
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:1, 2013

75

Abstract—Support vector machines (SVMs) are considered to be

the best machine learning algorithms for minimizing the predictive
probability of misclassification. However, their drawback is that for
large data sets the computation of the optimal decision boundary is a
time consuming function of the size of the training set. Hence several
methods have been proposed to speed up the SVM algorithm. Here
three methods used to speed up the computation of the SVM
classifiers are compared experimentally using a musical genre
classification problem. The simplest method pre-selects a random
sample of the data before the application of the SVM algorithm. Two
additional methods use proximity graphs to pre-select data that are
near the decision boundary. One uses k-Nearest Neighbor graphs and
the other Relative Neighborhood Graphs to accomplish the task.

Keywords—Machine learning, data mining, support vector
machines, proximity graphs, relative-neighborhood graphs, k-nearest-
neighbor graphs, random sampling, training data condensation.

I. INTRODUCTION

HIS paper is concerned with methods that attempt to
reduce the computation time required to train support

vector machines (SVMs) for applications in pattern
classification tasks in the context of machine learning [38].
Support vector machines are considered to be among the best
machine learning algorithms for minimizing the predictive
probability of misclassification on a given problem [34].
However, they are often criticized for how time consuming
the functions for computing the optimal decision boundary
and making decisions on new patterns are, functions that
depend on the size of the initial training set and the number of
support vectors generated by the training algorithm,
respectively. There have been several attempts at reducing
these complexities. To reduce the number of support vectors
obtained, the data-post-processing approach prunes the
support vector set after the SVM classifier is built [12], [32].
However, since the bulk of the computational complexity
results from building the classifier (training), these approaches
are limited to reducing the testing time but not the training

X. Liu is with the Mathematics Department at New York University Abu
Dhabi in Abu Dhabi, United Arab Emirates (e-mail: xl450@ nyu.edu).

J. F. Beltran is with the Computer Science Department at New York
University Abu Dhabi in Abu Dhabi, United Arab Emirates (e-mail: jfb325@
nyu.edu).

N. Mohanchandra is with the Computer Science Department at New York
University Abu Dhabi in Abu Dhabi, United Arab Emirates (e-mail:
nm1345@ nyu.edu).

G. T. Toussaint is a Research Professor of Computer Science at New York
University Abu Dhabi in Abu Dhabi, United Arab Emirates (e-mail: gt42@
nyu.edu).

time. The algorithmic approach seeks to speed up the
optimization procedure inherent in the SVM algorithm, either
exactly or via approximation [13], [20], [22], [26]-[27], [31],
[37]. One such method to reduce the complexity of building
the SVM classifier, finds basis functions that maximize
accuracy in an incremental way, permitting the user to stop
this process once some limiting level of complexity has been
reached [21]. A simpler, more straightforward, and direct
approach to speed up SVMs is to use only a fraction of the
training data in the optimization algorithm that builds the
SVM classifier. There exists a plethora of these data-pre-
processing (pre-selection) methods for choosing
representative subsets of a data set. Comprehensive surveys of
these techniques are also available [11], [35]. However, only
few of these methods have been applied to SVM classification
[7], [30], [42]. Lee and Mangasarian pre-select a small
random sample of the data from which the SVM classifier is
designed [24]. While selecting a random sample of the data,
also called bagging, is very efficient computationally,
intuition suggests that the randomness aspect of this procedure
may not yield the best subset in terms of classification
accuracy, for a given fractional size of the training data [5].
To address this concern, another class of methods selects a
subset of the data that lie either near the boundary of the class-
conditional distributions, or close to the decision boundaries
between classes. The earliest algorithm for selecting points
that lie near the decision boundary is Peter Hart's condensed
nearest neighbor rule, which finds a training-set-consistent
subset of the training data [17] A training-set-consistent subset
of the data is one that classifies all the data correctly using the
1-nearest-neighbor decision rule [2]-[3]. Wang et al. select a
subset of the data (which they call key vectors) that lie on the
boundary of each class, using Parzen window estimates of the
class-conditional probability density functions in the feature
space [40]. Wang, Neskovic, & Cooper select a pattern near
the decision boundary if its distance to a pattern from a
different class is relatively small [39]. Nghi and Mai select
data near the decision boundary by choosing for each data
point, the nearest point from another class, and then iterating
this process by exchanging the roles of the classes [29].
Koggalage and Halgamuge first use cluster analysis
techniques to identify clusters in the data, and then identify
crisp clusters, i.e., those clusters that have all their points
belonging to the same class [23]. Finally they discard points
that lie in the interiors of crisp clusters, on the grounds that
they are unlikely to be support vectors. A similar approach by

Xiaohua Liu, Juan F. Beltran, Nishant Mohanchandra, and Godfried T. Toussaint

On Speeding Up Support Vector Machines:
Proximity Graphs Versus Random Sampling for

Pre-Selection Condensation

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:1, 2013

76

Chen and Liu select points that are far from cluster centers [9].
Almeida et al. [1], and Li and Simske [25] also apply cluster
analysis techniques to training set compression. An additional
approach to pre-selecting training data makes use of proximity
graphs, motivated by the fact that there appears to be a
connection (not yet formally established) between support
vectors and Gabriel graph neighbors [44]. Zhang and King
(2002) used β-skeletons to reduce the size of the training set
before computing the support vectors [43]. The β-skeletons
are a general parameterized family of proximity graphs. For β
= 2, the β-skeleton reduces to the relative neighborhood graph
(RNG), and when β = 1, to the Gabriel graph (GG).

Here three methods used to speed up the computation of the
SVM classifiers are compared experimentally using a music
genre classification data set. Two methods use proximity
graphs for pre-selecting points that are near the decision
boundary. The first method uses the RNG, and the second
method applies the k-nearest-neighbor (k-NN) graph, [10],
[19], [36]. The RNG has been used successfully to reduce
training set size in pattern classification tasks [4], [33]. Han et
al. (2008) applied the RNG as a pre-selection method to speed
up SVMs, but in comparing the resulting training times,
testing times, and classification accuracies they neglected to
take into account the time it takes to compute the RNG prior
to pre-selection [16]. The k-NN graph has also been applied
previously to speed up SVMs but with a complicated scoring
function that determines which points are close to the decision
boundary [30]. The k-NN method tested here on the other
hand is very simple. These two methods are compared with
pre-selection of a fractional random sample.

II. THE CONDENSING ALGORITHMS

A. Relative Neighborhood Condensation
The algorithm for condensing the training data with the

Relative Neighborhood (RNG) algorithm deletes all the
training samples (in parallel) that have the property that all
their RNG neighbors belong to the same class as itself. It has
been shown in earlier studies that this method of data
condensation discards a large fraction of the data [33]. The
RNG is defined as follows (refer to Fig. 1). Given two data
points a and b, the lune of a and b, denoted by Lune(a,b), is
the intersection of the two hyperspheres with centers at a and
b, and radii equal to the distance between a and b. The two
points a and b are relative neighbors provided that the
Lune(a,b) contains no other point. In Fig. 1 a and b are not
relative neighbors because point c is contained in Lune(a,b).
The RNG is obtained by connecting with an edge all pairs of
points that are relative neighbors of each other. A brute-force
implementation of this condensing algorithm constructs the
lune for each pair of points, and then tests every other point
for inclusion in the lune, resulting in a running time
complexity of O(n3), where n denotes the number of instances
in the data set. A more clever implementation can be made to
run in O(n2+ε), where ε depends on the dimensionality of the
data, but is usually relatively small [33]. The speedup

algorithm is illustrated in Fig. 1. Rather than testing the
emptiness of the lunes for all pairs of points, find all the
relative neighbors of each point instead. In the first loop of the
algorithm assume that all the relative neighbors of point a are
to be computed. In the second loop of the program each point
is tested in turn. Assume point b is tested. In the third loop all
other points are tested for inclusion in Lune(a,b) as follows.
First construct a hyperplane H through b and tangent to the
hypersphere centered at a. When examining a point such as d
for inclusion in Lune(a,b), first test whether it lies on the side
of H that does not contain a. If this is the case then point d
cannot possibly be contained in Lune(a,b), and it is not
necessary to perform the lune-inclusion test in the third loop.
However, the great savings comes, not from avoiding this test
in the third loop, but rather from the fact that point d need not
be tested as a candidate for a relative neighbor of a in the
second loop of the program. This follows because the angle
abd is greater than 90 degrees, implying that point b is
contained in Lune(a,d), thus signaling that d cannot be a
relative neighbor of a.

Fig. 1 Speeding up the computation of the RNG

This method is illustrated in Figs. 2-4. Fig. 2 shows a set of

50 data points in two dimensions, that belong to two classes,
denoted by white and black squares.

Fig. 2 A training data set consisting of points from two classes

The relative neighborhood graph (RNG) of the data points

in Fig. 2 is shown in Fig. 3, where those edges of the graph
that connect points that belong to different classes are
highlighted by dashed lines. The resulting condensed set of
points is shown in Fig. 4.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:1, 2013

77

Fig. 3 The RNG of the data points of Fig. 2

Fig. 4 The RNG condensed set obtained from Fig. 3

B. k-Nearest Neighbor Condensation
The algorithm for condensing the training data via the k-

Nearest Neighbor algorithm works as follows. First each data
point X is marked if all its k-Nearest Neighbors belong to the
same class as the class of X. Note that the marking is done in
parallel for all the data. Then all the marked points are
discarded. This approach is inspired by an algorithm due to
Denis Wilson, for identifying points that lie near the decision
boundary [41]. Wilson classified a point as far from the
decision boundary if the majority of its k nearest neighbors
classified it correctly. In this project 'majority' is replaced by
'all' in the voting scheme. This condensing algorithm runs in
O(kn2) time using a straightforward implementation. Figs. 5-7
illustrate this process for 1-NN condensation. The 1-Nearest
Neighbor graph of the points in Fig. 5 is shown in Fig. 6. In
this graph, a point is connected by a directed edge (arrow) to
its nearest neighbor.

Fig. 5 A training set consisting of two classes

Fig. 6 The nearest neighbor graph of the points in Fig. 4

If an edge in the 1-Nearest Neighbor graph connects points

that belong to the same class then these points are discarded
from the data. The resulting condensed set obtained from Fig.
6, is shown in Fig. 7. Note that if the two classes are widely
separated it may happen that no two points belonging to
different classes are nearest neighbors of each other, resulting
in the discarding of the entire data set. This happens for
example with the set of points in Fig. 1. In such a case the
value of k needs to be increased sufficiently to ensure that
some data points from each class are kept.

Fig. 7 The 1-NN condensed set obtained from Fig. 6

C. Random Sample Condensation
The third method for pre-selecting a small portion of the

data is the simplest of all. It naively pre-selects a random
sample of the data, and thus runs extremely efficiently in O(n)
time. Because of its simplicity this method is often used to
compare how well more complex methods perform, and
surprisingly there exists some evidence that it can perform
quite well [39].

III. THE DATA

A. The Music Data
The music data consists of 23 pattern classes (music genres)

all of which also fall into two larger classes (Western and
Non-Western music). The Western genre consists of metal,
pop, hiphop, funk, disco, rock, alternative, soul, electronica,
religious, blues, country, reggae, jazz, and classical. The Non-
Western genres are made up of China, Java, Arabic, India,
Centralasia, Africa, and Japan. There are a total of 1641
instances, each with 40 real-valued tonal features related to
the pitch class distribution, pitch range and musical scale
employed, gamut and tuning system [15]. In the experiments

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:1, 2013

78

carried out here, 10% of the data was randomly set aside as
the testing set, and the remaining 90% was used for training.
All accuracy and timing outcomes were averaged over 10
trials in order to obtain standard deviations to serve as
significance estimates of the resulting differences.

IV. RESULTS

A. Phylogenetic Tree Clasification
In order to better understand the discrimination information

contained in the features of the music data, and the resulting
possible upper bounds on the classification accuracy of any
decision rule, the dissimilarity of each genre was computed by
first calculating the mean (also median) feature vector for each
genre, and from that, the 1st-order Minkowski metric (L1-
norm) between each pair of mean (median) vectors. The
resulting distance matrices were used to calculate the
phylogenetic tress displayed in Figs. 8 and 9 using the BioNJ
Algorithm [14], one of several algorithms embedded in the
SplitsTree-4 software package [6], [18]. Note that the distance
between two genres in these trees is not the straight-line
Euclidean distance between two genre nodes (leafs in the tree)
but rather the shortest path (geodesic) between them along the
branches in the tree. The tree is computed so as to match as
closely as possible the corresponding distances in the distance
matrix. The SplitsTree-4 software package also employs an
embedded graph-drawing algorithm that draws the tree nicely.
However one can manually reposition the tree, much like a
linkage that allows rotation of its joints, to suit one's purpose
without changing any of the distances involved. The tree in
Fig. 8, calculated with the mean feature vector for each genre,
shows a marked clustering of the genres into two clusters. The
cluster at the top contains all the Non-Western genres but
includes five Western genres interspersed among them: blues,
country, folk, jazz, and classical, with classical lying furthest
from the group. The cluster at the bottom consists of all
Western genres, with metal as the distant outlier of the group.

Fig. 8 BioNJ tree for the music data using mean vectors

Since the median is a more robust estimate of centrality

than the mean the BioNJ tree was also computed with the
median vectors (Fig. 9). Globally the clustering of this tree
exhibits general agreement with the clustering obtained with

the mean-vector tree of Fig. 8. However, there are some
notable differences: here reggae and India moved closer to the
Non-Western cluster at the top, whereas country and blues
moved closer to the Western cluster at the bottom.

One way to classify the genres using these phylogenetic
trees is to create a sub-tree by cutting off a branch of the tree
(deleting one of the edges). In cladistic analysis the resulting
sub-tree is called a clade [28]. In Fig. 8 the best clade
(obtained by cutting between India and reggae) contains five
misclassified groups: blues, country, classical, folk and jazz,
which are misclassified as Non-Western. On the other hand,
the best clade in Fig. 9 (obtained by cutting between folk and
Africa) yields only three misclassified rhythms: classical and
jazz, wrongly grouped with non-Western, and Japan, wrongly
grouped with Western. Hence, the median feature vector tree
appears to capture more discrimination information for these
two general genres than the mean feature vector tree.

Fig. 9 BioNJ tree for the music data using median vectors

B. SVM Speedup Methods
The standard SVM training algorithm runs in O(n3) time

and O(n2) space, where n is the size of the training set [37].
The sequential minimal optimization (SMO) algorithm for
SVM training, as implemented in the Weka package used
here, appears to run in time-complexity somewhere between
O(n) and O(n2.2), depending on the structure of the training
data [31]. To determine empirically how fast the computation
time of SMO grows as a function of the size of the data,
experiments were performed with random subsets of the
training data of varying size. The results are shown in Figs. 10
and 11. Fig. 10 suggests that the time complexity for this
music data does grow at least quadratically as the size of the
training data increases. Furthermore, as Fig. 11 shows, good
accuracy (above 87%) is achieved only when at least 75% of
the data are used.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:1, 2013

79

Fig. 10 Time versus data size for the Weka SMO

Fig. 11 Accuracy versus data size for the Weka SMO

The k-NN rule achieves a top mean accuracy of 87.6% for k

= 3. The SMO support-vector machine classifier achieved an
accuracy of 86.5% in the experiments performed by Gomez
and Herrera [15], but they reported no standard deviations and
no timing results. Replicating their experiment using the same
parameters [8] (complexity = 1.5, polynomial kernel exponent
= 1.5), Toussaint and Berzan [34] obtained a significantly
higher mean accuracy of 89.4%. In the experiments reported
here the same parameters: complexity (1.5) and polynomial
kernel exponent (1.5), with Weka SMO, were used in an
environment consisting of an Intel Core i5 CPU M450 @
2.40GHz, with a RAM of 2.00 GB and a Windows 7-64 bit
operating system.

TABLE I
TIMES AND ACCURACIES FOR THE EDITING METHODS TESTED

Edit
Method

Edit
Time

Data
Size

Training
Time

Testing
Time Accuracy

No Edit

0 1641 5.7 ±0.45 0.15 ±0.03 89.4 ±1.9

1-NN 73.9
±0.52

412 0.57 ±0.15 0.08 ±0.01 80.6 ±3.0

3-NN 75.5
±2.11

794 2.0 ±0.55 0.14 ±0.04 87.6 ±2.1

RNG 895
±267

813 1.95 ±0.47 0.13 ±0.03 87.5 ±1.7

Random
(25%)

< 0.01 ~400 0.39±0.08 0.06 ±0.01 86.5 ±1.9

Random
(50%)

< 0.01 ~800 1.4 ±0.19 0.095 ±0.01 88.2 ±1.8

When comparing the effects of the different editing

schemes on the speed-up of the resulting SVM, there are four
different times that are of interest: (1) the training time taken
by the SVM algorithm with the edited set, (2) the testing time

taken by the SVM algorithm with the edited set, (3) the time
taken to edit (condense) the original training data, and (4) the
total time, i.e., the sum of (1), (2), and (3). The results, along
with ± one standard deviation calculated from the ten runs, are
summarized in Table I for the six methods listed in column 1.
No Edit refers to the application of SVM training on the entire
data consisting of 1641 instances. The k-NN editing scheme
was implemented with two values of k, k = 1 (denoted by 1-
NN) and k = 3 (denoted by 3-NN). Values of k greater than 3
were not tried because the best previous classification
accuracies obtained with SMO were for k = 3 [15]. The
editing with the relative neighborhood graph is labeled RNG.
For the random sampling approach two values for the size of
the reduced set were selected: 25% or about 400 instances,
and 50%, or about 800 instances. These values were selected
for comparison with the proximity graph methods because the
1-NN editing scheme kept about 25% of the data (412), and
both the 3-NN and RNG editing schemes kept about 50% of
the data (794 and 813, respectively).

For easy visualization and comparison, the results are also
displayed as graphs in Figs. 12-17. From Fig. 12 it is clear that
all the methods yield a considerable decrease in the training
time taken by the Weka SMO algorithm when compared to no
editing at all. Furthermore, the training times of SMO with the
random sample methods are significantly lower than with the
3-NN and RNG edited sets. The fastest training time is
obtained with a random sample of size 25% of the entire data.

Fig. 12 Training time obtained for the different editing methods

The testing time results, illustrated in the graph of Fig. 13

tell a slightly different story. The RNG and 3-NN editing
schemes yield similar average times with relatively large
standard deviations, thus providing no advantage over no
editing at all. However, 1-NN condensation and random
sampling have relatively small standard deviations, and are
thus statistically significantly faster than the other three
methods. The fastest of all the methods is still random
sampling with 25% of the data, which is statistically
significantly faster than all the other methods.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:1, 2013

80

Fig. 13 Testing time obtained for the different editing methods

The results on training and testing times of the SMO

experiments with the pre-selected condensed training sets
agree with previous results obtained by other researchers with
other methods of pre-selection. However, previous studies
neglected to take into account the time taken by the pre-
selection algorithms [16]. Although it is an interesting result
that the training time of SVM algorithms can be reduced to
acceptable levels with smaller training sets, without
significantly degrading the accuracy, the practical reality
necessitates taking the pre-selection time into account. This
time must be added to the SVM training time to determine if
such an approach is practical. Hence the most meaningful time
to use for comparing the various methods is the total time =
pre-selection time + SVM training time on the reduced set +
testing time with the SVM. This total time is illustrated in the
graph in Fig. 14. It is patently clear that the pre-selection time
for the RNG method (895 seconds) stands out above all others
so dramatically that it renders the method useless compared to
the others. Furthermore, the 1-NN and 3-NN condensed sets,
although considerably faster than the RNG condensed set, are
still much slower than no editing at all or random sampling.

Fig. 14 Total time obtained for the different editing methods

From Fig. 14 it is difficult to compare the latter three

methods because their values all appear to be zero. Therefore
these three times are displayed in isolation in Fig. 15, where it
becomes clear that the total time for random sampling is much
smaller than the total time for no editing at all.

Fig. 15 Total time obtained for random sampling and no editing

One can justify the use of pre-selection methods that are

computationally efficient only if the resulting accuracy is not
significantly downgraded. Clearly, one may discard almost all
the data and obtain very fast computation times if one is
willing to tolerate low accuracies. Therefore the previous
discussion must be examined in the context of the resulting
accuracies. These results are visually displayed in Fig. 16.
Only one result is manifestly clear here: the accuracy of the
SVM with the 1-NN edited set is significantly worse than with
all the other editing schemes. The mean accuracies with the
other editing schemes range between 89.4% without any
editing, to 86.5% with 25% random sampling. Although there
is a general trend evident from the mean values: No Edit > R-
50% > 3-NN > RNG > R-25%, these differences are not
statistically significantly different.

Fig. 16 Accuracy obtained with the different editing methods

In order to get an idea of how much data may be discarded

by random sampling in order to match the accuracy of the 1-
NN editing method, ten runs were carried out by selecting 100
random points from the 1641 data points. This corresponds to
keeping only 6.1% of the data. The results for all ten runs are
shown in Fig. 17. The average of these results is 81% ±3.06%,
which matches the accuracy results of 1-NN editing.
However, 1-NN editing keeps 412 data points, again
demonstrating the power of random sampling over the
"intelligent" 1-NN algorithm that tries to keep points near the
decision boundary.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:1, 2013

81

Fig. 17 Accuracy of the ten partitions with 100-point random pre-

selection samples

V. CONCLUSION
In spite of all the previous successes of the application of

proximity graphs in a variety of computer science problems in
areas ranging from decision theory to shape analysis and
computer vision to machine learning [19], [35], the results
obtained here indicate that proximity graphs appear to be
useless for speeding up support vector machines when they
are used to preselect subsets of the training data, and when the
computation time for this task is also taken into account.
Indeed, the preliminary results obtained in this study suggest
that, contrary to intuition, and in agreement with the results of
[39], naive random sampling appears to be the method of
choice for this application: it is the simplest method,
computationally extremely efficient, and retains good
accuracy compared with using the entire training data.

The size of the music data utilized in the experiments
carried out in this pilot project (1641) is not extremely large
by today's standards. Hence it would be interesting to compare
random sampling with no editing, for much larger data sets
(say at least an order of magnitude larger) to determine how
well random sampling scales in terms of both computational
speed and classification accuracy.

ACKNOWLEDGMENT
This research was supported by a grant from the Provost's

Office of New York University Abu Dhabi, through the
Faculty of Science, in Abu Dhabi, The United Arab Emirates.
The authors thank Professor Emilia Gomez of the Music
Technology Group at Universitat Pompeu Fabra in Barcelona,
Spain, for providing them the music data, and to Constantin
Berzan of Tufts University in Medford, MA, USA, for making
his RNG program available.

REFERENCES
[1] M.B. Almeida, A.P. Braga, and J.P. Braga, "SVM-KM: speeding SVMs

learning with a priori cluster selection and k-means," In: Proceedings of
the 6th Brazilian Symposium on Neural Networks, pp. 162–167, 2000.

[2] F. Angiulli, “Fast nearest neighbor condensation for large data sets
classification,” IEEE Transactions on Knowledge and Data Engineering,
vol. 19, no. 11, pp. 1450–1464, Nov. 2007.

[3] F. Angiulli and A. Astorino, "Scaling up support vector machines using
nearest neighbor condensation," IEEE Transactions on Neural
Networks, vol. 21, no. 2, pp. 351-357, February 2010.

[4] B. Bhattacharya, K. Mukherjee and G.T. Toussaint, "Geometric decision

rules for instance-based learning algorithms," Proc. Pattern Recognition
and Machine Intelligence: First International Conference, S. K. Pal et
al., (Eds.): LNCS 3776, Kolkata, India, pp. 60-69, December 20-22,
2005.

[5] L. Breiman, "Bagging predictors," Machine Learning, vol. 24, pp. 123–
140, 1996.

[6] D. Bryant and V. Moulton, "NeighborNet: An agglomerative algorithm
for the construction of phylogenetic networks," Molecular Biology and
Evolution, vol. 21, no. 2, pp. 255–265, 2004.

[7] C.J.C. Burges and B. Scholkopf, "Improving the accuracy and speed of
support vector learning machines," In Proceedings of the 9th NIPS
Conference, pages 375–381, 1997.

[8] O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee, "Choosing
multiple parameters for support vector machines," Machine Learning,
vol. 46, pp. 131–159, 2002.

[9] J. Chen and C.-L. Liu, "Fast multi-class sample reduction for speeding
up support vector machines," Proceedings of the IEEE International
Workshop on Machine Learning for Signal Processing, Beijing, China,
September 18-21, 2011.

[10] T.M. Cover and P.E. Hart, "Nearest neighbor pattern classification,"
IEEE Transactions on Information Theory, vol. 13, pp. 21–27, 1967.

[11] B.V. Dasarathi, "Tandem fusion of nearest neighbor editing and
condensing algorithms - data dimensionality effects," Proceedings of the
15th International Conference on Pattern Recognition, vol. 2, pp. 692-
695, 2000.

[12] T. Downs, K.E. Gates, and A. Masters, "Exact simplification of support
vector solutions," Journal of Machine Learning Research, vol. 2, pp.
293–297, 2001.

[13] S. Fine and K. Scheinberg, "E�cient SVM training using low-rank
kernel representation, Journal of Machine Learning Research, pp. 243–
264, 2009.

[14] O. Gascuel, "BIONJ: an improved version of the NJ algorithm based on
a simple model of sequence data," Molecular Biology and Evolution,
vol. 14, no. 7, pp. 685-695, 1997.

[15] E. Gomez and P. Herrera, "Comparative analysis of music recordings
from Western and Non-Western traditions by automatic tonal feature
extraction," Empirical Musicology Review, vol. 3, pp. 140-156, 2008.

[16] D. Han, C. Han, Y. Yang, Y. Liu, and W. Mao, "Pre-extracting method
for SVM classification based on the non-parametric K-NN rule,"
Proceedings of the 19th International Conference on Pattern
Recognition, pp. 1-4, Dec. 8-11, 2008.

[17] P.E. Hart, "The condensed nearest neighbor rule," IEEE Transactions on
Information Theory, vol. 14, pp. 515–516, 1968.

[18] D.H. Huson, "SplitsTree: A program for analyzing and visualizing
evolutionary data," Bioinformatics, vol. 14, no. 10, pp. 68–73, 1998.

[19] J.W. Jaromczyk and G.T. Toussaint, “Relative neighborhood graphs and
their relatives,” Proc. of the IEEE, vol. 80, no. 9, September, pp. 1502-
1517, 1992.

[20] T. Joachims, "Making large-scale SVM learning practical," Advances,
In: Kernel Methods - Support Vector Learning, MIT-Press, Cambridge,
MA, 1999.

[21] S.S. Keerthi, O. Chapelle, and D. DeCoste, "Building support vector
machines with reduced classifier complexity," Journal of Machine
Learning Research, vol. 7, pp. 1493–1515, 2006.

[22] S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy,
"Improvements to Platt’s SMO algorithm for SVM classifier design,"
Neural Computation, vol. 13, pp. 637–649, 2001.

[23] R. Koggalage and S. Halgamuge, "Reducing the number of training
samples for fast support vector machine classification," Neural
Information Processing – Letters and Reviews, vol. 2, no. 3, pp. 57-65,
March 2004.

[24] Y.J. Lee and O.L. Mangasarian, "RSVM: Reduced support vector
machines," In Proceedings of the First SIAM International Conference
on Data Mining, SIAM, Chicago, April 5-7, 2001.

[25] D. Li and S. Simske, "Training set compression by incremental
clustering," Journal of Pattern Recognition Research, vol. 1, pp. 56-64,
2011.

[26] X. Liang, R.-C. Chen, and X. Guo, "Pruning support vector machines
without altering performances," IEEE Transactions on Neural Networks,
vol. 19, no. 10, pp. 1792-1803, October 2008.

[27] M.E. Mavroforakis and S. Theodoridis, "A geometric approach to
support vector machine (SVM) classification," IEEE Transactions on
Neural Networks, vol. 17, no. 3, pp. 671-682, May 2006.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:1, 2013

82

[28] E. Mayr, "Cladistic analysis or cladistic classification?" Zeitschrift fuer
Zoologische Systematik und Evolutionsforschung, vol. 12, pp. 94-128,
1974.

[29] D.H. Nghi and L.C. Mai, "Training data selection for support vector
machines model," Proceedings of the International Conference on
Information and Electronics Engineering, vol. 6, Press, Singapore, 2011.

[30] N. Panda, E. Y. Chang, and G. Wu, "Concept boundary detection for
speeding up SVMs," Proceedings of the 23 International Conference on
Machine Learning, Pittsburgh, PA, 2006.

[31] J.C. Platt, "Fast training of support vector machines using sequential
minimal optimization," In B. Scholkopf, C. J. C. Burges, and A. J.
Smola, editors, Advances in Kernel Methods - Support Vector Learning,
Cambridge, MA, MIT Press, 1998.

[32] T. Thies and F. Weber, "Optimal reduced-set vectors for support vector
machines with a quadratic kernel," Neural Computation, vol. 16, pp.
1769–1777, 2004.

[33] G.T. Toussaint, B. K. Bhattacharya, and R. S. Poulsen, "The application
of Voronoi diagrams to nonparametric decision rules," Proc. Computer
Science and Statistics: 16th Symposium on the Interface, Atlanta,
Georgia, March 14-16,1984, Published by North-Holland in 1985,
Amsterdam, L. Billard, Ed., pp. 97-108.

[34] G.T. Toussaint and C. Berzan, "Proximity-graph instance-based
learning, support vector machines, and high dimensionality: An
empirical comparison." Proceedings of the Eighth International
Conference on Machine Learning and Data Mining, July 16-19, 2012,
Berlin, Germany. P. Perner (Ed.): MLDM 2012, LNAI 7376, pp. 222–
236, 2012. Springer-Verlag Berlin Heidelberg.

[35] G.T. Toussaint, "Geometric proximity graphs for improving nearest
neighbor methods in instance-based learning and data mining,"
International Journal of Computational Geometry and Applications, vol.
15, April 2005, pp. 101-150.

[36] G.T. Toussaint, "The relative neighborhood graph of a finite planar set,"
Pattern Recognition, vol. 12, pp. 261-268, 1980.

[37] I. W. Tsang, J. T. Kwok, and P.-M. Cheung, "Core vector machines: Fast
SVM training on very large data sets," Journal of Machine Learning
Research, vol. 6, pp. 363–392, 2005.

[38] V. Vapnik, The Nature of Statistical Learning Theory, Springer-Verlag,
New York, NY, 1995.

[39] J. Wang, P. Neskovic, L. N. Cooper, "Selecting data for fast support
vector machine training," Studies in Computational Intelligence (SCI),
vol. 35, pp. 61–84, 2007.

[40] Y. Wang, C.G. Zhou, Y.X. Huang, Y.C. Liang, and X.W. Yang, "A
boundary method to speed up training support vector machines," In: G.
R. Liu et al. (eds), Computational Methods, Springer, Printed in the
Netherlands, pp. 1209–1213, 2006.

[41] D.L. Wilson, "Asymptotic properties of nearest neighbor rules using
edited-data," IEEE Transactions on Systems, Man, and Cybernetics, vol.
2, pp. 408–421, 1973.

[42] M.H. Yang and N. Ahuja, "A geometric approach to train support vector
machines," In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition 2000 (CVPR 2000), June, Hilton Head Island,
pp. 430–437, 2000.

[43] W. Zhang and I. King, "Locating support vectors via β-skeleton
technique," In: Proceedings of the International Conference on Neural
Information Processing (ICONIP), pp. 1423–1427, 2002.

[44] W. Zhang and I. King, "A study of the relationship between support
vector machine and Gabriel graph." In: Proceedings of the IEEE
International Joint Conference on Neural Networks, IJCNN, Honolulu,
vol. 1, pp. 239–244, 2002.

