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On the Approximate Solution of Continuous
Coefficients for Solving Third Order Ordinary
Differential Equations

A. M. Sagir

Abstract—This paper derived four newly schemes which are
combined in order to form an accurate and efficient block method for
parallel or sequential solution of third order ordinary differential
equations of the form y" = (fx,y,y’,y”), y(@) =y, ¥Ha) =P
y () =n with associated initial or boundary conditions. The
implementation strategies of the derived method have shown that the
block method is found to be consistent, zero stable and hence
convergent. The derived schemes were tested on stiff and non — stiff
ordinary differential equations, and the numerical results obtained
compared favorably with the exact solution.
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1. INTRODUCTION

ET us consider the numerical solution of the third order
ordinary differential equation of the form

v'= &yy.y) y@=yy XO)=B,¥)=pn (1)

with associated initial or boundary conditions. In the field of
science and engineering and some other area of applications,
we come across physical and natural phenomena which when
represented by mathematical models, happen to be differential
equations, for example, equation of motion, simple harmonic
motion and deflection of a beam are represented by
differential equations. In real — life situations, the differential
equations that models the problem is too complicated to solve
exactly and one of two approaches is taken to approximate the
solution by reducing it to systems of first order which lead to
computational cost or by direct approximation. This paper
developed an alternative approach for direct solution of type
(1) based on linear multistep collocation method. Four point
directly implicit block hybrid method of order four using
constant step size strategies was adopted in this approach.

Solutions to initial value problem of type (1) according to
Fatunla [1], [2] are often highly oscillatory in nature and such
system often occurs in mechanical systems without
dissipation, satellite tracking, and celestial mechanics.

Lambert [3] and several authors such as Onumanyi et al [4],
Brown [5], and Awoyemi [6], have written on conventional
linear multistep method:

A.M. Sagir is with Department of Basic Studies, College of Basic and
Remedial Studies, Hassan Usman Katsina Polytechnic, P.M.B. 2052 Katsina.
Katsina State. Nigeria (phone: 08039474856; e-mail: amsagir@yahoo.com).

TS0 % Ynej = WP TS0 By k = 2 2)
or compactly in the form
p(E)yy = h33(E)f, (€)

where E is the shift operator specified by Ely, = Yn+j While
pand 6 are characteristics polynomials and are given as

p() = Tieo &), 3() = Tio B € )

yn is the numerical approximation to the theoretical solution
y(x) and f, = f(xp, yn)-

In the present consideration, our motivations for the study
of this approach is a further advancement in efficiency, that is
obtaining the most accuracy per unit of computational effort,
that can be secured with the method proposed in this paper.

A. Definition: Consistent, Lambert [3]

The linear multistep method (2) is said to be consistent if it
has order p = 1, that is if

Z]!(:o o = 0 and Z]k:oj oG — 2}(:0 Bj =0 (5)

Introducing the first and second characteristics polynomials
(4), we have from (5) LMM type (2) is consistent if

p(D) =0 p'(1) =3(1)
B. Definition: Zero Stability, Lambert [3]

A linear multistep method type (2) is zero stable provided
the roots &J., j = QL)k of first characteristics polynomial p(§)

specified as p(§) =d eX}f, ADEX| = 0 satisfies gl <1
and for those roots with |§j| = 1Ithe multiciplicity must not
exceed two. The principal root of p(¢) is denoted by
£, =¢ =1

C. Definition: Convergence, Lambert [3]

The necessary and sufficient conditions for the linear
multistep method type (2) is said to be convergent if it is
consistent and zero stable.
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D. Definition: Order and Error Constant, Lambert [3]

The linear multistep method type (2) is said to be of order p
if cg= ¢ =cy...cp = 0butcpy; # 0and cpyq is called the
error constant, where

Co= 2K o = ocgF o¢ oty .. Fo
¢ = 3K oj o= (%1 + 2 0+ 3 ozt ... +k 1)
—(By + B, +B, + - +B)
Ca =Z]k=0%j2 X — ]k=o Bj
%(Kﬁ 22 oty + 3% o3+ ... + k2 o)

—(B, + 2B, + 3B, + ..+ KkB,)

- 2
Z] 1{ L Rk 2),Jq B}

;(oc1+ 29 0,4+ 3% o5+ ... + kT o))

1 _ - -
(B1 + 2@ 1)[32 + 3@ 1)[33 + .-+ k@ 1)Bk)

" (-
(6)
E. Theorem: Lambert, [3]

Let f (X, y) be defined and continuous for all points (X, y) in
the region D defined by {(X, y) : a<x <b, oo <y < oo} where
a and b finite, and let there exist a constant L such that for
every X, Y, y* such that(x, y) and (X, y* ) are both in D:

[Fy) = Fxy*) <Ly -y ¥ 0

Then if n is any given number, there exist a unique solution
Y(X) of the initial value problem (1), where y(X) is continuous
and differentiable for all (x, y) in D. The inequality (7) is
known as a Lipschitz condition and the constant L as a
Lipschitz constant.

II. DERTVATION OF THE PROPOSED METHOD

We proposed an approximate solution to (1) in the form
y(0) = Z20 T oy (0ynsg + h* BEF TR Oy, (8)
fn+j = f(Xn+j:Yn+jryg+jry|1+j)and X € (Xp, Xn+k) )
V= Y, Yo+t Yotz fo, fn+1rfn+§r n+2s fnes (10)

With m = 4, t = 3 and p = m+t-1 where the a;,j = 0,1, (m +
t — 1) are the parameters to be determined, t and m are points
of interpolation and collocation respectively; where P, is the
degree of the polynomial interpolant of our choice. Consider a
power series solution of a single variable of the form

P(x) = Xt ayx (11)

P'(x) = X6 a;xI! (12)

P'(0) = ZZi(-Dayx? (13)

P'(0) = E5H0-D0 - 2ax 7 = fxy,y,y") (14)
Specifically, we collocate (14) at x = xp,j,j = 0(1)k and
interpolate (8) at X = Xn4j,j = 0(1)k — 1 using the method
described above. Also for a given mesh {x,:x, =a+nh,n=
0, 1, (N)}; where h = x,+; — X, h = (b-a)/n is a step size.
The matrix equation form of the proposed method is
expressed as:

4

1 x, xz x5 X x5 X§ o, A
1 Xpp X:Z1+1 Xr3\+1 Xn+1 Xg+1 Xg+1 g [ynﬂ-l
1 Xnyz Xpip Xr3)+2 X4z Xg+z Xg+2 %2 Yn+2
0 0 0 6 24x, 60x2 1203 ||Pof_]| fu (15)
0 0 0 6 24x,,, 60x3,, 120x3,[[Bi| |fe+
2 3 f 3
000 0 6 2 600 1200, [fsz
lo 0 0 6 24x,s 60x2,, 120:3,, /101 Hhnes
where
M x, x2 x5 xg x5 x$
2 3 4 5 6
1 Xnt1 Xp+1 Xner Xnaa Xn+1 Xn+1
2 3 4 5 6
1 Xn+2 Xn+2 Xn+2 Xn+2 Xn+2 Xn+2
p=[0 © 0 6 24x, 60xZ  120%} |(16)
0 0 0 6  24xp,; 60x2,; 120x3,,;
2 3
0 0 0 6 24k, 60k 120x.
0 o 0 6  24%,,5 60x%.; 120x3,,]

Matrix D in (16), which when solved either by inversion
techniques or Gaussian elimination method we obtain the
columns of D™! which form the matrix C. The elements of C
are used to generate the continuous coefficients of the method
as:

1050 = 55 (207 — 30k~ ;) — (= %,)?)

() = %{Zh(x ) = = )

th {~h(x —x,) — x—xp)%}

{=8h%(x — x,) — 121h*(x — x,)? + 90h3(x — x,,)*
— 45h%(x — x,)* — 5h(x — x,)°}

{39h%(x — x,,) — 76h*(x — x,)? —
+(x— %)%

{8h5(x — x,) — 16h*(x — x,,)? + 15h?(x — x,,)*

—8h(x — x,)° + (x — %)%}
——{=5h%(x — x,) + 7h*(x — x,)? — 8h?(x — x,)* +
Sh(X - Xn)s - (X - Xn)é}

ap(x) =

1
Bo(x) = TI00°

9h(x — x,)°>

1
B1(x) = 360n3

Bs () = 255p3

Bs(x) =

1080h3
(17)

The values of continuous coefficients (17) are substituted
into (8) yields, after some algebraic manipulation and by
setting ¥ = (x — X,), the new continuous scheme of Block
Hybrid method
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900 = 517 (20 = 3hy = Y2)yy + 5 (200 — 2 ynys +
1 1
7oz -y = W?Lyne, + W{—izhs — 121h*{2 + 90h3y3 —
45h2* — ShysS). £y, + ——{39h5y — 76h*y? — 9hy® +
YO frpq + T;S{ShSLIJ 16h4¢2 + 15h2y* — 8hyS + Y6}, foe+
Yol fnss (18)

—__{—5hSy + 7h*y? — 8h2Y* + Shy’ —

1080}13

Evaluating (18) x =xp.3andx =x 3 and its first and
2

second derivatives both at x = x,, yield the following four
discrete hybrid schemes, which are used as a block integrator;

h3
Yn+3 = 3Yn+2 + 3Yn+1 —Vn = 18{f + 16f 3 + fn+3}

3 3 1 h3 _10fn — 189,44
yn+% - §Yn+2 - ZYIHI + §Yn = m —88fn+% —fo4s

1 3 h3 ( 68f, +351f, 4
hz, + 3¥n+2 2Yn41 + 7Yn = m{—ézlfm; + 5fn+3}

e {—356fn -

, 963f, 41
hzy — yn42 + 2¥n41 —Yn = 1080 +256fn+3 — 17fn+3} (19)
2

Equations (19) constitute the member of a zero stable block
integrators of order (4,4,4,4)" with

c _( 1 37 33 33)
P+3 = \ 60’ 122880° 7’ 2/°

The application of the block integrators with n = 0 gives the

accurate values as shown in Tables I and II of fourth section of

this paper. To start the IVP integration on the sub interval [X,

X;], we use equation (19) when n = 0 to produce

simultaneously values for y;,y,,y5s and ys without recourse to
2

any predictor — corrector method to provide y; and y, in the
main method. Hence, this is an improvement over other cited
works.

III. STABILITY ANALYSIS

Recall, that, it is a desirable property for a numerical
integrator to produce solution that behave similar to the
theoretical solution to a problem at all times. Thus, several
definitions, which call for the method to posses some
“adequate” region of absolute stability, can be found in several
literatures. See Lambert [3], Fatunla [1], [2] etc.

Following Fatula [1], [2]; the four discrete schemes
proposed in this report in equation (19) are put in matrix
equation form and for easy analysis the result was normalized
to obtain;

ie. AQY, =¥k Ay, i +hYk BOF,_; (0
where h is a fixed mesh size within a block, AL, Bf,i = 0(1)k
are r by r matrix coefficients, A©® is r by r identity matrix,

Y, Ym-ijand F,,,_; are vectors of numerical estimates
described by

Yn+1 r [fn+1]

Yn+2 fni2
Y= . Yni= Fn= Frni=
. y{l+l n+1
Yn+r n+r

For n = mr and for some integer m = 0. This give rise to:

121 59, 167
1000 1000 5000
19 17 11 fors
| 20 “To00 ° To00||fs3
|1133 89 0 11 |fn+2
|To00 250 500 I,
100 OfYasd] [0 0 0 1][¥n-2 |1519 0 o a1 |
010 0|lyna|_[0 0 0 1[[¥n2 +p3 0500 100
00 1 0ffynsz| [0 0 0 1||yns 0 0 0 5L
0 0 0 1lly,sl 10 0 0 1lly, 500
0 0 o 531 fo-z
N 250 ||fa2
0 0 o 8|6
1000]L f,
27
00 0

20

with y, = ( ) usually giving along the initial value problem.

The first characteristics polynomial of the proposed block
hybrid method is given by

p(d) = det [\l — AV (22)
200 -1
-1

p(}\)=detg g ?1 o (23)
001 A-1

Solving the determinant of (23), yields p(d) = A3(A —1) ,
which implies, \; =2, =A;3; =0o0ri, =1

By definition of zero stable and (23), the hybrid method is
zero stable and is also consistent as its order P = (4,4,4,4)" > 1,
thus, it is convergent following Henrici [7] and Fatunla [2].

IV. IMPLEMENTATION OF THE METHOD

This section deals with numerical experiments by
considering the derived discrete schemes in block form for
solution of differential equations of third order initial value
problems. The idea is to enable us see how the proposed
methods performs when compared with exact solutions. The
results are summarized in Tables I & II.

A. Numerical Experiment

I. Consider the LV.P y"" —y"+y —y=0, y(0) =1,
y'(0) =0, y"(0) = —1,h = 0.01, whose exact solution is
y(x) = cosx
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TABLEI
RESULTS FOR THE PROPOSED METHOD OF PROBLEM |

Exact Solution Approximate Absolute Error of

Solution Proposed Method
0.01 0.9999500004 0.9999502003 1.9990E-07
0.02 0.9998000067 0.9998002023 1.9560E-07
0.03 0.9995500337 0.9995501702 1.3651E-07
0.04 0.9992001067 0.9992003588 2.5210E-07
0.05 0.9987502604 0.9987515643 1.3039E-06
0.06 0.9982005399 0.9982035679 3.0280E-06
0.07 0.9975510003 0.9975543456 3.3453E-06
0.08 0.9968017063 0.9968004658 1.2405E-06
0.09 0.9959527330 0.9959540620 1.3290E-06
0.10 0.9950041653 0.9950213456 1.7180E-05

B. Numerical Experiment
II. Consider the LV.P y"" + 5y"+ 7y’ + 3y =0, y(0) =1,
y'(0) =0, y"(0) = —1, h = 0.1, whose exact solution is
y(x) =e™*+ xe™*

TABLEII
RESULTS FOR THE PROPOSED METHOD OF PROBLEM II
X Exact Solution Approximate Absolute Error of
Soln. Proposed Method
0.1 0.9953211598 0.9953212241 6.4300E-08
0.2 0.9824769037 0.9824768765 2.7200E-08
0.3 0.9630636869 0.9630636564 3.0500E-08
0.4 0.9384480644 0.9384481542 8.9800E-08
0.5 0.9097959895 0.9097955469 4.4260E-07
0.6 0.8780986178 0.8780978452 7.7260E-07
0.7 0.8441950165 0.8441930642 1.9523E-06
0.8 0.8087921354 0.8087911080 1.0274E-06
0.9 0.7724823534 0.7724810025 1.3509E-06
1.0 0.7357588824 0.7357454120 1.3470E-05

V. CONCLUSION

In this paper, a new block method with uniform order was
developed. The resultant numerical integrator posses the
following desirable properties:

Being self — starting as such it eliminate the use of
predictor — corrector method

Convergent schemes

Facility to generate solutions at 4 points simultaneously
Produce solution over sub intervals that do not overlaps.
Zero stability

In addition, the results of new schemes are more accurate
when compared with the theoretical solution, see Tables I and
IT respectively. Hence, this work is an improvement in terms
of efficiency and stability analysis.
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