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On Symmetry Analysis and Exact Wave Solutions
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Abstract—In this paper, we study a new modified Novikov
equation for its classical and nonclassical symmetries and use the
symmetries to reduce it to a nonlinear ordinary differential equation
(ODE). With the aid of solutions of the nonlinear ODE by using
the modified (G’/G)-expansion method proposed recently, multiple
exact traveling wave solutions are obtained and the traveling wave
solutions are expressed by the hyperbolic functions, trigonometric
functions and rational functions.
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|. INTRODUCTION

Onlinear partial differential equations (NLPDEs) are

widely used as models to describe many important
dynamica systems in various fields of sciences, particularly
in fluid mechanics, solid state physics, plasma physics and
nonlinear optics. Exact solutions of NLPDEs of mathematical
physics have attracted significant interest in the literature.
The knowledge of these solutions of NLPDEs facilitates the
verification of numerical solvers and aids in the stability
analysis of the solutions. Traveling waves, whether their
solution expressions are in explicit or implicit forms, are very
interesting from the point of view of applications. Over the
last years, much work has been done on the construction of
exact solitary wave solutions and periodic wave solutions of
nonlinear physical equations. The investigation of new exact
solutions of NLPDEs may help one to find new phenomena.
Many methods have been developed by mathematicians and
physicists to find special solutions of NLPDES, such as the
inverse scattering method [1], the tanh-function method [2],
the extended tanh-function method [3], Exp-function method
[4], sine-cosine method [5] and the homogeneous balance
method [6]. Recently, Wang et a. [7] proposed a new method
called the (G'/G)-expansion method to construct traveling
wave solutions for NLPDEs. The method is based on the
homogeneous balance principle and linear ordinary differential
equation (LODE) theory. It is assumed that the traveling wave
solutions can be expressed by a polynomid in (G'/G) and
that G satisfies a second order LODE G” + \G’ + uG = 0.
The degree of the polynomia can be determined by the
homogeneous balance between the highest order derivative
and nonlinear terms appearing in the given NLPDEs. The
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coefficients of the polynomia can be obtained by solving
a set of algebraic equations. More details are in Section 4.
As we mentioned above, a considerable research work has
been devoted to finding the exact solutions of nonlinear partial
differential equations, among which there is a special attention
to the study of integrable non-evolutionary partial differential
equations of the form

0
(lszQ)ut = G(Uy Ugy Uz, Uggas ), W =u(x,t), Dy =—,
-

(1?

where G is a function of v and its derivatives with respect to
2. The most famous examples of this type of equations are
the Camassa-Holm (CH) equation [8]

— Ulgzq, (2)

and the Degasperis-Proces equation (DP) [9]
(1 — D, H)uy = 4ty — 3uptipy — Wlgps, 3)

which are found to possess remarkable properties of integrable
equations. Wazwaz [10,11] further advanced the studies of the
DP and CH equations. Very recently, a new partia differential
equation

, ) — 22 0 2,
Ut — Ugzt = U Ugpge T SUUL Uz — dU U, (4)

was discovered by Vladimir Novikov in a symmetry classifica-
tion of nonlocal PDEs with cubic nonlinearity [12]. Novikov
found the first a few symmetries for Eq. (4) and subsequently
hefound a scalar Lax pair for it, which proves that the equation
is integrable. Integrability and multipeakon solutions of this
equation have been studied in [13] and [14]. Like the Camassa-
Holm and the Degasperis-Procesi equations, this new equation
admits peakon solutions, but it has nonlinear terms that are cu-
bic, rather than quadratic. Infinitely many conserved quantities
are found in [12] as well as a bi-Hamiltonian structure. In the
work of [14], the explicit multipeakon solutions of Novikov
equation were obtained by using the matrix Lax pair found in
[13].

In this paper, we will use the combination of Lie Classical
method, Nonclassical method and modified (G’/G)-expansion
method which is different from the described method in [7,15]
to construct more traveling wave solutions for the following
equation based on the Novikov equation of the form

dutug, 5)

.2
Ut — Ugzt = U Uz + ?)UUZ’U,II -

namely the modified Novikov (mN) equation that is also a
type (1) equation, but different to Novikov equation in that it
has a nonlinear term w*u,, instead of u?u,,.
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The rest of this paper is structured as follows. Resorting
to the classical Lie group theory, we try to find out the
symmetries of the mN equation in the next section and by
using the symmetries, equation (5) is reduced to a nonlinear
ODE system. We have aso studied the mN equation for its
nonclassical symmetries as in Section 3. In Section 4, by
using the modified (G’/G)-expansion method, more explicit
traveling wave solutions of Eq. (5) are found out, which are
expressed by the hyperbolic functions, the trigonometric func-
tions and rational functions. In Section 5, a brief conclusion
and discussion are made for the results obtained in this paper.

Il. CLASSICAL LIE SYMMETRY ANALYSIS

In modern mathematics with ramifications to several areas
of mathematics, physics and other sciences, the study of
symmetry analysis of high-dimensional differential equations,
such as finding symmetries, symmetry groups of transforma-
tion, symmetry reductions, and construction group invariant
solutions, etc., has been very important. Nowadays, there
are three basic and effective methods of finding symmetry
reductions for the given nonlinear systems: the classical Lie
group method [16-21], the non-classical Lie group method [22,
23] and the Clarkson and Kruskals direct method [24]. And
Lou has improved the direct method [25, 26] which is based
on Lax pairs. In this section, we will use Lie classical method
to investigate the symmetry reductions of mN equation. To
Eqg. (5), we consider the one-parameter local Lie group of
transformations as

: (6)

where € is a group parameter, n(z,t,u),&(x, t,u), 7(x, t, u)
are infinitesimals and the associated infinitessimal generator is

0 0 0]
X = U(I,tvu)% +E(Iat7u)% +T(Ivt7u)a' (7)
It is required that the set of Eq. (5) be invariant un-
der the transformations (6) and this yields a system
of overdetermined linear equations for the infinitesimals
n(z, t,u),&(z, t,u), 7(x, t,u) which are as follows:

(Z) Ty = Oa Tu =0,

(ii) & =0,

(447) Nuu = 0,

(’L’U) 2£JL — Nzxu = 07

(U) gt + 3u2§z - Ttu2 - nzmuu2 - 21”7 = 07

(vi) —37u — 30 — 3Ngruu — 3uny + Yué,; =0, (8)
(U’ii) - 3W]z + 3u2£zw + 2£zt — Ntuw — 3u27]zu = 07
(1)7’“‘) - 2nzu + fzz = 07

(iz) —dutt, — & +ulbppn + dutt — 3Npput®
7277mtu + gzrt - 37“7171 + 4U4771mu + 16’[,&‘37] = 07
(x) M — U Newe — Nwwt + dun, = 0.

The general solution of this large system provides following
forms for the infinitesimal elements 7, £ and 7:

levT:]ﬁn:Ov (9)

where [ and k are arbitrary constants. Now we can reduce the
Eqg. (5) to ODE using following characteristic equation:

R (10)
T n

On solving characteristic equation, we have the following
similarity variables for Eq. (5):

u(z,t) = F((), ¢ =ka—1t, (11)

which reduce Eg. (5) to the following ODE:

—LF'(C) + KF"(¢) = K*F(Q)*F"(¢) = 3k*F(Q)F'(Q) F"(¢)

+HEF(Q)'F'(¢) =0,
12)
where the prime means differentiation with respect to (.

Remark: In this case we get trivial symmetries so we will
get only traveling wave solutions of the equation (5). Therefore
we conclude that the non-constant similarity reduction of the
mN Equation eguation obtainable using classical Lie method is
the traveling wave solution given by (11) and for the solutions
of reduced ODE (12), we will take the aid of modified (G'/G)-
expansion method.

I11. NONCLASSICAL SYMMETRIES

Motivated by the fact that symmetry reductions for many
PDEs cannot be obtained by using classical symmetries, there
have been several generalizations of the classical Lie group
method for symmetry reductions. The nonclassical method was
first introduced in [22] to study the symmetry reductions of
the heat equation. A description of the method can be found
in [22, 23]. The basic idea of the nonclassical method is that
PDE (5) is augmented with the invariant surface condition

Euy +Tur —m =0, (13

which is associated with the vector field (7). Requiring that
both (5) and (13) be invariant under the transformation
with infinitesimal generator (7), we can obtan an
overdetermined system of nonlinear equations for the
infinitesimals n(z, ¢, ), £(z, t,u), 7(z, t,u). The number of
determining equations arising is smaller in the nonclassica
method than in the classical method because there are fewer
linearly independent expressions in the derivatives. Because
all solutions of the classical determining equations necessarily
satisfy the nonclassical determining equations, the solution
set can be larger in the nonclassical case. We can distinguish
two different cases.

Case 1: In the case 7 # 0, we can set 7 = 1 without loss
of generality. The nonclassical method applied to (5) yields
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following determining equations for the infinitesimals:

(L) fu =0, Nuu = 0,

(”) ENwau + & — 2un — 266, + 3u2£x - nwxuu2 =0,

(“Z) - 377 + 3Th¢u€u + 9u€w - 3U77u - 377wxuu =0,

(“)) 2577% + 3u2£1$ - 3u277zu + 2£1nzwu — NuNzzu — 3unz
+26amu — 4€a” — E€aa + 2at — Mhu = 0,

(1}) — 6uNgy + 3U§zz =0,

(UZ) 4u4711 + fzznm - u27717mz + e — annxu — NzazNzzu
+2§,T7]T7: — Next = 0
(14
Solving these equations, we get
7-2175:01717:07 (15)

where C; isarbitrary constant. Consequently, after solving the
determining system, we can assert that for 7 # 0, we recover
only the classical symmetries and that the nonclassica
symmetries of the mN equation have been completely
classified. We can state that Eq. (5) does not admit proper
nonclassical symmetries with 7 = 1.

Case 2: In this case, we set 7 = 0, = 1 and so the
invariant surface condition reduces to u, = n(x,t,u). Hence
we obtain the differential consequences as follows:

Ugy = Nz + Nulz,

Uggt = Nzt + Newlt + Mgu + NMun Ut + 7lu(77t + nuut)(ls)
Applying nonclassical method to eq. (5) and equating coef-
ficients of powers of u; to zero then generates the following
determining equations:

(Z) — Nzzulzu — NMuuzulu — 277:1:1“47777112 - nnuugna;

“NuuNzule = NMrauTuu — 77277uu277u

_277zu77u - 2n2nzuunuu - 2777]uu77u - nnultnu3
_ngnuuunuu - 277771uu7]zu - na:zunu2 - nuunuzna:
777277uuu77mu - 772nuuun3 = 07

(1) — 3uPngune — 5nun;; — nnmu nu — D1
_nnuunztnu nzzuu277unz nuuu nunx - n4nuuuu2nuu
777 7/]uu U T — nuunu"]znt 77 nuuuu nu - 77 nuu U Nz
7377 nmzuunu anxzuu Nau — 27777$uu77u77t - 677 NazuuUTy

_377u nuunz - 27]771uu771t - 7777uu77m77z - nmzunmt
=20 Ny t® M~ 61 N Wiz — 477 N U T

NNz + du nm4—16u30 M — Nawt — 2Nzuhs — 307N,
—2NMatu — 37777uuU773: — 3NMazuUne — 27777wuuu277u77x
_8U7777u77w - 27777uuU277wu77w - 677277uuu"7:v77u — MMtuTu
—10772U77wu + 47777wzuu4 - 3n277uuu277u - 277277uuu277wu77u
_77277tuu - 37777:czuU2 — DUNNzz — n3u277uuu - uznxzz
_2nnuunt + 4n3nuuuu4 - nsnuuuntu - nza:uu2771z

nuunztnz - nnuuu2nzmnu - 77277uuuu277u7713 - n2nmzuu2nuu
737] u? nmuu nnzzuntu + 877 nzuuu - 2n2nzuuntu
—3n? nuuunu = 20 Ny t® Mo = 3w7 — 5 U
727777uuu 77u 771 - 277771uuu 7713: 77 nuuunzt nzmununt
—377 MW = 2n? nmu Mu® = 300w — 30 e U

P NNz — NuwMza e + 4w )y
_377u277wu77u =0.

(17)

On solving the above system of highly nonlinear equations,
weget T =0,¢& =1,n = 0. Hence, we do not get any
new symmetries in this case. Thus, we proved that for mN
equation, the nonclassical method provides us only improper
symmetries that can also be derived by using Lie classica
method.

IV. EXACT TRAVELING WAVE SOLUTIONS FOR EQ. (5)
USING MODIFIED (G'/G)-EXPANSION METHOD TO
REDUCED ODE (12)

Assume that the solution of Eq. (12) can be expressed by a
polynomia in (G’'/QG) as follows:

FO=a+ T o (58) +0(59) 7} a9

where ag, a;, b; are constants and the positive integer m can
be determined by considering the homogeneous balance of the
highest order derivatives and highest order nonlinear appearing
in ODE (12). Thefunction G(¢) isthe solution of the auxiliary
LODE

Q") + nG(Q) = 0, (19)

where 1 is a constant to be determined and the nonzero param-
eter p in Eq. (19) plays an essentia role in the determination
of the type of the solutions. Indeed,

1) If u < 0 then we find the hyperbolic-type solutions and

we have
G' _  /— ( Asinh/=ul+B cosh v/=pu(
el K (A cosh \/TIIZLLCJrB sinh \/TZ(> ’ (20)
2) If > 0 then we find trigonometric-type solutions and
we have
[ A cos \/pu¢— B sin \/u¢
G T \/H(Asin\/ﬁ§+Bcosﬁ() ’ (21)

where A, B are arbitrary constants. Noticing the homoge-
neous balance of highest order derivatives and nonlinear terms
appearing in Eq (12), we get m = =. We then substitute

F() = ¢>(§)2 into PDE (12) to get another PDE
419/ (©)9(Q)° = 3K (¢)° + 6k*19' ()6 () (C) -
+HE$(0)*9"(¢) — 16ko(C) ¢/ (¢) = 2

It is easy to prove that the balancing number of PDE (22) is

a positive integer m = 2. Consequently, it follows from (18)
that

O’
0.

d(¢) =ap+ a1 <Cg((§))> + ag (g((g)Q + by (gé))il
+by (G (5))> -~
(23)

On substituting (23) into ODE (22) and using linear ODE
(19), collecting all terms with the same powers of (G'/G)
together and equating their coefficients to zero, yield a system

k219" (€)6(¢)?
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of algebraic equations for ag, a1, as, b1, ba, u, k, 1 as follows:

—32kbo® 1+ 96 k3021 1® = 0,
32 kas® — 96 k3as* = 0,

—144 kby by pu+ 312 k301 b3 pd = 0,
144 kas*a; — 312k%a; as® = 0,

—256 kby by 11 — 48 k21by® 1% + 360 k3D, 2y % i3
160 k3by* 2 — 32 kby® + 288 kPag bo®1i® — 128 kag ba*p = 0,

(%) 160k as s + 256 kar2az® + 48 klas®

+128 kag as* + 32 kas® 1 — 360 k3a 2as? — 288 k3ag as® = 0,
N\ —8

< —120 k21by piPbo® — 144 kbo by — 112 kay by

+288 k3ay bo® 1 + 168 k3b13by p3 — 448 kag by by p
—224 kb1 3bo 1+ 512 k3by bo® % + 648 k3ag byby p® = 0,

8
el

. 144 kastay pp — 288 k3az3by + 120 k%la; ay?

—648 k3a0 a22a1 — 168 k30,13(12 + 224 ka13a22 + 448 kag a1 as

+112 kas*by — 512 k3a; a2 =0,

G) " : —128ka by' — 90 k2Ub 2 Phy + 81y

+64 k3by 11 — 96 kby ag 11 — 576 kag by 2ba 1 — 256 kb 2by>
+648 k3ay ba?by pi® + 432 k3ag by 2by p1® — 64 k21by> 112
+288 kBag bo® 13 + 288 k3ag2bo pd + 72 k2lag pi3bo?
+72K21bo2 P aq — 120 K21bo? P ag + 24 k3b 413
+480 k3ag by pu? — 192 kag?bo®ju — 384 kay by®by p
—96 kby by 1 + 576 k3b1 2by?p2 = 0,

o 7

G —288 k3a23b2 + 90 kzlalzag + 120 ]{?21(1220,0
—64 k3ag?u® + 576 kag aiax? 4 256 ka2as>
—576 k3a12as?p + 128 kag ag* it + 192 kag2as®
+96 kai%ag + 96 kas*by + 64 k2lasn — 8lag®
—648 k3a22b1 a; — 288 k3a02a22 —24 k3a14
+384 ka1 a23b1 — 480 k3a0 CLQSN — 432 k‘SCLO a12a2 = 0,

/\ —6 5
< —224 kb ®by? — 16 kb, ju 4 648 k3ag by>by pi?

—480 kay b1 by’ — 192 k21bo2 pay — 180 k21by 113bs ag
—160 k21by p2bo® + 256 k3by>by p? — 480 kag?by ba®
—320 k‘ao b13b2 n+ 576 l<:3a0 al 622,u3 + 72 k3a0 1)13,u3
—15k21by > 1® — 112 kay by* + 201by 1 by* — 320 kag ay bo®p
+360 k3ag2by by p1® + 200 k3by bo® i1 — 320 kby ba®ag p
+432 k3ay by 2by pi® — 448 kag by by® + 1056 k3ag by>by i
+472 k3 a1 b2 = 0,

%, ‘ 320 ka1 CL23b2 + 480 ka12a22b1 — 360 k3a02a1 as
+120 k%las?b; + 320 kag a13as — 1056 k3ag as?aq i
+320 k)ao a23b1 — 472 k3a23b1 1% + 180 kzlal as ap
—256 k3a13as p + 224 kay3as’p — 72 k3ag a,®
+112 kas*by 1 — 200 k2ay ax®p? + 448 kag ay ax’p
—648 k2a32by ay + 15 k2la;® + 160 k2lay pas?
—432 k3a12b1 ap — 20 la1 022 + 480 ka02a1 CL22
—576 k3a0 a22b1 + 16 k‘als = 07

N\ =5
& —192 kag2bs® — 96 kb by + 32k3by * 2

—96 kbo ag + 81by® + 16 1bo? juag + 16 1by %1 by

+192 k2lag?by + 288 k3a12by? 11 + 416 k3by ag i
+72k3ay b ®p® — 128 ka1 2by® 1 — 384 kay by®by

—16 k21bo3 14 4 96 k3ag3bs 13 + 192 k3ag b1

+216 k3by 2by’ 1 + 72 kP ao?by 2 11 + 480 k3ag2bo? 2

—576 kag b12by? — 128 kag3by’ 1 — 64 kag by 1
+161b22par + 16 1bo%was — 192 k21by 13bs ay

+720 k3ag ay by by 3 + 1032 k3ay ba?by pu® 4 576 k3ag ag ba?p?
—768 kao ay b1 b22‘L14 — 256 kal b13b2 m— 256 k‘ao b23a2 1%
—384 kb %bo%as p — 152 k21bo p2ag — 122 k21by % 112bs

—96 k21by pi3ag? 4 672 k3ag by by 2 — 384 kag2by%ba
—168 k2lag p3bs® + 432 kPag by %by 1 — 36 k21by % piPag = 0,

5

G) 128 kaz®hi® — 96 K2lazby + 16 K2laz? i
+36 k2lai2ag + 96 k2las ag? — 432 k3a;2bs ag
—576 I{IBCLO a22b2 — 416 k‘SCLQsz m— 216 ]{330/12&22}1,2
—480 k2ap2as? i — 192 k3ag as®p? + 96 kas by 1
+384 ka12a2262 + 256 k’ao a23b2 + 256 ka13a2 b1
+96 kaitag 1+ 384 kag?ai2as 4 192 kag?as®
3122 k%la 2 pas + 192 k%lay as by + 152 k2las?pag
—720 k3ao ay bl as — 1032 k3a1 a22b1 m— 672 k3a0 a12a2 1
+384 kal a23b1 Mm— 72 k3a02a12 — 72 k3a13b1
—161a1%as — 8laz3u — 16las%ag + 128 kag>as?
—288 k3ay2b,? — 32k%a1tp — 96 kPagPay
+64 k‘ao a14 + 768 k‘ao ay a22b1 + 576 k(lo a12a22,u = O,

7 —4 < P
e 413 1+ 2016y by® + 24 k3ag®by 13

—320 kao b13b2 —96 ka02b13u — 480 ka02b1 622

+96 k3ag by p? + 88 k3b13by 1 — 4102 ay

+72k3a2 b3 13 + 160 kPaq bo®u — 48 kay by

—320 kby by3as — 320 kag a1 bo® — 17 k21, %2

—480 kay by by — 16 kby® — 39 k21b1 2 aq

—168 k2lag pu3by by — 228 k2laq p3by ag + 864 k3by by as 11
+360 k3a12by by 1 + 720 k3ag ag by by p + 288 k3agZay by 11
+936 k3a0 ai b22u2 + 144 k3a0 ay b12M3 + 648 k3a1 b12b2 [LQ
—576 k,‘ao bl b22a2 Mm— 288 ka12b1 b22/.L — 192 k613b2 as |
—192 ka1 as b23,u — 576 kao aq b12b2 m— 288 ka02a1 b22p,
+241by pag by — 40 k21by pnby® — 252 k21by 1i2bs ag

+576 k3a1 ag b22/.L3 + 408 k3a0 b22b1 n+ 576 k3a02b2 bl u2
—192 kag®by by pu — 96 k21bo? p2aq — 24 k21by pPag? = 0,

4
(%) —4lar®+ 48 kay*by — 12101 a2 + 96 kao®ar®
—201laq ,ua22 — 241a; ag as + 320 kag a1>as s
+39 k2la12b1 + 17 k2la13,u + 24 k21a1 a02
—360 kBCLl b12a2 — 160 k3a23b1 ﬂ2 — 144 ]{?30,0 a12b1
—288 k3ap2by as — 96 k3ag a3y — 88 k3ay3ag p?
+480 kao2a1 a22u + 192 kag?’bl b2 + 288 ka1 a22b12
+192 ka1 3bs as + 288 kap?as?by + 192 kag3a; as
—576 k3a22b1 by + 96 k2la22u by + 40 k2l(11 ,u2a22
+168 k2la2 by ay + 228 kzlbl as ag + 252 k21a1 nas ag
—864 k3a32by ay i — 720 k3ag ay by agy — 24 k3ag3ay
+16 ka1 — 72k3a13by — 648 k3ay%as by 1
—936 k2ag az?by 1 — 408 k3ag az?ay p? — 576 k2ap2a; as p
+320 ka1 a23b2 12 + 576 kao a22b2 ay + 480 ka12a22b1 y4
+320 kCLO CL23b1 u—+ 576 kao CL12(12 b1 = 0,

o
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S\ —3
(% 8 k3b1dp — 81bs2j1as + 32 k3bs3as

+456 k3a12b22u2 + 72 k3a12b,2u3 — 150 k21bs p3aq?

+88 k3aq b3 u? — 256 kag ba>as — 384 kby%bo2as

—64 k‘a22623u — 256 k:a1 b13b2 — 32 kb14a2 y

+81by pag? + 8l1)12,u ap + 288 k3a22b22,u3

+192 k3ao2bo® 1 + 96 k3ag2by 2 12 + 160 k3ag3by p2

—32 k‘a04b2 o — 64 ka03bl2u — 384 k‘a02b1262

+161by pray by + 80 k21bo? i2ag — 30 k21b1 2 piB ay

—240 k2lay p3bs ag — 200 k2laq by u2by — 128 kaq 2by>

—128 kag®ba? 4 16 1by2ag + 16 1b12by

—60 k2lay 13by ag + 288 k3ag a1 by p3 + 288 k3ag2ag by
+768 k3ao b22a2 /.LQ — 64 kao b14 + 144 k3a0 ag 512M3

+312 k3ay ba?by pu + 480 k3b12by ag 2 + 720 k3ay as by by p?
+72 k3a02a1 bl ,U,3 — 384 kal as b22b1 o — 384 ka02a1 b1 bQ 12
—128 k,‘ao ay b13,u — 192 ka12b12b2 Mm— 768 kag ay bl b22
—384 kag b12b2 as i — 192 ka02b22ag w—192 kag a12b22,u
—38 k21b 2 juby — 40 k21by? pi2ag — 8 k2lby* nag

—160 k,‘lez ,u2(102 + 240 k3a0 b12b2 12 + 1104 k3ao al b1 bg /.LQ = 9_,

A3
(% —161a1%pas — 161laz?pag + 30 k2la; by

—161by a1 ag + 150 k2lag b1 — 144 k3ag a1 by

—9288 k3ag2by ay — 456 k3as2by % — 288 k3ag by 2as

—32 k3a23b2 }1,2 — 88 k3a13b1 o — 72 k3a02b1 al

—96 k3ao2a1?p — 192 k3ag?as?u? — 160 k3ag3ag p

+64 kag®ar? + 32 kag*az — 288 k3a?by?

—8 k3a14,u2 + 64 ka23b22 — 8las a02 — 8[(122172

—8lai2ag — 72 k3121 + 32 kay by

—80 k2lag? by + 38 k%la1?pay + 200 k2lay prag by

+240 k2la2 b2 ag + 60 k2lbl ay ag + 40 k2la12/1 ap
+8k2lay? i ag + 160 k2lag pag? — 312 k3ay ax?by i
—480 k3a12b2 as (b — 768 l<:3a0 a22b2 M — 1104 k3a0 aj a2 bl y2
—240 k3ag a12ag p2 + 128 kag®by 2 pu 4 192 kay 2ag by
+192 kao a22b12 + 192 k‘a02a22b2 + 128 kao a13b1

+128 kag3as? i + 64 kag a1* i + 384 kay?as?by p

+384 kCLl CL22b1 b2 + 256 /{:a13bl as [ + 384 kao a12a2 b2
+768 kag CL22b1 a1+ 384 ka02a1 as by + 384 k:a02a12a2 W
—720 k3a1 bl bz az + 256 k‘ao a23b2 o= 07

G ) ’ —24 k3b23a1 — 48 ka1 b14 + 32 k3613a2 /,L2
+96 k3ay3bo 13 + 4112 pay + 121ay by?
—96 kao2by® + 410> + 81by pas by
+81bs ppag a; — 360 kzlbg /1,30,1 as + 56 ]{32102 by ,U,2b2
—17k%lay by 2 4 120 k21bo% pay — 364 k21bs p2ay ag
—60 k2lag p3b1 ag — 45 k21by pPa1? + 360 k3aq?by by p3
+768 k3a0 by by as /LQ + 288 k3a0 aq b22,u + 72 k3a02a2 by /1,3
+528 k3a12by by pu? + 72 k3ag ay?by p® + 144 kPay by%bo
+144 k3a1 as b12#3 + 576 /<:3a0 aj ag b2 [1,3 - 72 k3b1 bz2a2 J
+744 k3a1 ao b22u2 + 456 k3a02a1 by ,u2 + 168 k3a0 aq b12u2
—96 k'(122b1 b22,u — 64 k‘a() 613a2 o — 192 ka02b1 b2 as W
—192 kao a12b1 b2 m— 192 kao ap az bgzp — 192 k:al as b12b2 o
—576 k)ao b1 b22a2 — 192 ka1 as b23 — 32 ka13b22u
—288 ]{3042[)1 b22 — 192 kb13b2 as — 32 ka12b13u
+41by prag? + 241by ag by — 5 k21 >+ 24 k3ag bi®
+32 k3a03b1 ,LLQ — 16 ka04b1 m— 192 ka03b1 bg
—576 kao ay b12b2 — 64 ka03a1 b2 n— 96 ka02a1 b12u
—60 k21by p1bo ag — 32 k21by pi2ag® — 288 kag?a by?
+216 k3a02b2 bl n = 07

led

%)2 : 16 ka04a1 —41by a12 + 32 ka22613
—96 k3b1%as + 32 ka1%b1* — 4lay ag?
—4lay®p — 8lay ag by + 45 k2lay by
+5 k2la13,u2 —12 lbl /Lagz -8 lbl ap ag
—32 k‘3(113b2 om— 72 I{IBCLO b12a1 — 72 k3a02b2 al
+24 k3a23b1 ,U,3 — 144 k3a12b1 b2 — 360 k3a1 b22a2
—32k3ap3a; uw—24 k3ao a13,u2 + 96 kay a22b22
+64 kag a13b2 + 48 ka14b1 w+96 ka02a12b1
+64 kaOBaQ by —24lay pagag — 120 k21a22u2b1
+17 k21a12u b1 — 56 k2la1 1bg as + 360 k2lb1 by as
+60 k%lay by ag + 60 k%lay p2as ag + 32 k%lay pag?
+72 k3a1 a22b2 ,LI,2 — 744 k3a22b1 b2 o — 576 k3a0 bl bg as
—528 k3a1 as b12u — 768 l<:3a0 a1 ag bz M — 288 k3a0 a22b1 ,LL2
—144 k3a12b1 as /.LQ — 168 k3a0 a12b1 Mm— 456 k3a02a2 b1 y2
—216 k3a02a1 a2 ,u2 + 192 ka23b1 b2 1% + 576 kao a2262 ai [
+192 kag a22b1 by + 288 kay azzblzu + 192 ka13b2 ag [
+192 ka12a2 b2 b1 + 192 l{iao ay az b12 + 576 kao a12b1 as [
192 ka02a1 as b2 + 288 ka02a22bl y + 192 ka03a1 as [
+96 ka02a13,u + 364 k2lb1 as Lag = 0,

o -1

(% —32 kb ay + 8lag b2 — 96 k3by’as

—64 kag3b1? + 64 k3ag3by p + 24 k3ag?bi 2p

+24 k2lbyag — 6 k>1b1%by + 8lag by

—192 kao a12b22 + 72 k3a12bl2u2 + 96 k3a12b22,u

—128 k‘ao ay b13 — 192 ka12b12b2 — 192 ka02b22a2

+288 k3ag2bo’ 12 + 24 k3a13by pu — T2 k3by boay

—32 k‘a0462 + 8 lbg CL02 — 64 ka22b23 -8 k3a1 b13u

+72 k32201213 + 16 Lay by by 4+ 112 k21by pay be

—270 k2lay2by p2 — 240 k21by i3 a2 + 416 k21by* 1 as

+90 k2lag by * i — 240 k2lay p%bs ag — 60 k21by p2ay ag
+288 k3ag agby p1® + 288 k3a12ay by 1® + 144 k3ag aq ag by i1
—96 k2ag ba’as 1 — 240 k3b1 2y as 1+ 720 k3ay as by by p?
+288 k3a02b2 a2 /1,2 + 240 k3a0 aj by by + 432 k3a0 a12b2 /LQ
+72 k3a02a1 b1 ,U,2 — 384 ka1 a9 b22b1 — 384 kao b12b2 as
—384 kag2ay by by — 64 k21by prag? — 4k21b % pag

—120 k‘QZbl u3a1 a = 07

%/ ' =24 k?3b13(11 - 72 k3012b22 - 81(112,[1/ an

+240 k2lag by? + 8 kPay3by i — 96 k3ag2by ? 2

—72 k3a12b12,u -8 la2 ,ua02 -8 lbg /1/(122

—288 k3ay2by? 1 — 64 k3agPas p? — 288 kPag baas

—288 k3b12b2 az + 96 k3a23b2 #3 + 64 ka03a12,u

+32 kag*as pn + 64 kas®ba® 1 — 24 k3ag2ar 2 p?

+32ka1*by 1 — 16 1by pray ay — 416 k2lag?by p?

—90 k2la1? by — 112 k2lay p2as by + 270 k2lag pnby?
+120 kzlbl b2 ay + 6 kzlalz/f’ag + 60 kQZbl ay | ap
+4kla?plag — 24 k2 las?pBag + 64 k2las pi?ag?

+72 k3a1 a22b1 ,LL3 — 720 k3a1 as bl b2 n+ 96 k3a0 a22b2 ,U/Q
—144 k3a0 bl b2 a; — 240 k3a0 aj ag bl /Lz — 288 k3a02b2 az |
—432 k3ay b12as 1w — T2 k3ag%a; by o + 384 kay azby by
+192 kCLoQanbz 12 + 192 kCLo CL22b12,U, + 384 kCLo a1262 as [
+192 ka12b12a2 n+ 128 k,‘ao a13b1 n+ 384 ka02a1 ao b1 12
+240 kzlag 1% bs ag + 240 k3a12b2 a9 ,U,Q =0,
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! 0 b
(%) : —32kai2b,® — 81by payas — 81by pagas

—584 k2la1 b2 u2a2 +8 ZCLQ bl bg - 4[(11 ,U,CLO2
+96 k2la1 b22 — 4lb1 y2 a12 +8 la1 ap b2
+3k2la13 3 — 288 k3by by2ags — 136 k3bi%ag
—72 k’3612bg ay — 72 ]{)3(10 b22a1 -8 k3a03a1 }142
+8 k3a03b1 Mm— 96 ka22b2261 + 32 ka22b13,u
+32 ka13b12u — 64 k'a() b13a2 — 96 ka02a1 b12
—64 ka03a1 b2 + 16 kCL04CL1 m— 3 k’2lb13
—32kai®bo® + 41by ag® + 4lag by
+584 k21by juag by — 96 k21by pPas? + 67 k2lay by >
—67 k2la1?p?by — 76 k2lay pbs ag + 76 k21by as p2aq
+].2 k‘2lb1 bg ag — 12 k:21a1 l,LBO,Q ag — 8 k?2lb1 /,LCLOZ
+8k2lay p2ap? + 288 k3ay az?by 1P + 192 k3as?by by p?
+72 k3a12a2 b1 ,LL3 — 192 k3a1 as b22,u + 72 k3a0 CLQle ,ug
+24 k3a12b1 by o — 528 k3a0 by b as w—+ 136 k3a13b2 /.L2
+528 kSLLQ ai as by /1,2 —24 k3a1 as b12u2 — 48 k3a0 aq b12/1,
+96 k‘SG,OQCLl bo p — 16 ka041)1 — 96 k3a02b1 a9 ;LQ
+48 k3a0 CL12b1 ,U,2 + 96 kal a22b22,u, + 192 kao a22b1 b2 y2
—192 kaq as b12b2 + 192 ka12b1 by as pp — 192 kag a; as b22
+192 kao?ay as by 4+ 192 kag a; as b12,u + 64 kagaiby p
—192 ]{I(ZU a12b1 b2 — 192 ka02b1 bQ ag + 64 ka03b1 as (b
+96 ka02a12b1 o= 07
(24)
Solving the algebraic equations (24), yields the following
Cases:
Case (i). ap =0, a; =0, az = 3k2,
by =0, k=k, | =2k p=

by =0,

1
2k2

Case (ll) a0:2k2u, a1 =0, a2:3k2, b1:0,
be=0, k=k, 1 =0, p=p,

Case(”l) apg= -3, a; =0, a2—3k2, b1:0,
bo=0, k=k, | =2k, p=—17,

CaSG(lV) ap =0, a1 =0, ay =0, by =0,
by = 2y, k=h, =2k p=5h

Case (V). ap = 2k?*u, a1 =0, ag =0, by =0,
b2:3k’2/t2, k:kv 1:07 =

CaSE(VI) ag=-3, a1 =0, as =0, by =0,
by= 2, k=h, | =2, pi=—7%,

Case (VII) ag = 2k2u, a1 =0, ay = 3]452, b = 0,
bo =3K%12, k=k, =0, p=p.
(25)
Corresponding to the above seven cases and on substituting the
general solution of (19) given by (20) and (21), we obtained
traveling wave solutions of the mN equation (5) which have
been descibed in following subcases:

Fig. 1. The periodic solution w1 (x,t) which is a periodic wave for k =
2,A=3B=1

Subcase 1. If u > 0, then we obtain
Case (i) gives the following value of wu(z,t):

uy(z,t) =

1/2\[\/\/ (Acos(1/2 V2V (ka—2 kt))—Bsin(1/2 VaVk 2 (ka—2 kt)) )

Asin(1/2V2VE—2(ke—2kt))+B cos(1/2 V2VE—2 (kz—2kt)))*
(26)

The traveling waves corresponding to u, (z,t) for k =2, A =
3, B = 1 has been shown in figure 1. Corresponding to Case
(i), we have

_ o2, o K2n(Acos(yiha) ~Bsin(Vake))®
UQ(ZE,t) = \/2]6' w+ 3 (Asin(\/ﬁk-%)JrBcos(\/ﬁlm))2 .
27)

Case (iii) yields the following solution of Eq. (5):

(Acos(v—k—2(kz—2kt))—Bsin(v—F 2(ka—2kt)))"

us(z,t) = \/—3 —3

Corresponding to Case (iv), we get

(28)

ug(z,t) =

(Asin(vV=FZ(ka—2kt))+B cos(vV—k 2(kz—2kt)))*’

2
1/2[[\/ Abm I/Q\f\/ 2(kz— 2k:t))+Bcos(l/2\f\/ 2(kz— 2k:t)))

A cos 1/2ka 2(kx— 2kt)) Bsm(l/2f\/ 2(kx— 2kt)))2.
(

29)

Case (v) corresponds to the following solution of Eq. (5):

k2p (A sin(ﬂkz){—B cos(\/ﬁk:z))2
s(z,t) = ([2k2 .
u (1: ) \/ H +3 (A COS(\/ﬁkI)*B sin(\/ﬁkz))2
(30)
The mN equation has the following solution with respect to
Case (vi):

(Asin(vV=F2(ke—2kt))+B cos(vV—k2(kz—2kt)))*

ug(z,t) = \/—3—

31)

(A cos(\/fk*Q(kz72 kt))fB sin(\/fk*"’(kz72 kt)))2 :
(
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Equation (5) has the following solution corresponds to Case

(vi):

(Acosh(vVk=2(ke—2kt))+ B sinh(Vk—2(kz—2 kt)))

’u,lg(l',t) = \/—3 +3

(38)

The mN equation has the following solution corresponding
to Case (vii):
11,14(1'7 t) =

(Asinh(VE=2(kz—2kt))+ B cosh(VEk—2(kz—2kt)))*

3k2p (A cosh(ﬂkx)-&-B sinh(\/—iuk'z))2

Fig. 2. Thetraveling solution of thefield uig(z,t) fork=1,A=2,B =3

Equation (5) possesses the following solution corresponding
to Case (vii):

ur(x,t) =

ok2,, — BkQM(As,inh(\/—iukz)-Q—Bcosh(\/—i,ukx))2 _
H (Acosh(mkz)-ﬁ—B sinh(\/—i,ukcc))2

V. CONCLUSION AND DISCUSSION

In this article, we have established the traveling wave
solutions of the mN Eq. (5) using Lie classical method,
Nonclassica method and the modified (G’/G)-expansion
method. These traveling wave solutions are expressed in terms
of hyperbolic, trigonometric and rational functions involving
arbitrary parameters. When these parameters are taken special

values, the solitary waves are derived from the traveling waves.

It has been shown that the proposed method is direct, concise,
basic and effective and easy to calculate, and it is a powerful
mathematical tool for obtaining exact traveling wave solutions

3k2u(A sin(\/ﬁk‘z)+B cos(\/ﬁkm))

of nonlinear evolution equations and can be used to solve

- Pl

92 3k:2,u(Acos(\/ﬁk:z)—B sm(\/ﬁkw )
\/ ot (Asin(y/mka)+B cos( k)

(32)

Subcase 2. If i < 0, then we obtain
Case (i) gives the exact traveling wave solution of Eq. (5) as:

US(xat) =
3/2 (Asinn(\/=1/25=2(ka—2kt)) + B cosh( /= 1/2 k=2 (ka2 kt)))z
(Acosh(/=1/2k=2(ka—2 kt)) + B sinh(y/~1/2 k=2 (kz—2 k-t)))z'
(33)
Equation (5) possesses the following solution corresponding
to Case (ii):

_ 9 k2p (A sinh(ﬁkz)-}—B cosh(\/—i,ukz))2
Ug(m, t) o \/2 k H 3 (A cosh(\/qkz)-&-B sinh(\/—i,ukcc))2 ’
(

Case (iii) corresponds to the following value of u(x,t):

Ulo(iL‘,t) =
343 (Asinh(V&=2 (ka—2 kt))+B cosh(VE—2(ka—2 k1)) (35
(A cosh(VE=2(kz—2 kt))+Bsinh(Vhk—2(kz—2kt)))*

The traveling waves for ujo(z,t) for k =1,A =2, B =3
are shown in figure 2.
Case (iv) yields the following solution of Eq. (5):

uip(z,t) =

\/_3/2 (Acosh(\/=1/2K2(kz—2 k1)) + Bsinh(y/~1/2 k=2 (ke —2k1)) ) :

(Asinn(\/=1/25=2(ka—2kt)) + B cosh( /=172 k=2 (ke—2k1)) )
(36)

Case (v) gives the following traveling wave solution:

(A cos(\/ﬁkw) —B sin(ﬁkx))

(o, 1) = \/2 K23 w2y (Acosh(\/fp,kx)JrBsinh(\/Tuk:a:))z'

(A sinh(\/fukac)JrB cosh(\/juk‘m) 2
37)

z-other NPDEs in mathematical physics. The availability of

mathematical computer software like Maple facilitates the

tedious algebraic calculations. It is worth to mention here that
the correctness of the solutions has been checked with the aid

of software Maple.
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