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Abstract—By using a new set of arithmetic operations on 

interval numbers, we discuss some arithmetic properties of interval 
matrices which intern helps us to compute the powers of interval 
matrices and to solve the system of interval linear equations. 
 

Keywords—Interval arithmetic, Interval matrix, linear equations. 

I. INTRODUCTION 

ET a [a , a ] {x : a x a ,x R}1 2 1 2= = ≤ ≤ ∈� .  

If a a a a1 2= = =� , then a [a, a] a= =�  is a real number 

(or a degenerate interval). We shall use the terms interval and 
interval number interchangeably. We use IR to denote the set 
of all interval numbers on the real line R. The mid-point and 
width (or half-width) of an interval number [ , ]1 2a a a=�  are 

defined as 
a a1 2m(a)

2

+
=

⎛ ⎞
⎜ ⎟
⎝ ⎠

�  and 
a a2 1w(a)

2

−
=

⎛ ⎞
⎜ ⎟
⎝ ⎠

� . 

 
      It is well known, that matrices play major role in various 
areas such as mathematics, statistics, physics, engineering, 
social sciences and many others.  In real life, due to the 
inevitable measurement inaccuracy, we do not know the exact 
values of the measured quantities; we know, at best, the 
intervals of possible values.  Consequently, we can not 
successfully use traditional classical matrices and hence the 
use of interval matrices is more appropriate. 
 
Hansen and Smith [4] started the use of interval arithmetic in 
matrix computations. After this motivation and inspiration, 
several authors such as Alefeld and Herzberger [1], Hansen et 
al ([5], [6]), Jaulin et al [9], Neumaier [10] and Rohn ([12], 
[13]) etc have studied interval matrices. 
Consider a system of interval linear equations: A =x b� �� where  
A, b� �   and x�  are (m×n), (m×1), (n×1) interval matrices 
respectively. In the existing literature, several methods 
available for computing the smallest box x�  containing the 
exact solution of the system. In contrast to the problem of 
solving system of interval linear equations, the concept of 
determinant of interval matrices has been given less attention. 
In this paper we discuss some of the arithmetic properties of 
interval matrices which intern helps us to compute the powers 
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of interval matrices and to solve the system of interval linear 
equations.  

II. PRELIMINARIES 
The aim of this section is to present some notations, notions 
and results which are of useful in our further considerations. 

A. Comparing Interval Numbers 
Sengupta and Pal [2] proposed the following simple and 

efficient index for comparing any two intervals on the real line 
through decision maker’s satisfaction.  
     Let ≺  be an extended order relation between the interval 

numbers [ , ]1 2a a a=�   and [ , ]1 2b b b=� in IR, then for 

( ) ( ),m a m b< ��   we construct a premise (a b)�� which 

implies that a�  is inferior to b�  (or b�  is superior to a� ). 
 
       An acceptability function : IR IR [0, )× → ∞≺A  is 

defined as: 
m(b) m(a)

(a, b) (a b) ,
w(b) w(a)

−
= =

+

� �� �� �
� �

A A  where  

( ) ( ) 0.w b w a+ ≠� �  
 
   ≺A  may be interpreted as the grade of acceptability of the   

“first interval number to be inferior to the second interval 
number”. 
      
        For any two interval numbers a�  and b�  in IR, either  

(a b) 0>��A  or (b a) 0>� �A  or (a b) =��A  (b a) 0=� �A   

and  (a b) (b a) 0+ =� �� �A A . Also the proposed A-index is 

transitive; for any three interval numbers a,b,c�� �  in IR, if 

(a b) 0≥��A  and (b c) 0≥� �A ,  then ( ) 0a c ≥� �A .  But it  
does not mean that  (a c)� �A  max{ (a b), (b c)}.≥ � �� �A A  

If  (a b) 0,=��A  then we say that the interval numbers a�  

and b�  are equivalent (or non-inferior to each other) and we 
denote it by a b.≈ ��   In particular, whenever (a b) 0=��A  and 

w(b) w(a),=� �  then a b.= ��  Also if (a b) 0≥��A , then we say 

that a b��  and if (b a) 0≥� �A , then we say that   b a� � . 
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B. A New Interval Arithmetic 

We recall a new type of arithmetic operations on interval 
numbers introduced in [3]:  For  x�  and y�  in IR and for 

{ , , , },∗ ∈ + − ⋅ ÷ we  

define   x y [m(x) m(y) k,m(x) m(y) k],∗ = ∗ − ∗ +� � � � � �  where  
k min{(m(x) m(y)) , (m(x) m(y))},= ∗ − α β − ∗� � � �  
α and β  are the end points of the interval x y� �  under the 
existing  interval arithmetic. In particular 
 
(i). Addition:  x y+� �  = [x1, x2] + [y1, y2]  
                    = [m(x) m(y) k,m(x) m(y) k]+ − + +� � � � , 

            where 
(y x ) (y x )2 2 1 1k .

2

+ − +
=

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

(ii). Subtraction: x y−� �  = [x1, x2] - [y1, y2]  
               = [(m(x) m(y)) k,(m(x) m(y)) k]− − − +� � � � , 

       where 
(y x ) (y x )2 2 1 1k .

2

+ − +
=

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

(iii). Multiplication: x y� �  = [x1, x2] [y1, y2]  
                   = [m(x)m(y) k,m(x)m(y) k]− +� � � � , where     
       k min{(m(x)m(y)) , (m(x)m(y))},= − α β −� � � �  

       min(x y ,x y ,x y ,x y )1 1 1 2 2 1 2 2α =  and  

       max(x y ,x y ,x y ,x y ).1 1 1 2 2 1 2 2β =  

 

(iv). Inverse: 1x−� = [x1, x2]-1
=

1 1
k, k ,

m(x) m(x)
− +

⎡ ⎤
⎢ ⎥⎣ ⎦� �

  where 

x x x x1 12 1 2 1k min ,
x x x x x x2 1 2 1 1 2

− −
=

+ +

⎫⎧ ⎛ ⎞ ⎛ ⎞⎪ ⎪
⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟⎪ ⎪⎩ ⎝ ⎠ ⎝ ⎠⎭

 and 0∉[x1, x2]. 

From (iii),  it is clear tha   
[ x , x ], for 01 2x
[ x , x ], for 0.2 1

λ λ λ ≥
λ =

λ λ λ <

⎧
⎨
⎩

�  

 
It is to be noted that x y x y {x y :x x, y y},∗ ⊆ = ∗ ∈ ∈� � � � � �  
where  ∈{⊕, , ⊗, } is the existing interval arithmetic.  
 For example if we take x [ 1, 2]= −�  and y [3, 5],=�  then 
x� ⊗ y� = [min (-3, -5, 6, 10), max (-3, -5, 6, 10)] = [-5, 10] 

and x� ⋅ y� = x� y� =[ 1, 2]− [3, 5]  = [-5, 9] so that 
x� ∗ y� ⊆ x y� � . 

 
 It is also to be noted that we use  to denote the existing 
interval arithmetic and ∗ to denote the modified interval 
arithmetic. But wherever there is no confusion we use the 
same notation for both the cases. We require the following 
results to prove the results in the subsequent section. 
 
Proposition 2.1: For any x�  = [x1, x2] and y� = [y1, y2] in IR, 
we have 

(i).  m(x y) m(x) m(y)+ = +� � � � and  
 w(x y) w(x) w(y).+ = +� � � �   

 
(ii).   m(x y) m(x) m(y)− = −� � � �  and 

    w(x y) w(x) w(y).− = +� � � �  
 

(iii). m(xy) m(x)m(y)=� � � �   and  w(xy) 0=� �  if and only  if  
x�  = [x1, x2] = 0 or y�  = [y1, y2] = 0. 

 

(iv). 
1 1

m
x m(x)

=
⎛ ⎞
⎜ ⎟
⎝ ⎠� �

  and  
1 w(x)

w
x x x1 2

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

�
�

,     

 provided   0∉ [x1 , x2]. 
 

(v).  m( x y) m(x) m(y)α + β = α + β� � � �  and    
   w( x y) | | w(x) | | w(y),α + β = α + β� � � �   where 

               α, β∈R. 
 
Remark: Without loss of generality, we assume that for any 
interval number a [a , a ]1 2=�  with m(a) 0≠�  and 0 a∈� , 

there exist b [m(a) k, m(a) k]= − +� � � , where 0 k h< <  and      

h min{| a |, | a |},1 2=  such that b a≈� �  and 0 b∉ � . Hence if 

x

a

�
�

 with m(a) 0≠�  and 0 a∈� ,   then we replace 
x

a

�
�

 by
x

b

�
� , 

where  b a≈� �  and 0 b∉ � . 
 
An interval vector (x ,x ,x ,......, x )n1 2 3=x� � � � �  is a vector whose 

components are interval numbers, where xi� ,  i =1,2,3,.....,n is 

the ith component of x� . We use IRn   to denote the set of all n-
component interval vectors.  The midpoint of an interval 
vector (x ,x ,x ,......, x )n1 2 3=x� � � � �    is the vector of midpoints of 

its interval components,                                                                                
i. e. m( ) (m(x ),m(x ),m(x ),......,m(x ))n1 2 3=x� � � � �  and the 

width of interval vector (x ,x ,x ,......, x )n1 2 3=x� � � � �  is the vector 

of  widths of its interval components,                                                        
i. e. w( ) (w(x ),w(x ),w(x ),......,w(x ))n1 2 3=x� � � � � . 

 
We define the sum, difference and scalar multiplication of 
interval vectors as in the case of real classical vectors except 
that the components are interval numbers. 

III. MAIN RESULTS 

An interval matrix A~ is a matrix whose elements are interval 
numbers.  An interval matrix A� will be written as 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

mn1m

n111

a~...a~
.........
a~....a~

A~ = (a )ij (m n)×� , where each a [a , a ]ij ij ij=�  
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(or) [ , ]A A A=�   for some ,A A  satisfying .A A≤  We use  
IRmxn  to denote the set of all (mxn) interval matrices.  The 
midpoint of an interval matrix  A~  is the matrix of midpoints 
of its interval elements defined as 

m(a ) .... m(a )11 1n
m(A) ... ... ...

m(a ) ... m(a )mnm1

=

⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

� �
�

� �
.  The width of an interval 

matrix   A~   is the matrix of widths of its interval elements 

defined as  
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

)a~(w...)a~(w
.........

)a~(w....)a~(w
)A~(w

mn1m

n111
 which is always 

nonnegative.  We use O to denote the null matrix 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

0...0
.........
0....0

 and O~  to denote the null interval 

matrix

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

0~...0~
.........
0~....0~

. Also we use I to denote the identity 

matrix
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

1...0
...1...
0....1

and  I�  to denote the identity interval 

matrix

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

1~...0~
...1~...
0~....1~

. 

 

A. Arithmetic Operations on Interval Matrices  
    We define arithmetic operations on interval matrices as 
follows:    If , m nA B IR ×∈� � ,  nIR∈x�  and  IR,α∈  then 

(i). A ( a )ij 1 i m, 1 j nα = α ≤ ≤ ≤ ≤
�� � �  

(ii). (A B) (a b )ij ij 1 i m, 1 j n+ = + ≤ ≤ ≤ ≤
�� � �  

(iii). (A B) (a b )ij ij 1 i m, 1 j n− = − ≤ ≤ ≤ ≤
�� � �  

(iv). ( )a bik kj
1 i m, 1 j n

n
AB

k 1 ≤ ≤ ≤ ≤
= ∑

=
��� �  

(v). 
n

A a xij jj 1 1 i m
= ∑

= ≤ ≤

⎛ ⎞
⎜ ⎟
⎝ ⎠

x� �� �  

If ( ) ( )m A m B=� � , then the interval matrices A�  and B� are 

said to be equivalent and is denoted by  A B≈� � . In particular if 
( ) ( )m A m B=� �  and ( ) ( )w A w B=� � , then .A B=� �  If  ( )m A O=� , 

then we say that  A�  is a zero interval matrix and is denoted 
by O� .  In particular if ( )m A O=�   and   ( ) ,w A O=�

 then 

[0, 0] .... [0, 0]
... ... ...

[0, 0] ... [0, 0]

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

. Also if ( )m A O=�
 and ( ) ,w A O≠�   then 

0 .... 0
... ... ...
0 ... 0

O≈
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

� �
�

� �
. If  A O≈/� �  (i.e. A�  is not equivalent to O� ), 

then  A�  is said to be a non-zero interval   matrix.  If 
( )m A I=�  then we say that  A�  is an identity interval matrix 

and is denoted by .I�  
In particular if ( )m A I=�   and ( ) ,w A O=�  then 

[1,1] .... [0,0]
... [1,1] ...

[0,0] ... [1, 1]
A =

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

� .  Also, ( )m A I=�   and ( ) ,w A O≠�  

then 
1 .... 0
... 1 ... .
0 ... 1

I≈
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

� �
� �

� �
 

 
Proposition 3.1: If  n nA, B IR ,×∈� �  then 

(i). m(A B) m(A) m(B)+ = +� �� � and 

w(A B) w(A) w(B).+ = +� �� �  
 

(ii). m(A B) m(A) m(B)− = −� �� � and 

w(A B) w(A) w(B).− = +� �� �  
 

 
(iii). m(AB) m(A)m(B).=� �� �  

 

Proof:  Let  

a a11 1n
A

a annn1

=

⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

� �…
� # % #

� �"
 and 

b b11 1n
B

b bnnn1

=

⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

� �…
� # % #

� �"
 

so that 

a b a b11 11 1n 1n
A B .

a b a bnn nnn1 n1

+ +

+ =
+ +

⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

� �� �…
� � # % #

� �� �"
   Now     

 

     

m(a b ) m(a b )11 11 1n 1n
m(A B)

m(a b ) m(a b )nn nnn1 n1

+ +

+ =
+ +

⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

� �� �…
� � # % #

� �� �"
 

m(a ) m(b ) m(a ) m(b )11 11 1n 1n

m(a ) m(b ) m(a ) m(b )nn nnn1 n1

+ +

+ +

⎛ ⎞
⎜ ⎟=⎜ ⎟⎜ ⎟
⎝ ⎠

� �� �…

# % #
� �� �"
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m(a ) m(a )11 1n

m(a ) m(a )nnn1

=

⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

� �…

# % #
� �"

m(b ) m(b )11 1n

m(b ) m(b )nnn1

+

⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

� �…

# % #
� �"

 

m(A) m(B).= +� �  

 Also 

w(a b ) w(a b )11 11 1n 1n
w(A B)

w(a b ) w(a b )nn nnn1 n1

+ +

+ =
+ +

⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

� �� �…
� � # % #

� �� �"
 

              

w(a ) w(b ) w(a ) w(b )11 11 1n 1n

w(a ) w(b ) w(a ) w(b )nn nnn1 n1

+ +

+ +

⎛ ⎞
⎜ ⎟=⎜ ⎟⎜ ⎟
⎝ ⎠

� �� �…

# % #
� �� �"

 

      

w(a ) w(a )11 1n

w(a ) w(a )nnn1

=

⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

� �…

# % #
� �"

+

w(b ) w(b )11 1n

w(b ) w(b )nnn1

⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

� �…

# % #
� �"

 

w(A) w(B).= +� �  
 
 (ii) As in (i), by using the result m(x y) m(x) m(y)− = −� � � �  and 
w(x y) w(x) w(y),− = +� � � �  we can prove  

m(A B) m(A) m(B)− = −� �� �  and w(A B) w(A) w(B).− = +� �� �  
 
(iii) Let  

a b .... a b a b .... a bnn11 11 1n n1 11 1n 1n
AB

a b .... a b a b .... a bnn nn nnn1 11 n1 n1 1n

+ + + +

=
+ + + +

⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

� � � �� � � �…
� � # % #

� � � �� � � �"
 

 
Then        
                                         

( .... )11 11 1 1
( )

( .... )1 11 1

m a b a bn n
m AB

m a b a bnnn n

+ +

=
+ +

⎛
⎜
⎜⎜
⎝

� �� � …
� � # % #

� �� � "

( .... )11 1 1

( .... )1 1

m a b a bnnn n

m a b a bnn nnn n

+ +

+ +

⎞
⎟
⎟⎟
⎠

� �� �…

# % #
� �� �"

 

                               

                            

( ) .... ( )11 11 1 1

( ) .... ( )1 11 1

m a b m a bn n

m a b m a bnnn n

+ +

=
+ +

⎛
⎜
⎜⎜
⎝

� �� � …

# % #
� �� � "

   

    

                                  

( ) .... ( )11 1 1

( ) .... ( )1 1

m a b m a bnnn n

m a b m a bnn nnn n

+ +

+ +

⎞
⎟
⎟⎟
⎠

� �� �…

# % #
� �� �"

 

                              

              

( ) ( ) .... ( ) ( )11 11 1 1

( ) ( ) .... ( ) ( )1 11 1

m a m b m a m bn n

m a m b m a m bnnn n

+ +

=
+ +

⎛
⎜
⎜⎜
⎝

� �� � …

# % #
� �� � "

 

             

           

( ) ( ) .... ( ) ( )11 1 1

( ) ( ) .... ( ) ( )1 1

m a m b m a m bnnn n

m a m b m a m bnn nnn n

+ +

+ +

⎞
⎟
⎟⎟
⎠

� �� �…

# % #
� �� �"

. (1) 

Also  
( ) ( ) .... ( ) ( )11 11 1 1

( ) ( )
( ) ( ) .... ( ) ( )1 11 1

m a m b m a m bn n
m A m B

m a m b m a m bnnn n

+ +

=
+ +

⎛
⎜
⎜⎜
⎝

� �� � …
� � # % #

� �� � "
           

( ) ( ) .... ( ) ( )11 1 1

( ) ( ) .... ( ) ( )1 1

m a m b m a m bnnn n

m a m b m a m bnn nnn n

+ +

+ +

⎞
⎟
⎟⎟
⎠

� �� �…

# % #
� �� �"

. (2) 

From (3.1) and (3.2), we see that m(AB) m(A)m(B).=� �� �  

Proposition 3.2: Let n nA, B, C IR ×∈� �� . Then multiplication of 
interval matrices is associative with respect to the modified 
interval arithmetic, that is  (A B) C A(BC),≈� � � �� �  provided either 
side is defined. 

Proof:  Let  

a a11 1n
A

a annn1

=

⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

� �…
� # % #

� �"
,  

b b11 1n
B

b bnnn1

=

⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

� �…
� # % #

� �"
 

and 

c c11 1n
C

c cnnn1

=

⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

� �…
� # % #

� �"
.  Now  

a b .... a b a b .... a bnn11 11 1n n1 11 1n 1n
AB

a b .... a b a b .... a bnn nn nnn1 11 n1 n1 1n

+ + + +

=
+ + + +

⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

� � � �� � � �…
� � # % #

� � � �� � � �"
 

and  
 
(AB)C =� ��  

(a b ... a b )c ... (a b ... a b )c ...nn11 11 1n n1 11 11 1n 1n n1
.....................................................................................

(a b ... a b )c ... (a b ... a bnn nn nn1 11 n1 11 n1 1n

+ + + + + +

+ + + + + +

� � � �� � � � � �

� � � �� � � � � )c ...n n1

⎛
⎜
⎜⎜
⎝ �

...(a b ... a b )c ... (a b ... a b )cnn nn11 11 1n n1 1n 11 1n 1n
...................................................................................

...(a b ... a b )c ... (a b ... a bnn nnn1 11 n1 1n n1 1n

+ + + + + +

+ + + + + +

� � � �� � � � � �

� � � �� � � � � )cnn nn

⎞
⎟
⎟⎟
⎠�
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a b c ... a b c ... a b c ... a b c ...nn11 11 11 1n n1 11 11 1n n1 1n n1
.....................................................................................

a b c ... a b c ... a b c .nnn1 11 11 n1 11 n1 1n n1

+ + + + + +

≈
+ + + + +

� � � �� � � � � � � �

� � �� � � � � � .. a b c ...nn nn n1+

⎛
⎜
⎜⎜
⎝

�� �

...a b c ... a b c ... a b c ... a b cnn nn nn11 11 1n 1n n1 1n 11 1n 1n
...................................................................................

...a b c ... a b c ... a b c .nn nnn1 11 1n n1 1n n1 1n

+ + + + + +

+ + + + +

� � � �� � � � � � � �

� � �� � � � � � .. a b cnn nn nn+

⎞
⎟
⎟⎟
⎠

�� �

 
a (b c ... b c ) ... a (b c ... b c )...nn11 11 11 1n n1 1n n1 11 n1

.....................................................................................
a (b c ... b c ) ... a (b c ...nnn1 11 11 1n n1 n1 11

+ + + + + + +

≈
+ + + + + +

� � � �� � � � � �

� � � �� � � � � b c )...nn n1

⎛
⎜
⎜⎜
⎝ �

 

...a (b c ... b c ) ... a (b c ... b c )nn nn nn11 11 1n 1n 1n n1 1n
...................................................................................

...a (b c ... b c ) ... a (b c ... bnn nnn1 11 1n 1n n1 1n

+ + + + + +

+ + + + + +

� � � �� � � � � �

� � � �� � � � � c )nn nn

⎞
⎟
⎟⎟
⎠�

 
 

a a11 1n

a annn1

=

⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

� �…

# % #
� �"

b c .... b c . b c .... b cnn11 11 1n n1 11 1n 1n
.... .... ....

b c .... b c b c .... b cnn nn nnn1 11 n1 n1 1n

+ + + +

+ + + +

⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

� � � �� � � �…

� � � �� � � �"
 

 
A(BC).= � ��   Hence  (A B) C A(BC).≈� � � �� �  

 
 
Example 3.1: It is to be noted that the associative law is not 
true with respect to the existing interval arithmetic. 
 

Let
[-1, 0] [1, 2]

A
[0, 1] [2, 3]

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

� ,  
[1, 3] [2, 3]

B
[1, 2] [0, 2]

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

�    and  

[0,  1] [1, 3]
C

[2, 3] [-2, -1]
=

⎛ ⎞
⎜ ⎟
⎝ ⎠

�  are (2×2) interval matrices in n nIR × . 

By applying the existing interval arithmetic, we have  
[-2, 4] [-3, 4]

AB
[2, 9] [0, 9]

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

� �  and 

[-11, 16] [-14, 18]
(AB)C .

[0, 36] [-16, 27]
=

⎛ ⎞
⎜ ⎟
⎝ ⎠

� ��  

Also
[4, 12] [-5, 7]

BC
[0, 8] [-3, 6]

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

��  and  

[-12, 16] [-13, 17]
A(BC) .

[0, 36] [-14, 25]
=

⎛ ⎞
⎜ ⎟
⎝ ⎠

� ��   Here we see that 

 

2.5 2
m((AB)C)

18 4.5
=

⎛ ⎞
⎜ ⎟
⎝ ⎠

� ��  and 
2 2

m(A(BC)) ,
18 5.5

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

� ��  so 

that m((A B)C) m(A(BC)).≠� � � �� �  Hence (A B) C A(BC).≈/� � � �� �  
 
Example 3.2: In many application problems, it is important to 
find the powers of interval matrices. Consider an example of 
computing the cube of an interval matrix. 

Let 
[1, 2] [0, 3]

A .
[3, 4] [-2, 0]

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

�  By applying the existing 

interval arithmetic, we have 
[1, 2] [0, 3] [1, 2] [0, 3]2A AA
[3, 4] [-2, 0] [3, 4] [-2, 0]

= =
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

� � �

[1, 16] [-6, 9]
[-5, 8] [0, 16]

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

and  

[-23, 68] [-18, 60]3 2A A A .
[-10, 80] [-47, 24]

= =
⎛ ⎞
⎜ ⎟
⎝ ⎠

� � �  Also 

[-14, 56] [-12, 66]3 2A AA .
[-13, 74] [-56, 36]

= =
⎛ ⎞
⎜ ⎟
⎝ ⎠

� � �  

It is worth mentioning that we get different 3A�  ( 3A�  are not 
even equivalent) for the same A�  depending on the order in 
which we apply the matrix multiplication. It is to be noted that 
this is because of the non-associativity of interval matrices 
under the existing interval arithmetic and hence we are not 
able to proceed further in this direction. 
 
Theorem 3.1: Let n nA, B, C IR ×∈� �� . Then multiplication of 
interval matrices is distributive with respect to addition of 
interval matrices, that is  A(B C) AB AC,+ ≈ +� � � � �� �  provided 
either side is defined. 

Proof: Let  

b c b c11 11 1n 1n
B C

b c b cnn nnn1 n1

+ +

+ =
+ +

⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

� �� �…
�� # % #

� �� �"
 and 

A(B C)+ =� ��
a a11 1n

a annn1

⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

� �…

# % #
� �"

b c b c11 11 1n 1n

b c b cnn nnn1 n1

+ +

+ +

⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

� �� �…

# % #
� �� �"

 

 =
...........a (b c ) ... a (b c )nn nn11 1n 1n 1n

..............................................................
...........a (b c ) ... a (b c )nn nn nnn1 1n 1n

+ + + +

+ + + +

⎞
⎟
⎟⎟
⎠

� �� � � �

� �� � � �

 

 
a b a c ... a b a c ........11 11 11 11 1n n1 1n n1

...........................................................
a b a c ... a b a c ........nn nnn1 11 n1 11 n1 n1

+ + + +

≈
+ + + +

⎛
⎜
⎜⎜
⎝

� �� � � � � �

� �� � � � � �
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...........a b a c ... a b a cnn nn11 1n 11 1n 1n 1n

..............................................................
...........a b a c ... a b a cnn nn nn nnn1 1n n1 1n

+ + + +

+ + + +

⎞
⎟
⎟⎟
⎠

� �� � � � � �

� �� � � � � �

 

 
a b .... a b . a b .... a bnn11 11 1n n1 11 1n 1n

.... .... ....
a b .... a b a b .... a bnn nn nnn1 11 n1 n1 1n

+ + + +

=
+ + + +

⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

� � � �� � � �…

� � � �� � � �"
+ 

     
a c .... a c . a c .... a cnn11 11 1n n1 11 1n 1n

.... .... ....
a c .... a c a c .... a cnn nn nnn1 11 n1 n1 1n

+ + + +

+ + + +

⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

� � � � � � � �…

� � � � � � � �"
 

 
= AB AC.+� � ��   Hence A(B C) AB AC.+ ≈ +� � � � �� �  
 
Remark 3.1: It is to be noted that the distributive law for 
interval matrices is not true under the existing interval 
arithmetic, that is A(B C) AB AC.+ ≈ +/� � � � �� �  
 

Example 3.3: Let 
[-1, 0] [1, 2]

A
[0, 1] [2, 3]

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

� ,  

[1, 3] [2, 3]
B

[1, 2] [0, 2]
=

⎛ ⎞
⎜ ⎟
⎝ ⎠

�    and  
[0,  1] [1, 3]

C
[2, 3] [-2, -1]

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

�  are (2×2) 

interval matrices in n nIR × .  By applying the existing 

interval arithmetic, we have  
[-2, 4] [-3, 4]

AB
[2, 9] [0, 9]

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

� �   and  

[1, 6] [-7, -1]
AC

[4, 10] [-6, 1]
=

⎛ ⎞
⎜ ⎟
⎝ ⎠

� �  so that 

AB AC+� � �� [-1, 10] [-10, 3]
[6, 19] [-6, 10]

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

 and hence 

4.5 -3.5
m(AB AC)

12.5 2
+ =

⎛ ⎞
⎜ ⎟
⎝ ⎠

� � �� . Also 

( )B C+ �� [1, 4] [3, 6]
[3, 5] [-2, 1]

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

and    

[-1, 10] [-10, 2]
A(B C)

[6, 19] [-6, 9]
+ =

⎛ ⎞
⎜ ⎟
⎝ ⎠

� ��   

Now   
4.5 -4

m(A(B C))
12.5 1.5

+ =
⎛ ⎞
⎜ ⎟
⎝ ⎠

� �� .  Here we see that 

m(A(B C)) m(AB AC).+ ≠ +� � � � �� �  Hence A(B C) AB AC.+ ≈ +/� � � � �� �  
 
Theorem 3.2: The commutative law with respective scalar 
interval numbers under the modified interval arithmetic is 
true, that is (A ) A( ).α ≈ αx x� �� �� �  

Proof: Let IRα ∈� , nIR∈x�  and Ã∈IRmxn  with 

[ , ]1 2α = α α� , 

a a11 1n
A

a amnm1

=

⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

� �…
� # % #

� �"
 and  

x1
x2
...
xn

=

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

x

�

�
�

�

. Now 

x x1 1
x x2 2
... ...
x xn n

α

α
α = α =

α

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

x

�� �
�� �

� ��

�� �

. Also 

x1a a11 1n x2A( )
...a amnm1 xn

α

α
α =

α

⎛ ⎞
⎛ ⎞⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟

⎜ ⎟⎝ ⎠
⎝ ⎠

x

� �
� �…

� �� � � # % #
� �"

� �

....11 1 12 2 1

....21 1 22 2 2
...

....1 1 2 2

a x a x a xnn
a x a x a xnn

a x a x a xnn nn n

α α α

α α α

α α α

+ + +

+ + +
=

+ + +

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

� � �� � � � � �

� � �� � � � � �

� � �� � � � � �

a x a x .... a xn11 1 12 2 1n
a x a x .... a xn21 1 22 2 2n

...
a x a x .... a xnn nn1 1 n2 2

+ + +

+ + +
= α

+ + +

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

� � �� � �
� � �� � �

�

� � �� � �

= ( ).Ax�� �α  

 
That is (A ) A( ).α ≈ αx x� �� �� �  
Remark 3.2: It is to be noted that the commutative law with 
respective scalars under the existing interval arithmetic is not 
true, that is (A ) A( ).α ≈ α/x x� �� �� �  

Example 3.4: Let 
[-1, 0] [1, 2]

A
[0, 1] [2, 3]

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

� ,  
[1, 3]
[1, 2]

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

x�   are 

interval matrices and [2,3]α =�  be an interval number. By 
applying the existing interval arithmetic, we have 

[-1, 0] [1, 2] [1, 3]
A

[0, 1] [2, 3] [1, 2]
=

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

x� �  
[ 2, 4]
[2, 9]
−

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

  and  

[ 2, 4]
(A ) [2,3]

[2, 9]
−

α =
⎛ ⎞
⎜ ⎟
⎝ ⎠

x�� �
[ 6,12]
[4, 27]
−

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

 so that 

3
m( (A ))

15.5
α =

⎛ ⎞
⎜ ⎟
⎝ ⎠

x�� � .   Also 

[2, 9]
[2, 6]

α =
⎛ ⎞
⎜ ⎟
⎝ ⎠

x� �   and  
[ 7,12]

A( )
[4,27]
−

α =
⎛ ⎞
⎜ ⎟
⎝ ⎠

x� � �  so that 

2.5
m(A( ))

15.5
α =

⎛ ⎞
⎜ ⎟
⎝ ⎠

x� � � .  From these wee see that 

m( (A )) m(A( ))α ≠ αx x� �� �� �  and  hence  (A ) A( ).α ≈ α/x x� �� �� �  
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B. Determinant of an Interval Matrix 

Consider an interval matrix 11 12

21 22

a a
A

a a
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

� ��
� �

of order (2 × 2). 

Let us define the determinant of A�  as  
a a11 12| A |
a a21 22

=
� �

�
� �

= a a a a11 22 12 21−� � � � .  From this we see that 

defining the determinant of a square interval matrix of order  
(2 × 2) is not a difficult task under the existing interval 
arithmetic. 
Now we shall consider an interval matrix 

a a a11 12 13
B a a a21 22 23

a a a31 32 33

=

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

� � �
� � � �

� � �
  of order (3 × 3).  Now we find | |B�  

by applying the existing interval arithmetic as 
a a a11 12 13
a a a21 22 23
a a a31 32 33

� � �

� � �

� � �
= a A a A a A11 11 12 12 13 13+ +� � �� � �    = 

a (a a a a )11 22 33 32 23−� � � � � - a (a a a a )12 21 32 31 23−� � � � � + 

a (a a a a )13 21 32 31 22−� � � � � , which is not even equivalent to 

a a a a a a11 22 33 11 32 23−� � � � � � - a a a a a a12 21 32 12 31 23+� � � � � �  

+ a a a a a a13 21 32 13 31 22−� � � � � � .  (Here Aij
�  is the cofactor of  aij�  

in the usual sense.) 
This is because the distributive law is not true under the 
existing interval arithmetic. 
 
On the other hand if we apply the modified interval arithmetic 
to evaluate | B |� , we have 

a a a11 12 13
a a a21 22 23
a a a31 32 33

� � �

� � �

� � �
= a A a A a A11 11 12 12 13 13+ +� � �� � �  

 
 = a (a a a a )11 22 33 32 23−� � � � � - a (a a a a )12 21 32 31 23−� � � � � + 

a (a a a a )13 21 32 31 22−� � � � � ≈ a a a a a a11 22 33 11 32 23−� � � � � � - 

a a a a a a12 21 32 12 31 23+� � � � � �  + a a a a a a13 21 32 13 31 22−� � � � � �  

≈ an interval number. 
 
     By induction, we define the determinant of an interval 
matrix  ( )ijA a=� �  of order (n × n) as: 

det A�  = ,| | ij ijA a A= ∑� ��  where Aij
�  is the cofactor of  ija�  

in the usual sense. 
It is easy to see that most of the properties of determinants of 
classical matrices are hold good (up to equivalent) for the 

determinants of interval matrices under the modified interval 
arithmetic. 
 
Definition 3.1: A square interval matrix A�  is said to be  
invertible if | A |�   is invertible (i.e. | A | 0≈/� � ) and is denoted by 

adj(A)1A
| A |

− =
�

�
� . Here adj(A)�  is with usual meaning. 

 
Theorem 3.5: Let A ≈x b� ��  be a system of linear equations 

involving interval numbers. If the (n × n) interval matrix A�  is 
invertible, then it is possible to find a smallest box 

(x ,x ,x ,......, x )n1 2 3=x� � � � �  which containing the exact solution 

of the  system A ≈x b� �� , where each  
(i)| A |

x ,i | A |
=
�

�
�  (i)A�  is 

the interval  matrix obtained when the ith column of A�  is 
replaced by the vector  (b ,b ,b ,.....,b ).n1 2 3=b � � � ��  
 
Example 3.5:  Let us consider an example given in Ning et al 
[11]. 
The system of interval equations A ≈x b� ��  be given with 

[3.7, 4.3] [ 1.5, 0.5] [0, 0]
[ 1.5, 0.5] [3.7, 4.3] [ 1.5, 0.5]

[0, 0] [ 1.5, 0.5] [3.7, 4.3]

− −
− − − −

− −

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

 and 

[ 14,0]
[ 9,0] .
[ 3,0]

−
= −

−

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

b�  Here 

[3.7, 4.3] [ 1.5, 0.5] [0, 0]
| A | [ 1.5, 0.5] [3.7, 4.3] [ 1.5, 0.5]

[0, 0] [ 1.5, 0.5] [3.7, 4.3]

− −
= − − − −

− −

�  

       = [37.103, 74.897] and  | A | 0≈/� � . 
 

Now  
[ 14, 0] [ 1.5, 0.5] [0, 0]

(1)| A | [ 9, 0] [3.7, 4.3] [ 1.5, 0.5]
[ 3, 0] [ 1.5, 0.5] [3.7, 4.3]

− − −
= − − −

− − −

�  

 
 ≈ [−14, 0] ([3.7, 4.3] [3.7, 4.3] − [−1.5, −0.5][−1.5, −0.5])                 
-  [-1.5, -0.5] ([-9, 0] [3.7, 4.3] - [-3, 0] [-1.5, -0.5]) = [-14, 0]  
([13.69, 18.31]-[0.25, 1.75]) - [-1.5, -0.5] ([-36, 0]-[0, 3])                   
= [-14, 0][11.94, 18.06]  + [0.5, 1.5] [-6.15, -1.85] = [-210, 0]            
   + [-39, 0] = [-249, 0]   and  
 

[3.7, 4.3] [ 14, 0] [0, 0]
(2)| A | [ 1.5, 0.5] [ 9, 0] [ 1.5, 0.5]

[0, 0] [ 3, 0] [3.7, 4.3]

−
= − − − − −

−

�  

 
≈ [3.7, 4.3] ([−9, 0] [3.7, 4.3] − [−3, 0] [−1.5, −0.5]) - [-14, 0]         
([-1.5, -0.5] [3.7, 4.3]-[0, 0] [-1.5, -0.5]) = [3.7, 4.3] ([-36, 0]   
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-[0, 3]) - [-14, 0] ([-6.15, -1.85]-[0, 0]) =[3.7, 4.3][-39, 0]   
+[0, 14] [-6.15,-1.85]  =[-156,0] + [-56,0] = [-212, 0]. 
 

Also 
[3.7, 4.3] [ 1.5, 0.5] [ 14, 0]

(3)| A | [ 1.5, 0.5] [3.7, 4.3] [ 9, 0]
[0, 0] [ 1.5, 0.5] [ 3, 0]

− − −
= − − −

− − −

�  

 
≈ [3.7, 4.3] ([3.7, 4.3] [−3, 0] − [−1.5, −0.5] [−9, 0]) –  
[-1.5,-0.5] ([-1.5,-0.5] [-3, 0]-[0, 0] [-9, 0]) + [-14, 0]  
([-1.5,-0.5][-1.5,-0.5] - [0, 0][3.7, 4.3]) = [3.7, 4.3]([-12, 0] 
 -[0, 9])-[-1.5, -0.5][0, 3]  + [-14, 0]  [0.25, 1.75] = [3.7, 4.3] 
 [-21, 0] - [-1.5, -0.5] [0, 3]  = + [-14, 0] [0.25, 1.75] 
 = [-184, 0]  + [0, 3] + [-14, 0] = [-98, 3]. 
 
Then by the above theorem we see that 

(1)| A | [ 249,0]
x [ 4.482,0],1 | A | [37.103,74.897]

−
= = = −
�

�
�  

(2)| A | [ 212,0]
x [ 3.816,0]2 | A | [37.103,74.897]

−
= = = −
�

�
�    and 

(3)| A | [ 98,0]
x [ 1.776,0.006].3 | A | [37.103,74.897]

−
= = = −
�

�
�  

In this case, we obtain the solution set (box) 

x [ 4.482,0]1
x [ 3.816,0] .2

[ 1.776,0.006]x3

−
= = −

−

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

x

�

� �

�
 Using interval Gaussian 

elimination with existing interval arithmetic, Ning et al [11] 

obtained the solution set (box) 
[ 6.38,0]
[ 6.40,0] .
[ 3.40,0]

−
−
−

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

 Using Hansen’s 

technique of [7] or Rohn’s reformulation of [14], Ning et al 
[11] obtained the solution set (wider box) 

[ 6.38,1.12]
[ 6.40,1.54] .
[ 3.40,1.40]

−
−
−

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

 Using their technique, Ning et al [11] 

obtained the solution set (much wider box) 
[ 6.38,1.67]
[ 6.40,2.77] .
[ 3.40,2.40]

−
−
−

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

 It 

is to be noted that the solution set (box) obtained by our 
method is sharper then the solution sets obtained by other 
techniques. 
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