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Abstract—Support vector machines (SVMs) are considered to be 

the best machine learning algorithms for minimizing the predictive 
probability of misclassification. However, their drawback is that for 
large data sets the computation of the optimal decision boundary is a 
time consuming function of the size of the training set. Hence several 
methods have been proposed to speed up the SVM algorithm. Here 
three methods used to speed up the computation of the SVM 
classifiers are compared experimentally using a musical genre 
classification problem. The simplest method pre-selects a random 
sample of the data before the application of the SVM algorithm. Two 
additional methods use proximity graphs to pre-select data that are 
near the decision boundary. One uses k-Nearest Neighbor graphs and 
the other Relative Neighborhood Graphs to accomplish the task. 
 

Keywords—Machine learning, data mining, support vector 
machines, proximity graphs, relative-neighborhood graphs, k-nearest-
neighbor graphs, random sampling, training data condensation. 

I. INTRODUCTION 

HIS paper is concerned with methods that attempt to 
reduce the computation time required to train support 

vector machines (SVMs) for applications in pattern 
classification tasks in the context of machine learning [38]. 
Support vector machines are considered to be among the best 
machine learning algorithms for minimizing the predictive 
probability of misclassification on a given problem [34]. 
However, they are often criticized for how time consuming 
the functions for computing the optimal decision boundary 
and making decisions on new patterns are, functions that 
depend on the size of the initial training set and the number of 
support vectors generated by the training algorithm, 
respectively. There have been several attempts at reducing 
these complexities. To reduce the number of support vectors 
obtained, the data-post-processing approach prunes the 
support vector set after the SVM classifier is built [12], [32]. 
However, since the bulk of the computational complexity 
results from building the classifier (training), these approaches 
are limited to reducing the testing time but not the training 
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time. The algorithmic approach seeks to speed up the 
optimization procedure inherent in the SVM algorithm, either 
exactly or via approximation [13], [20], [22], [26]-[27], [31], 
[37]. One such method to reduce the complexity of building 
the SVM classifier, finds basis functions that maximize 
accuracy in an incremental way, permitting the user to stop 
this process once some limiting level of complexity has been 
reached [21]. A simpler, more straightforward, and direct 
approach to speed up SVMs is to use only a fraction of the 
training data in the optimization algorithm that builds the 
SVM classifier. There exists a plethora of these data-pre-
processing (pre-selection) methods for choosing 
representative subsets of a data set. Comprehensive surveys of 
these techniques are also available [11], [35]. However, only 
few of these methods have been applied to SVM classification 
[7], [30], [42]. Lee and Mangasarian pre-select a small 
random sample of the data from which the SVM classifier is 
designed [24]. While selecting a random sample of the data, 
also called bagging, is very efficient computationally, 
intuition suggests that the randomness aspect of this procedure 
may not yield the best subset in terms of classification 
accuracy, for a given fractional size of the training data [5]. 
To address this concern, another class of methods selects a 
subset of the data that lie either near the boundary of the class-
conditional distributions, or close to the decision boundaries 
between classes. The earliest algorithm for selecting points 
that lie near the decision boundary is Peter Hart's condensed 
nearest neighbor rule, which finds a training-set-consistent 
subset of the training data [17] A training-set-consistent subset 
of the data is one that classifies all the data correctly using the 
1-nearest-neighbor decision rule [2]-[3]. Wang et al. select a 
subset of the data (which they call key vectors) that lie on the 
boundary of each class, using Parzen window estimates of the 
class-conditional probability density functions in the feature 
space [40]. Wang, Neskovic, & Cooper select a pattern near 
the decision boundary if its distance to a pattern from a 
different class is relatively small [39]. Nghi and Mai select 
data near the decision boundary by choosing for each data 
point, the nearest point from another class, and then iterating 
this process by exchanging the roles of the classes [29]. 
Koggalage and Halgamuge first use cluster analysis 
techniques to identify clusters in the data, and then identify 
crisp clusters, i.e., those clusters that have all their points 
belonging to the same class [23]. Finally they discard points 
that lie in the interiors of crisp clusters, on the grounds that 
they are unlikely to be support vectors. A similar approach by 
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Chen and Liu select points that are far from cluster centers [9]. 
Almeida et al. [1], and Li and Simske [25] also apply cluster 
analysis techniques to training set compression. An additional 
approach to pre-selecting training data makes use of proximity 
graphs, motivated by the fact that there appears to be a 
connection (not yet formally established) between support 
vectors and Gabriel graph neighbors [44]. Zhang and King 
(2002) used β-skeletons to reduce the size of the training set 
before computing the support vectors [43]. The β-skeletons 
are a general parameterized family of proximity graphs. For β 
= 2, the β-skeleton reduces to the relative neighborhood graph 
(RNG), and when β = 1, to the Gabriel graph (GG). 

Here three methods used to speed up the computation of the 
SVM classifiers are compared experimentally using a music 
genre classification data set. Two methods use proximity 
graphs for pre-selecting points that are near the decision 
boundary. The first method uses the RNG, and the second 
method applies the k-nearest-neighbor (k-NN) graph, [10], 
[19], [36]. The RNG has been used successfully to reduce 
training set size in pattern classification tasks [4], [33]. Han et 
al. (2008) applied the RNG as a pre-selection method to speed 
up SVMs, but in comparing the resulting training times, 
testing times, and classification accuracies they neglected to 
take into account the time it takes to compute the RNG prior 
to pre-selection [16]. The k-NN graph has also been applied 
previously to speed up SVMs but with a complicated scoring 
function that determines which points are close to the decision 
boundary [30]. The k-NN method tested here on the other 
hand is very simple. These two methods are compared with 
pre-selection of a fractional random sample. 

II.   THE CONDENSING ALGORITHMS 

A. Relative Neighborhood Condensation 
The algorithm for condensing the training data with the 

Relative Neighborhood (RNG) algorithm deletes all the 
training samples (in parallel) that have the property that all 
their RNG neighbors belong to the same class as itself. It has 
been shown in earlier studies that this method of data 
condensation discards a large fraction of the data [33]. The 
RNG is defined as follows (refer to Fig. 1). Given two data 
points a and b, the lune of a and b, denoted by Lune(a,b), is 
the intersection of the two hyperspheres with centers at a and 
b, and radii equal to the distance between a and b. The two 
points a and b are relative neighbors provided that the 
Lune(a,b) contains no other point. In Fig. 1 a and b are not 
relative neighbors because point c is contained in Lune(a,b). 
The RNG is obtained by connecting with an edge all pairs of 
points that are relative neighbors of each other. A brute-force 
implementation of this condensing algorithm constructs the 
lune for each pair of points, and then tests every other point 
for inclusion in the lune, resulting in a running time 
complexity of O(n3), where n denotes the number of instances 
in the data set. A more clever implementation can be made to 
run in O(n2+ε), where ε depends on the dimensionality of the 
data, but is usually relatively small [33]. The speedup 

algorithm is illustrated in Fig. 1. Rather than testing the 
emptiness of the lunes for all pairs of points, find all the 
relative neighbors of each point instead. In the first loop of the 
algorithm assume that all the relative neighbors of point a are 
to be computed. In the second loop of the program each point 
is tested in turn. Assume point b is tested. In the third loop all 
other points are tested for inclusion in Lune(a,b) as follows. 
First construct a hyperplane H through b and tangent to the 
hypersphere centered at a. When examining a point such as d 
for inclusion in Lune(a,b), first test whether it lies on the side 
of H that does not contain a. If this is the case then point d 
cannot possibly be contained in Lune(a,b), and it is not 
necessary to perform the lune-inclusion test in the third loop. 
However, the great savings comes, not from avoiding this test 
in the third loop, but rather from the fact that point d need not 
be tested as a candidate for a relative neighbor of a in the 
second loop of the program. This follows because the angle 
abd is greater than 90 degrees, implying that point b is 
contained in Lune(a,d), thus signaling that d cannot be a 
relative neighbor of a. 

 
Fig. 1  Speeding up the computation of the RNG 

 
This method is illustrated in Figs. 2-4. Fig. 2 shows a set of 

50 data points in two dimensions, that belong to two classes, 
denoted by white and black squares.  
 

 
Fig. 2 A training data set consisting of points from two classes 

 
The relative neighborhood graph (RNG) of the data points 

in Fig. 2 is shown in Fig. 3, where those edges of the graph 
that connect points that belong to different classes are 
highlighted by dashed lines. The resulting condensed set of 
points is shown in Fig. 4. 
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Fig. 3 The RNG of the data points of Fig. 2 

 

 
Fig. 4 The RNG condensed set obtained from Fig. 3 

B. k-Nearest Neighbor Condensation 
The algorithm for condensing the training data via the k-

Nearest Neighbor algorithm works as follows. First each data 
point X is marked if all its k-Nearest Neighbors belong to the 
same class as the class of X. Note that the marking is done in 
parallel for all the data. Then all the marked points are 
discarded. This approach is inspired by an algorithm due to 
Denis Wilson, for identifying points that lie near the decision 
boundary [41]. Wilson classified a point as far from the 
decision boundary if the majority of its k nearest neighbors 
classified it correctly. In this project 'majority' is replaced by 
'all' in the voting scheme. This condensing algorithm runs in 
O(kn2) time using a straightforward implementation. Figs. 5-7 
illustrate this process for 1-NN condensation. The 1-Nearest 
Neighbor graph of the points in Fig. 5 is shown in Fig. 6. In 
this graph, a point is connected by a directed edge (arrow) to 
its nearest neighbor. 
 

 
Fig. 5 A training set consisting of two classes 

 
Fig. 6 The nearest neighbor graph of the points in Fig. 4 

 
If an edge in the 1-Nearest Neighbor graph connects points 

that belong to the same class then these points are discarded 
from the data. The resulting condensed set obtained from Fig. 
6, is shown in Fig. 7. Note that if the two classes are widely 
separated it may happen that no two points belonging to 
different classes are nearest neighbors of each other, resulting 
in the discarding of the entire data set. This happens for 
example with the set of points in Fig. 1. In such a case the 
value of k needs to be increased sufficiently to ensure that 
some data points from each class are kept. 
 

 
Fig. 7 The 1-NN condensed set obtained from Fig. 6 

C.  Random Sample Condensation 
The third method for pre-selecting a small portion of the 

data is the simplest of all. It naively pre-selects a random 
sample of the data, and thus runs extremely efficiently in O(n) 
time. Because of its simplicity this method is often used to 
compare how well more complex methods perform, and 
surprisingly there exists some evidence that it can perform 
quite well [39]. 

III. THE DATA 

A. The Music Data 
The music data consists of 23 pattern classes (music genres) 

all of which also fall into two larger classes (Western and 
Non-Western music). The Western genre consists of metal, 
pop, hiphop, funk, disco, rock, alternative, soul, electronica, 
religious, blues, country, reggae, jazz, and classical. The Non-
Western genres are made up of China, Java, Arabic, India, 
Centralasia, Africa, and Japan. There are a total of 1641 
instances, each with 40 real-valued tonal features related to 
the pitch class distribution, pitch range and musical scale 
employed, gamut and tuning system [15]. In the experiments 
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carried out here, 10% of the data was randomly set aside as 
the testing set, and the remaining 90% was used for training. 
All accuracy and timing outcomes were averaged over 10 
trials in order to obtain standard deviations to serve as 
significance estimates of the resulting differences.  

IV. RESULTS 

A. Phylogenetic Tree Clasification 
In order to better understand the discrimination information 

contained in the features of the music data, and the resulting 
possible upper bounds on the classification accuracy of any 
decision rule, the dissimilarity of each genre was computed by 
first calculating the mean (also median) feature vector for each 
genre, and from that, the 1st-order Minkowski metric (L1-
norm) between each pair of mean (median) vectors. The 
resulting distance matrices were used to calculate the 
phylogenetic tress displayed in Figs. 8 and 9 using the BioNJ 
Algorithm [14], one of several algorithms embedded in the 
SplitsTree-4 software package [6], [18]. Note that the distance 
between two genres in these trees is not the straight-line 
Euclidean distance between two genre nodes (leafs in the tree) 
but rather the shortest path (geodesic) between them along the 
branches in the tree. The tree is computed so as to match as 
closely as possible the corresponding distances in the distance 
matrix. The SplitsTree-4 software package also employs an 
embedded graph-drawing algorithm that draws the tree nicely. 
However one can manually reposition the tree, much like a 
linkage that allows rotation of its joints, to suit one's purpose 
without changing any of the distances involved. The tree in 
Fig. 8, calculated with the mean feature vector for each genre, 
shows a marked clustering of the genres into two clusters. The 
cluster at the top contains all the Non-Western genres but 
includes five Western genres interspersed among them: blues, 
country, folk, jazz, and classical, with classical lying furthest 
from the group. The cluster at the bottom consists of all 
Western genres, with metal as the distant outlier of the group. 
 

 
Fig. 8 BioNJ tree for the music data using mean vectors 

 
Since the median is a more robust estimate of centrality 

than the mean the BioNJ tree was also computed with the 
median vectors (Fig. 9). Globally the clustering of this tree 
exhibits general agreement with the clustering obtained with 

the mean-vector tree of Fig. 8. However, there are some 
notable differences: here reggae and India moved closer to the 
Non-Western cluster at the top, whereas country and blues 
moved closer to the Western cluster at the bottom.  

One way to classify the genres using these phylogenetic 
trees is to create a sub-tree by cutting off a branch of the tree 
(deleting one of the edges). In cladistic analysis the resulting 
sub-tree is called a clade [28]. In Fig. 8 the best clade 
(obtained by cutting between India and reggae) contains five 
misclassified groups: blues, country, classical, folk and jazz, 
which are misclassified as Non-Western. On the other hand, 
the best clade in Fig. 9 (obtained by cutting between folk and 
Africa) yields only three misclassified rhythms: classical and 
jazz, wrongly grouped with non-Western, and Japan, wrongly 
grouped with Western. Hence, the median feature vector tree 
appears to capture more discrimination information for these 
two general genres than the mean feature vector tree. 

 

 
Fig. 9 BioNJ tree for the music data using median vectors 

B. SVM Speedup Methods 
The standard SVM training algorithm runs in O(n3) time 

and O(n2) space, where n is the size of the training set [37]. 
The sequential minimal optimization (SMO) algorithm for 
SVM training, as implemented in the Weka package used 
here, appears to run in time-complexity somewhere between 
O(n) and O(n2.2), depending on the structure of the training 
data [31]. To determine empirically how fast the computation 
time of SMO grows as a function of the size of the data, 
experiments were performed with random subsets of the 
training data of varying size. The results are shown in Figs. 10 
and 11. Fig. 10 suggests that the time complexity for this 
music data does grow at least quadratically as the size of the 
training data increases. Furthermore, as Fig. 11 shows, good 
accuracy (above 87%) is achieved only when at least 75% of 
the data are used. 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:1, 2013

79

 

 

 
Fig. 10 Time versus data size for the Weka SMO 

 

 
Fig. 11 Accuracy versus data size for the Weka SMO 

 
The k-NN rule achieves a top mean accuracy of 87.6% for k 

= 3. The SMO support-vector machine classifier achieved an 
accuracy of 86.5% in the experiments performed by Gomez 
and Herrera [15], but they reported no standard deviations and 
no timing results. Replicating their experiment using the same 
parameters [8] (complexity = 1.5, polynomial kernel exponent 
= 1.5), Toussaint and Berzan [34] obtained a significantly 
higher mean accuracy of 89.4%. In the experiments reported 
here the same parameters: complexity (1.5) and polynomial 
kernel exponent (1.5), with Weka SMO, were used in an 
environment consisting of an Intel Core i5 CPU M450 @ 
2.40GHz, with a RAM of 2.00 GB and a Windows 7-64 bit 
operating system. 
 

TABLE I 
TIMES AND ACCURACIES FOR THE EDITING METHODS TESTED 

Edit 
Method 

Edit 
Time 

Data 
Size 

Training 
Time 

Testing 
Time  Accuracy 

No Edit 
 

0 1641 5.7 ±0.45 0.15 ±0.03 89.4 ±1.9 

1-NN 73.9 
±0.52 

412 0.57 ±0.15 0.08 ±0.01 80.6 ±3.0

3-NN 75.5 
±2.11 

794 2.0 ±0.55 0.14 ±0.04 87.6 ±2.1 

RNG 895 
±267 

813 1.95 ±0.47 0.13 ±0.03 87.5 ±1.7 

Random 
(25%) 

< 0.01 ~400 0.39±0.08 0.06 ±0.01 86.5 ±1.9 

Random 
(50%) 

< 0.01 ~800 1.4 ±0.19 0.095 ±0.01 88.2 ±1.8 

 
When comparing the effects of the different editing 

schemes on the speed-up of the resulting SVM, there are four 
different times that are of interest: (1) the training time taken 
by the SVM algorithm with the edited set, (2) the testing time 

taken by the SVM algorithm with the edited set, (3) the time 
taken to edit (condense) the original training data, and (4) the 
total time, i.e., the sum of (1), (2), and (3). The results, along 
with ± one standard deviation calculated from the ten runs, are 
summarized in Table I for the six methods listed in column 1.  
No Edit refers to the application of SVM training on the entire 
data consisting of 1641 instances. The k-NN editing scheme 
was implemented with two values of k, k = 1 (denoted by 1-
NN) and k = 3 (denoted by 3-NN). Values of k greater than 3 
were not tried because the best previous classification 
accuracies obtained with SMO were for k = 3 [15]. The 
editing with the relative neighborhood graph is labeled RNG. 
For the random sampling approach two values for the size of 
the reduced set were selected: 25% or about 400 instances, 
and 50%, or about 800 instances. These values were selected 
for comparison with the proximity graph methods because the 
1-NN editing scheme kept about 25% of the data (412), and 
both the 3-NN and RNG editing schemes kept about 50% of 
the data (794 and 813, respectively). 

For easy visualization and comparison, the results are also 
displayed as graphs in Figs. 12-17. From Fig. 12 it is clear that 
all the methods yield a considerable decrease in the training 
time taken by the Weka SMO algorithm when compared to no 
editing at all. Furthermore, the training times of SMO with the 
random sample methods are significantly lower than with the 
3-NN and RNG edited sets. The fastest training time is 
obtained with a random sample of size 25% of the entire data. 
 

 
Fig. 12 Training time obtained for the different editing methods 

 
The testing time results, illustrated in the graph of Fig. 13 

tell a slightly different story. The RNG and 3-NN editing 
schemes yield similar average times with relatively large 
standard deviations, thus providing no advantage over no 
editing at all. However, 1-NN condensation and random 
sampling have relatively small standard deviations, and are 
thus statistically significantly faster than the other three 
methods. The fastest of all the methods is still random 
sampling with 25% of the data, which is statistically 
significantly faster than all the other methods. 
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Fig. 13 Testing time obtained for the different editing methods 

 
The results on training and testing times of the SMO 

experiments with the pre-selected condensed training sets 
agree with previous results obtained by other researchers with 
other methods of pre-selection. However, previous studies 
neglected to take into account the time taken by the pre-
selection algorithms [16]. Although it is an interesting result 
that the training time of SVM algorithms can be reduced to 
acceptable levels with smaller training sets, without 
significantly degrading the accuracy, the practical reality 
necessitates taking the pre-selection time into account. This 
time must be added to the SVM training time to determine if 
such an approach is practical. Hence the most meaningful time 
to use for comparing the various methods is the total time = 
pre-selection time + SVM training time on the reduced set + 
testing time with the SVM. This total time is illustrated in the 
graph in Fig. 14. It is patently clear that the pre-selection time 
for the RNG method (895 seconds) stands out above all others 
so dramatically that it renders the method useless compared to 
the others. Furthermore, the 1-NN and 3-NN condensed sets, 
although considerably faster than the RNG condensed set, are 
still much slower than no editing at all or random sampling.  
 

 
Fig. 14 Total time obtained for the different editing methods 

 
From Fig. 14 it is difficult to compare the latter three 

methods because their values all appear to be zero. Therefore 
these three times are displayed in isolation in Fig. 15, where it 
becomes clear that the total time for random sampling is much 
smaller than the total time for no editing at all.  
 

 
Fig. 15 Total time obtained for random sampling and no editing 

 
One can justify the use of pre-selection methods that are 

computationally efficient only if the resulting accuracy is not 
significantly downgraded. Clearly, one may discard almost all 
the data and obtain very fast computation times if one is 
willing to tolerate low accuracies. Therefore the previous 
discussion must be examined in the context of the resulting 
accuracies. These results are visually displayed in Fig. 16. 
Only one result is manifestly clear here: the accuracy of the 
SVM with the 1-NN edited set is significantly worse than with 
all the other editing schemes. The mean accuracies with the 
other editing schemes range between 89.4% without any 
editing, to 86.5% with 25% random sampling. Although there 
is a general trend evident from the mean values: No Edit > R-
50% > 3-NN > RNG > R-25%, these differences are not 
statistically significantly different. 
 

 
Fig. 16  Accuracy obtained with the different editing methods 

 
In order to get an idea of how much data may be discarded 

by random sampling in order to match the accuracy of the 1-
NN editing method, ten runs were carried out by selecting 100 
random points from the 1641 data points. This corresponds to 
keeping only 6.1% of the data. The results for all ten runs are 
shown in Fig. 17. The average of these results is 81% ±3.06%, 
which matches the accuracy results of 1-NN editing. 
However, 1-NN editing keeps 412 data points, again 
demonstrating the power of random sampling over the 
"intelligent" 1-NN algorithm that tries to keep points near the 
decision boundary. 
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Fig. 17 Accuracy of the ten partitions with 100-point random pre-

selection samples 

V.    CONCLUSION 
In spite of all the previous successes of the application of 

proximity graphs in a variety of computer science problems in 
areas ranging from decision theory to shape analysis and 
computer vision to machine learning [19], [35], the results 
obtained here indicate that proximity graphs appear to be 
useless for speeding up support vector machines when they 
are used to preselect subsets of the training data, and when the 
computation time for this task is also taken into account. 
Indeed, the preliminary results obtained in this study suggest 
that, contrary to intuition, and in agreement with the results of 
[39], naive random sampling appears to be the method of 
choice for this application: it is the simplest method, 
computationally extremely efficient, and retains good 
accuracy compared with using the entire training data. 

The size of the music data utilized in the experiments 
carried out in this pilot project (1641) is not extremely large 
by today's standards. Hence it would be interesting to compare 
random sampling with no editing, for much larger data sets 
(say at least an order of magnitude larger) to determine how 
well random sampling scales in terms of both computational 
speed and classification accuracy. 
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