeed, specifying any n consecutive values specifies all
remaining values and, assuming a0 = 1, all previous values
down to s0. Since there is only a finite number of possible
combinations of sn−1, ..., s0, or, finite states, any sequence
satisfying (5) must repeat and the period of such a nonzero
sequence can be at most 2n−1 as there are 2n possible states
(the all-zeros state cannot occur unless the sequence is itself
all-zeros).

As an example, consider the relation si+4 = si+1 + si

with the initial state (0, 0, 0, 1). The resulting sequence is
binary and has a period of 15 with the first 15 values as
100010011010111. The values repeat itself after this period.

B. Sequences via Characteristic Polynomials

Let us take a characteristic polynomial of the linear recur-
rence (5) as

f(x) = xn −
n−1∑

k=0

akxk (6)

by replacing si+k with xk. The relation f(x) = 0 is called the
characteristic equation of this. Let u be a root of this equation,
meaning un =

∑n−1
k=0 akuk. Multiplying both sides by ui, we

get

ui+n =
n−1∑

k=0

akui+k (7)

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:9, 2008

1809

Fig. 1. The additive shift register structure.

which shows that the sequence defined by si = ui satisfies
the recurrence in (5). Now, if we compare equation (6) and
(4), we find that they are equivalent as, in a characteristic 2
field, minus signs can be changed to plus signs. Therefore,
if f(x) is irreducible, then it will have n distinct roots:
{1, u1, u2, ..., un−1}. Further, if f(x) is a primitive polyno-
mial, then, from the definition, the order of a root u must
be (2n − 1) which is the maximum possible period of the
output sequence given by the recurrence (5). In other words,
if the characteristic equation of an order n linear recurrence
sequence is the associated primitive polynomial, the sequence
period becomes maximum. Now if we look at the problem
given by the recurring relation si+4 = si+1 + si, it refers to
the primitive polynomial of (3) and thus the sequence must be
a maximum period sequence. If initial state is given by the first
row of Table 2 (i.e., (0, 0, 0, 1)), the output binary sequence
will then be given by the first 15 values of the corresponding
fourth column of the same table, after which the sequence
will be repeated. With this knowledge, we can then define the
m-sequence as follows.

Definition 1: A maximal length sequence is a (2n − 1)
length sequence that satisfies a linear recurrence, defined over
GF (2), given by any corresponding primitive polynomial of
degree n.

C. Generating M-Sequence

The goal up to now has been to give a mathematical
formula for m-sequences which we did via (5)-(7). In ac-
tual applications, of course, m-sequences are generated via
primitive polynomials (as given in Table 3 as an example)
by the more familiar method of linear feedback shift registers
(LFSRs), depending upon the nature of the application. Here
we present a brief account of two standard registers for
generating m-sequences: the additive form which is related to
linear recurrences, and the multiplicative form which is related
to linear functions of field elements.

1) Additive shift register: Recall that a state of any periodic
sequence s satisfying the recurrence (5) is an n-tuple of n
consecutive values of s. If we consider two consecutive states,
say

(si, si+1, ..., si+n−1) → (si+1, si+2, ..., si+n) (8)

then we see the second state is obtained by shifting all values
to left by one bit and appending the value obtained from (5).
This operation can be implemented in a LFSR which is shown
in Fig. 1. Here n = 4 and the feedback is si+4 = si+1 +

Fig. 2. The multiplicative shift register structure.

si. The type of shift register in Fig.1 is called an additive
shift register. Its main characteristic is that it implements the
recurrence exactly and the feedback bit is given by a linear
combination of some of the bits. In practice, however, if there
are a large number of taps, the fan-in to the additive function
may be impractical. The multiplicative register alleviates this
problem.

2) Multiplicative shift register: The multiplicative form,
used to generate m-sequences, is based on multiplication in
the finite field. With the knowledge that any linear function
applied to its elements, i.e., to the register state, must yield
an m-sequence, we get such a shift register as shown in Fig.
2. The top portion of the register generates the field elements
(where we put in the initial element (0, 0, 0, 1)). These are then
transformed to the sequence bits by some linear function. This
function is often called a mask. The multiplicative register may
be more practical, especially for simple linear functions, e.g.,
reading only a few bits of the register state. If we look at Table
2 again with initial state (0, 0, 0, 1) and u as the primitive
root defined by x4 + x + 1, then such a multiplicative register
gives the successive states as sequential powers of u, i.e., ui

for i = 0, 1, ..., 14, after which the states get repeated.

IV. IDENTIFICATION OF PRIMITIVE POLYNOMIALS WITH
REDUCED COMPLEXITY

As stated in the last section, it is necessary to check
any polynomial whether it is a primitive one or not before
employing it for constructing m-sequence purpose. Although
a list is given in Table 3, it is, however, only one possible
solution set and the reader should be reminded that there may
exist other primitive polynomials as well for any degree n.
Below, we discuss about a standard procedure to check any
polynomial over binary fields whether it is a primitive one or
not, and subsequently we propose a simplified method which
would be helpful for most of the practical cases.

A. Standard Identification Procedure

To check whether any general polynomial p(x) with order
n, as given in (4), is a primitive polynomial or not over GF (2),
we can follow the stepwise algorithm as given in [8].
Step 1: To check whether p(x) is irreducible.
(Divide p(x) by any polynomial over GF (2) of order 1 <
m ≤ b√nc and check all divisions have non-zero remainders.)
Step 2: To check whether irreducible p(x) is primitive.

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:9, 2008

1810

(Divide h(x) = xl − 1 by p(x) for the range n ≤ l < 2n − 1
and check all divisions have non-zero remainders.)

Although Step 1 is a basic scheme and one can apply
Berlekamp’s reducibility criterion [3] if available, Step 2,
however, is relatively complex. To check for complexity, let
us start with an example of code division multiple access
(CDMA), a popular communication scheme used in many
practical applications, where the polynomial over GF (2) gen-
erating the short code for this purpose is of order 15 or higher.
The computational cost of determining r(x) = h(x)/p(x) is
O(l), i.e., it increases linearly with the degree l of h(x). The
summation

∑2n−1
l=n l yields approximately O(22n). This, when

applied to the CDMA example, gives a value of O(230) ≈ 109,
which is quite high as expected. We propose a method that
attempts to alleviates this problem with a simplified computa-
tional approach.

B. Proposed Simplified Method

We observe that reformulating Step 2 of the primitive
polynomial check procedure enables to use a simple modulo
arithmetic by reducing the computational cost to one division
by p(x) per iteration if the power of x can be reduced. This is
possible simply by factorizing h(x). Expressing h(x) = xl−1
as (x− 1)(xl−1 + xl−2 + ... + 1), we can alternately write

h(x)
p(x)

=
(x− 1)(d(x) + 1)

p(x)
=

(x− 1)d(x)
p(x)

+
(x− 1)
p(x)

(9)

where d(x) = xl−1 + xl−2 + ... + x. Therefore, if we replace
Step 2 with a check whether d(x)/p(x) results in a remainder
r(x) 6= 1 for all n ≤ l − 1 ≤ 2n − 3 and r(x) = 1 for
l − 1 = 2n − 2, then we can reach a simplified solution.
Using mod 2 arithmetic, one can easily verify that this is
identical to the original expression. As this procedure reduces
the degree of numerator polynomial used for all iterations by
one, it thus keeps the computation per iteration one division
less than the standard one. It results in a total computational
cost of almost O(2n), which is significantly lesser than the
standard procedure when the degree of the polynomial is high.
We summarize the proposed algorithm in Table 4.

Note that another nice simple identification method is
proposed in [9] which reformulates Step 2 as a check whether
xl/p(x) results in a remainder r(x) 6= 1 for all n ≤ l ≤ 2n−1
with a more efficient use of intermediate results from the
previous iterations. The students are encouraged to simulate
both these two simplified methods along with the standard
procedure to get an idea of complexity reduction for the
examples like CDMA.

V. CONCLUDING REMARKS

We have discussed at length the mathematical construction
of m-sequences via primitive polynomials and how to map the
same when implementing in shift registers. As m-sequences
are widely used in many applications, it is thus equally
important to check whether a polynomial is primitive or not
so as to get proper m-sequences. In this paper, we have
proposed a fast method to identify a primitive polynomial
over binary field which has a computational cost of O(2n)

TABLE IV
THE PROPOSED PRIMITIVE POLYNOMIAL IDENTIFICATION ALGORITHM

1. Initialization:
Formulate d(x) = xl−1 + xl−2 + ... + x
and let r(x) = d(x) mod p(x)
2. Iterative Processing:
(a) FOR l− 1 = n to 2n − 3

Evaluate r(x)
IF r(x) == 1 (mod 2)
THEN return ‘non-primitive polynomial’
BREAK-FORLOOP
ELSE l− 1 ← l− 1 + 1 and Go to (a)

END-FORLOOP
Go to (b)

(b) FOR l− 1 = 2n − 2
IF r(x) == 1 (mod 2)
THEN return ‘primitive polynomial’
ELSE return ‘non-primitive polynomial’

in comparison with O(22n) of the standard procedures. The
proposed algorithm, in the context of the CDMA example,
can be easily taken up by the undergraduate students as an
assignment in any ‘advanced communication’ course in order
to check the reduction in complexity.

VI. APPENDIX: AN EASY WAY TO GENERATE GAUSSIAN
SEQUENCES FROM MAXIMAL LENGTH SEQUENCES

A frequently used sequence in communication and signal
processing applications is Gaussian sequence, which can be
easily generated from the discussed m-sequences and such
an experiment can be taken up in the DSP laboratory to
check its feasibility with fixed/floating point processors. First,
with the help of the proposed simple primitive polynomial
identification method, a (2n − 1) length m-sequence can be
generated with a simple n bit additive LFSR. Next, such m-
sequence generation technique can be repeated for 7 or 8 times
with 7 or 8 different initial seeds. Note that the same primitive
polynomial should be used in each case. The n bit binary
values of any m-sequence can be converted to integer values
using sign-magnitude rule of conversion (i.e., treating MSB as
the sign and the rest as the magnitude). These integer values
should then be normalized within the range [+1,−1]. If we
now add the values of all these 7 or 8 m-sequences sample-
wise, we would get almost a Gaussian sequence according
to Central Limit Theorem [10]. This easy practical technique
is used in almost all the communication system hardware to
generate a Gaussian random variable.

REFERENCES

[1] S. Blackburn, “A Note on Sequences with the Shift and Add Property,”
Designs, Codes, and Crypt., vol. 9, pp. 251-256, 1996.

[2] I. D. Alanen and D. E. Knuth, “Tables of Finite Fields,” Sankhya, Series
A, vol. 26, pp. 305-328, 1964.

[3] E. R. Berlekamp, Algebraic Coding Theory. New York: McGraw-Hill,
1968.

[4] E. J. Watson, “Primitive Polynomials (mod 2),” Mathematics of Com-
putation, vol. 16, pp. 368-369, 1962.

[5] R. J. McEliece, Finite Fields for Computer Scientists and Engineers.
Boston, MA: Kluwer Academic, 1987.

[6] D. E. Carter, “On the Generation of Pseudo-Noise Codes,” IEEE Trans.
Aerosp. Electron. Sys., vol. 10, pp. 898-899, 1974.

[7] S. Golomb, Shift Register Sequences, Revised edition. Laguna Hills, CA:
Aegean Park Press, 1982.

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:9, 2008

1811

[8] D. E. Knuth, The Art of Computer Progamming. Reading, MA: Addison-
Wesley, 1968.

[9] K. Krogsgaard and T. Karp, “Fast Identification of Primitive Polynomials
over Galois Fields: Results from a Course Project,” in Proc. 2005 IEEE
Int. Conf. Acoustics, Speech, Signal Processing (ICASSP), Philadelphia,
PA, USA, 2005, pp. V553-V556.

[10] H. Tijms, Understanding Probability: Chance Rules in Everyday Life.
Cambridge: Cambridge University Press, 2004.

Abhijit Mitra was born in Serampore, India, in
1975. He received the B.E.(Honors) degree from
the Regional Engineering College, Durgapur, In-
dia, in 1997, the M.E.Tel.E. degree from Jadavpur
University, India, in 1999 and the Ph.D. degree
from the Indian Institute of Technology, Kharagpur,
India, in 2004, all in electronics and communication
engineering.

Since 2004, he has been with the Department of
Electronics and Communication Engineering at the
Indian Institute of Technology, Guwahati, India, as

an Assistant Professor. He visited Indian Statistical Institute (ISI), Kolkata,
as a Visiting Scientist during June-July and December 2007. He is the
recipient of URSI Young Scientist Award and INAE Summer Fellowship for
Young Engineering Teachers, both for 2008. He has also been elected as an
Associate of Indian Academy of Sciences (IAS) for 2008-2011. His research
interests include adaptive signal processing and signal processing applications
in wireless communications with the primary emphasis on low complexity
realizations.

Dr. Mitra has been a member of IEEE since 2003 and presently serves as a
reviewer of many IEEE Transactions. He is also a member of Indian Science
Congress Association and Institution of Electronics and Telecommunication
Engineers, India. Presently, he also serves as a member of the editorial
board of Recent Patents on Electrical Engineering (Bentham Science, USA),
International Journal of Signal Processing and International Journal of
Information Technology (Enformatika, Europe).

