On Suborbital Graphs of the Congruence Subgroup $\Gamma_0(N)$

Bahadir O. Guler, Serkan Kader and Murat Besenk

Abstract—In this paper we examine some properties of suborbital graphs for the congruence subgroup $\Gamma_0(N)$. Then we give necessary and sufficient conditions for graphs to have triangels.

Keywords—Congruence subgroup, Imprimitive action, Modular group, Suborbital graphs.

I. INTRODUCTION

LET Γ denote the inhomogeneous group $PSL(2, \mathbb{Z})$ acting on the upper half plane $H := \{z \in \mathbb{C} : Im(z) > 0\}$ via:

$$A(z) = \frac{az+b}{cz+d}, \ A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma.$$

Among the subgroups of $\boldsymbol{\Gamma}$ the congruence subgroups such as

$$\Gamma(N) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma \mid a \equiv d \equiv 1 \mod N, b \equiv c \equiv 0 \pmod N \right\}$$

$$\Gamma_0(N) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma \mid c \equiv 0 \pmod{N} \right\}$$

have been the objects of detailed studies due to their signifiance in the arithmetic of elliptic curves, integral quadratic forms, elliptic modular forms in [5], [6]. In this paper, we define $\Gamma^*(N)$ as the group obtained by adding the stabilizer of ∞ to the congruence subroup $\Gamma(N)$, that is,

$$\Gamma^*(N) := \left\langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \Gamma(N) \right\rangle$$

which is easily seen that

$$\Gamma^*(N) = \left\{ \begin{pmatrix} 1 + aN & b \\ cN & 1 + dN \end{pmatrix} : a, b, c, d \in \mathbb{Z}, \det = 1 \right\}.$$

Bahadir O. Guler, is with the Rize University, Department of Mathematics, Faculty of Arts and Science, Rize-Turkey. email: bahadir@ktu.edu.tr.

Serkan Kader and Murat Besenk are with Karadeniz Technical University, Department of Mathematics, Faculty of Arts and Science, Trabzon-Turkey. emails: serkankader@mynet.com, besenk@ktu.edu.tr.

II. THE ACTION OF $\Gamma_{\scriptscriptstyle 0}(N)$ ON $\hat{\mathbb{Q}}$

Every element of $\hat{\mathbb{Q}} := \mathbb{Q} \cup \{\infty\}$ can be represented as a reduced fraction $\frac{x}{y}$, with $x, y \in \mathbb{Z}$ and (x, y) = 1. Since

 $\frac{x}{y} = \frac{-x}{-y}$, this representation is not unique. We represent ∞ as

$$\frac{1}{0} = \frac{-1}{0}$$
. The action of the matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$ on $\frac{x}{y}$ is

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
: $\frac{x}{v} \rightarrow \frac{ax + by}{cx + dv}$

It is easily seen that if $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$ and $\frac{x}{y} \in \mathbb{Q}$ is a reduced fraction then, since c(ax+by)-a(cx+dy)=-y and d(ax+by)-b(cx+dy)=x,

$$(ax + by, cx + dy) = 1.$$

The action of a matrix on $\frac{x}{y}$ and on $\frac{-x}{-y}$ is identical.

Theorem 2.1. The action of $\Gamma_0(N)$ on $\hat{\mathbb{Q}}$ is not transitive.

Proof. From (1), for
$$\begin{pmatrix} a & b \\ cN & d \end{pmatrix} \in \Gamma_0(N)$$

$$\begin{pmatrix} a & b \\ cN & d \end{pmatrix} \begin{pmatrix} 1 \\ N \end{pmatrix} = \frac{a+bN}{cN+dN}$$

is a reduced fraction, so $\frac{1}{N}$ is not sent to $\frac{1}{N+1}$ under the action of $\Gamma_{\scriptscriptstyle 0}(N)$.

Without loss of generality, for making calculations easier, N will be a prime p throughout the paper.

Theorem 2.2. The orbits of
$$\Gamma_0(p)$$
 are $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ p \end{pmatrix}$.

Proof. Using the corallaries from [2] we can write down the sets of orbits of $\Gamma_0(N)$ in general

$$\begin{pmatrix} a \\ b \end{pmatrix} = \left\{ \frac{x}{v} \in \hat{\mathbb{Q}} : (p, y) = b, x \equiv a \mod \left(b, \frac{N}{b}\right) \right\}.$$

Then we have

$$\begin{pmatrix} 1 \\ p \end{pmatrix} = \left\{ \frac{k}{yp} : k \in \mathbb{Z}, (k, yp) = 1 \right\}$$

and

$$\begin{pmatrix} 1 \\ 1 \end{pmatrix} = \left\{ \frac{k}{\ell} : k, \ell \in \mathbb{Z}, (k, \ell) = 1 \right\}.$$

We now consider the imprimitivity of the action of $\Gamma_0(p)$ on $\hat{\mathbb{Q}}$.

Let (G,Ω) be transitive permutation group, consisting of a group G acting on a set Ω transitively. An equivalence relation \approx on Ω is called G-invariant if whenever α , $\beta \in \Omega$ satisfy $\alpha \approx \beta$ then $g(\alpha) \approx g(\beta)$ for all g in G. The equivalence classes are called blocks.

We call (G,Ω) imprimitive if Ω admits some G – invariant equivalence relation different from

- (i) the identity relation, $\alpha \approx \beta$ if and only if $\alpha = \beta$
- (ii) the universal relation, $\alpha \approx \beta$ for all $\alpha, \beta \in \Omega$.

Otherwise (G,Ω) is called primitive. We now give a lemma from [3].

Lemma 2.3. Let (G,Ω) be transitive. (G,Ω) imprimitive if and only if G_{α} , the stabilizer of a point $\alpha \in \Omega$, is a maximal subgroup of G for each $\alpha \in \Omega$.

What the lemma is saying is whenever $G_{\alpha} \leq H \leq G$, then Ω admits some G – invariant equivalence relation other than trivial cases. In fact, since G acts transitively, every element of Ω has the form $g(\alpha)$ for some $g \in G$. If we define the relation \approx on Ω as

$$g(\alpha) \approx g'(\alpha)$$
 if and only if $g' \in gH$,

then it is easily seen that it is non-trivial G-invariant equivalence relation. That is (G,Ω) imprimitive.

From the above we see that the number of blocks is equal to the index $\mid G : H \mid$.

We now apply these ideas to the case where G is the $\Gamma_0(p)$ and Ω is $\hat{\mathbb{Q}}$. An obvious choice for H is $\Gamma^*(p)$. Clearly $\Gamma_{\infty} \lneq \Gamma^*(p) \lneq \Gamma_0(p)$. Then we have

Corollary 2.4. ($\Gamma_0(p)$, $\hat{\mathbb{Q}}$) is imprimitive permutation group.

 $\Gamma_0(p)$ acts transitively and imprimitively on the set $\begin{pmatrix} 1 \\ p \end{pmatrix}$.

Let \approx denote the $\Gamma_0(p)$ – invariant equivalence relation induced on $\begin{pmatrix} 1 \\ p \end{pmatrix}$ by $\Gamma_0(p)$ as:

If $v = \frac{a_1}{pc_1}$ and $w = \frac{a_2}{pc_2}$ are elements of $\begin{pmatrix} 1 \\ p \end{pmatrix}$, then $v = g(\infty)$ and $w = g'(\infty)$ for elements $g, g' \in \Gamma_0(p)$ of the form

$$g = \begin{pmatrix} a_1 & b_1 \\ pc_1 & d_1 \end{pmatrix} \quad , \quad g' = \begin{pmatrix} a_2 & b_2 \\ pc_2 & d_2 \end{pmatrix}.$$

Now $v \approx w$ if and only if $g^{-1}g' \in \Gamma^*(p)$, that is,

$$g^{-1}g' = \begin{pmatrix} d_1a_2 - p(c_2b_1) & d_1b_2 - b_1d_2 \\ p(a_1c_2 - c_1a_2) & a_1d_2 - p(c_1b_2) \end{pmatrix} \in \Gamma^*(p)$$

if and only if $d_1a_2 \equiv 1 \pmod{p}$ and $d_2a_1 \equiv 1 \pmod{p}$. Then $a_1d_1a_2 \equiv a_1 \pmod{p}$ and so $a_1 \equiv a_2 \pmod{p}$.

Hence we see that

$$v \approx w$$
 if and only if $a_1 \equiv a_2 \pmod{p}$ (1)

By our general discussion of imprimitivity, the number $\psi(p)$ of equivalence class under \approx is given by

$$\psi(p) = |\Gamma_0(p):\Gamma^*(p)|.$$

Since
$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}^p \in \Gamma(p)$$
, then $|\Gamma^*(p):\Gamma(p)| = p$. From [6],

we know that

$$|\Gamma:\Gamma(N)| = N^3 \prod_{p|N} \left(1 - \frac{1}{p^2}\right)$$
 and $|\Gamma:\Gamma_0(N)| = N \prod_{p|N} \left(1 + \frac{1}{p}\right)$.

Calculating for N = p and using the following equation

$$\underbrace{|\Gamma:\Gamma(p)|}_{p(p^2-1)} = \underbrace{|\Gamma:\Gamma_0(p)|}_{p+1} \cdot \underbrace{|\Gamma_0(p):\Gamma^*(p)|}_{p-1} \cdot \underbrace{|\Gamma^*(p):\Gamma(p)|}_{p},$$

we have that

$$\begin{pmatrix} 1 \\ p \end{pmatrix} = \begin{bmatrix} 1 \\ p \end{bmatrix} \cup \begin{bmatrix} 2 \\ p \end{bmatrix} \cup \dots \cup \begin{bmatrix} p-1 \\ p \end{bmatrix}.$$

From (1), it is clear that

$$\begin{bmatrix} 1 \\ p \end{bmatrix} = \left\{ \frac{1 + xp}{yp} : x, y \in \mathbb{Z} \right\} \cong [\infty] = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

III. SUBORBITAL GRAPHS

In 1967 Sims introduced the idea of suborbital graphs of a permutation group G acting on a set Ω : these are graphs with vertex set Ω , on which G induces automorphism in [7]. Also in [8] the applications are used in finite groups.

Let (G,Ω) be transitive permutation group. Then G acts on $\Omega \times \Omega$ by

$$g:(\alpha,\beta)\rightarrow(g(\alpha),g(\beta)), g\in G \text{ and } \alpha,\beta\in\Omega.$$

The orbits of this action are called suborbitals of G, that containing (α,β) being denoted by $O(\alpha,\beta)$. From $O(\alpha,\beta)$ we can form a suborbital graph $G(\alpha,\beta)$: its vertices are the elements of Ω , and there is a directed edge from γ to δ , denoted by $\gamma \to \delta$, if $(\gamma,\delta) \in O(\alpha,\beta)$. We can draw this edge as a hyperbolic geodesic in the upper half-plane H.

In this final section, we determine the suborbital graphs for $\Gamma_0(p)$ on $\begin{pmatrix} 1 \\ p \end{pmatrix}$. Since $\Gamma_0(p)$ acts transitively on $\begin{pmatrix} 1 \\ p \end{pmatrix}$, each suborbital contains a pair (∞, v) for some $v \in \begin{pmatrix} 1 \\ p \end{pmatrix}$; $v = \frac{u}{p}$, we denote this suborbital by $O_{u,p}$ and corresponding suborbital graph by $G_{u,p}$.

 $G_{u,p}$ is a disjoint union of $\psi(p)$ subgraphs forming blocks with respect to " \approx " $\Gamma_0(p)$ –invariant equivalence relation. $\Gamma_0(p)$ permutes these blocks transitively and these subgraphs are all isomorphic [4].

Therefore, it is sufficient to do the calculations only for the block $[\infty]$. Let $F_{u,p}$ denote the subgraph of $G_{u,p}$ whose vertices form the block $[\infty]$.

Theorem 3.1. Let $\frac{r}{s}$ and $\frac{x}{y}$ be in the block $[\infty]$. Then there is

an edge
$$\frac{r}{s} \to \frac{x}{y}$$
 in $F_{u,p}$ if and only if $x \equiv \pm ur \pmod{p}$ and $r \equiv 1 \pmod{p}$, $ry - sx = \pm p$ $y \equiv \pm su \pmod{p}$ and $s \equiv 0 \pmod{p}$, $ry - sx = \pm p$.

Proof. Since $\frac{r}{s} \to \frac{x}{y} \in F_{u,p}$, then there exists some $T \in \Gamma^*(p)$ such that T sends the pair $\left(\frac{1}{0}, \frac{u}{p}\right)$ to the pair $\left(\frac{r}{s}, \frac{x}{y}\right)$, that is, for $T = \begin{pmatrix} 1+ap & b \\ pc & 1+dp \end{pmatrix} \in \Gamma^*(p)$, det T = 1,

$$T\left(\frac{1}{0}\right) = \frac{r}{s}$$
 and $T\left(\frac{u}{p}\right) = \frac{x}{y}$. From these equations, it is

clear that $x \equiv ur \pmod{p}$ and $y \equiv su \pmod{p}$.

Furthermore

$$\begin{pmatrix} 1+ap & b \\ pc & 1+dp \end{pmatrix} \begin{pmatrix} 1 & u \\ 0 & p \end{pmatrix} = \begin{pmatrix} r & x \\ s & y \end{pmatrix},$$

so that ry - sx = p.

Conversely, let be $x \equiv ur \pmod{p}$ and $y \equiv su \pmod{p}$ and also $r \equiv 1 \pmod{p}$ and $s \equiv 0 \pmod{p}$. Then there are $b, d \in \mathbb{Z}$ such that x = ur + bp and y = su + dp. If we put these equivalences in ry - sx = p, we obtain

$$r(us+dp)-s(ur+bp)=p.$$

Since

$$\begin{pmatrix} r & b \\ s & d \end{pmatrix} \begin{pmatrix} 1 & u \\ 0 & p \end{pmatrix} = \begin{pmatrix} r & ur + bp \\ s & us + dp \end{pmatrix},$$

then rd - bs = 1. As $rd - bs \equiv 1 \pmod{p}$ and $s \equiv 0 \pmod{p}$, then $rd \equiv 1 \pmod{p}$. Since $r \equiv 1 \pmod{p}$, we obtain $d \equiv 1 \pmod{p}$.

Consequently

$$A = \begin{pmatrix} r & b \\ s & d \end{pmatrix}$$
, $\det A = 1$ and $r \equiv d \equiv 1 \pmod{p}$, $s \equiv 0 \pmod{p}$

so $A \in \Gamma^*(p)$.

The proof for (–) is similiar.

Theorem 3.2. $\Gamma^*(p)$ permutes the vertices and the edges of $F_{u,p}$ transitively.

Proof. Suppose that $u,v \in [\infty]$. As $\Gamma_0(p)$ acts on $\begin{pmatrix} 1 \\ p \end{pmatrix}$ transitively, g(u) = v for some $g \in \Gamma_0(p)$. Since $u \approx \infty$ and $u \approx u$ is $\Gamma_0(p)$ invariant equivalence relation, then $g(u) \approx g(\infty)$, that is, $v \approx g(\infty)$. Thus, as $g(\infty) \in [\infty]$, $g \in \Gamma^*(p)$.

Assume that $v,w\in[\infty]$; $x,y\in[\infty]$ and $v\to w$, $x\to y\in F_{u,p}$. Then $(v,w)\in O_{u,p}$ and $(x,y)\in O_{u,p}$. Therefore, for some $S,T\in\Gamma_0(p)$

$$S(\infty) = v$$
, $S\left(\frac{u}{p}\right) = w$; $T(\infty) = x$, $T(\infty) = y$.

As $S(\infty)$, $T(\infty) \in [\infty]$, then $S, T \in \Gamma^*(p)$. So this proof is completed.

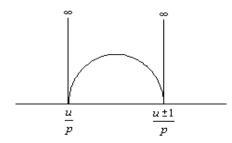


Fig. 1 $F_{u,p}$ – Suborbital Graph

Theorem 3.3. $F_{u,p}$ contains a triangle if and only if $u^2 \pm u + 1 \equiv 0 \pmod{p}$.

Proof. Since $\Gamma^*(p)$ permutes the vertices transitively $F_{u,p}$ and $\infty \to \frac{u}{p}$, then we may suppose that triangle has the form

$$\infty \to \frac{u}{p} \to v \to \infty$$
.

Assume that $v = \frac{x}{yp}$, y > 0. Since $\frac{x}{yp} \to \frac{1}{0}$, then

$$0 \cdot x - yp = \pm p .$$

As y > 0, then y = 1. Therefore $v = \frac{x}{y}$. Since $\frac{u}{p} \to \frac{x}{y}$, then

from Theorem 3.1 we obtain

$$u - x = 1$$
 and $x \equiv u^2 \pmod{p}$ (2)

$$u - x = -1$$
 and $x \equiv -u^2 \pmod{p}$ (3)

From (2) and (3), we have that

$$u^2 - u + 1 \equiv 0 \pmod{p}$$
 and $u^2 + u + 1 \equiv 0 \pmod{p}$

respectively.

Conversely, suppose that $u^2 \pm u + 1 \equiv 0 \pmod{p}$. Clearly, we have the triangle

$$\infty \to \frac{u}{p} \to \frac{u \pm 1}{p} \to \infty$$

from Theorem 3.1.

ACKNOWLEDGMENT

We would like to express our sincere thanks to Professor Mehmet Akbas for his immense help during the preparation of this paper.

REFERENCES

- M. Akbas, On suborbital graphs for the modular group, Bull. London Math. Soc. 33, no. 6, 2001, pp 647–652.
- [2] M. Akbas and T. Başkan, Suborbital graphs for the normalizer of $\Gamma_0(N)$, Tr. J. of Mathematics 20, 1996, pp 379-387.

- [3] N.L. Bigg and A.T. White, Permutation groups and combinatorial structures, London Mathematical Society Lecture Note Series 33, Cambridge Universty Press, Cambridge, 1979.
- [4] G.A. Jones, D. Singerman, K. Wicks, The Modular Group and Generalized Farey Graphs, London Math. Soc. Lecture Note Series, Vol. 160, Cambridge Universty Press, 1991, pp 316-338.
- [5] R. S. Kulkarni, An Arithmetic-Geometric Method in The Study of The Subgroups of The Modular Group, American Journal of Mathematics, 113,1991, pp 1053-1133.
- [6] B. Schoeneberg, Elliptic Modular Functions, Springer Verlag, Berlin, 1974
- [7] C. C. Sims, Graphs and Finite Permutation Groups, Math. Z., 95, 1967, pp 76-86.
- T. Tsuzuku, Finite Groups and Finite Geometries, Cambridge University Pres, Cambridge, 1982.