
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:6, 2009

1555

On Reversal and Transposition Medians
Martin Bader

Abstract—During the last years, the genomes of more and more
species have been sequenced, providing data for phylogenetic recon-
struction based on genome rearrangement measures. A main task in
all phylogenetic reconstruction algorithms is to solve the median of
three problem. Although this problem is NP-hard even for the sim-
plest distance measures, there are exact algorithms for the breakpoint
median and the reversal median that are fast enough for practical use.
In this paper, this approach is extended to the transposition median as
well as to the weighted reversal and transposition median. Although
there is no exact polynomial algorithm known even for the pairwise
distances, we will show that it is in most cases possible to solve
these problems exactly within reasonable time by using a branch and
bound algorithm.

Keywords—Comparative genomics, genome rearrangements, me-
dian, reversals, transpositions.

I. INTRODUCTION

Due to the increasing amount of sequenced genomes, the

problem of reconstructing phylogenetic trees based on this data

is of great interest in computational biology. In the context of

genome rearrangements, a genome is usually represented as

a permutation of (1, . . . , n), where each element represents

a gene, i.e. the permutation represents the shuffled ordering

of the genes on the genome. Additionally, the strandedness

of the genes is taken into account by giving each element an

orientation. In the multiple genome rearrangement problem,

one searches for a phylogenetic tree describing the most “plau-

sible” rearrangement scenario for multiple genomes. Formally,

given k genomes and a distance measure d, find a tree T with

the k genomes as leaf nodes and assign ancestral genomes

to internal nodes of T such that the tree is optimal w.r.t. d,

i.e. the sum of rearrangement distances over all edges of the

tree is minimal. If k = 3, i.e. one searches for an ancestor

such that the sum of the distances from this ancestor to three

given genomes is minimized, we speak of the median problem.

All of the actual state-of-the-art algorithms for solving the

multiple genome rearrangement problem rely on algorithms

for solving the median problem. Unfortunately, this problem

is NP-hard even for the simplest rearrangement measures,

namely the breakpoint distance [13] and the reversal distance

[9]. Currently, the most interesting distance measures are:

• The reversal distance between two genomes is the min-

imum number of reversals required to transform one

genome into the other. It can be computed in linear

time [2]. The reversal median problem has been proven

to be NP-hard [9]. The currently best software tools

to solve the multiple genome rearrangement problem

based on this distance measure are GRAPPA [12], MGR

[8], amGRP [7], and phylo [3]. While amGRP and

phylo rely on Caprara’s median solver [9], GRAPPA

M. Bader is with the Institute of Theoretical Computer Science, Ulm
University in Germany, email: martin.bader@uni-ulm.de

can alternatively use Siepel’s median solver [14]. MGR

uses its own heuristic median solver.

• The transposition distance between two genomes is the

minimum number of transpositions required to transform

one genome into the other. So far, it is not clear whether

it is in P or not, and the currently best approximation

algorithm has an approximation ratio of 1.375 [11]. An

exact branch and bound algorithm is described in [10]. To

the best of our knowledge, the only program that solves

the multiple genome rearrangement problem based on

this distance measure is GRAPPA-TP [18], which uses

an extension of Siepel’s median solver [14] and solves

pairwise distances by a fast heuristic.

• The weighted reversal and transposition distance between

two genomes is the minimum weight of a sequence

consisting of reversals and transpositions that transforms

one genome into the other, where reversals and trans-

positions are weighted differently. Again, it is not clear

whether it is in P or not, but there is a 1.5-approximation

algorithm that covers each weight ratio from 1:1 to 1:2

(reversals:transpositions) [4]. As far as we know, the only

program that solves the multiple genome rearrangement

problem based on this distance measure is phylo [3],

which uses a preliminary version of the median solver

presented in this paper.

• The double cut and join distance between two genomes

is the minimum number of double cut and join (DCJ)

operations required to transform one genome into the

other. The DCJ operation has been introduced by Yan-

copoulos et al. [17] and can simulate reversals (with

one DCJ operation) and block interchanges (with two

DCJ operations), which are a generalization of tranpo-

sitions. The DCJ distance can easily be extended to

multichromosomal genomes, but it has the drawback

of the fixed weight ratio between reversals and block

interchanges, and the fact that block interchanges are

biologically less motivated than transpositions. While the

DCJ distance can be computed in linear time [17], the

DCJ median is NP-hard for both the unichromosomal and

the multichromosomal case [9], [15]. There are currently

several implementations of a DCJ median solver (e.g. [1],

[16], [19]) which can be integrated in MGR or GRAPPA.

In this paper, we will show how one can solve the transposition

median as well as the weighted reversal and transposition

median by extending Caprara’s median solver. This requires

the calculation of pairwise distances between two genomes,

which either can be done approximately using the algorithm

devised in [4], or exactly using a new branch and bound

algorithm presented in this paper. Experimental results show

that the approximation rate of the first method is very good in

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:6, 2009

1556

practice, and that even the exact algorithm runs in feasible time

for practical use. In Section II basic definitions are given. The

algorithm to calculate exact pairwise distances is described

in Section III, the algorithm to solve the median problem

is described in Section IV. The experimental results and a

comparison with GRAPPA-TP, which was kindly provided by

Jijun Tang, can be found in Section V. Section VI summa-

rizes the method and the results and discusses some future

prospects.

II. PRELIMINARIES

A signed permutation π = (π1 . . . πn) is a permutation of

(1 . . . n), where each element πi has an orientation (indicated

by −→πi or ←−πi). In the following, the term “permutation” will be

used as short hand for signed permutation. The permutation

id = (
−→
1 . . .−→n) is called the identity permutation of size

n. A segment of a permutation π is a consecutive sequence

of elements in π. A reversal is an operation that inverts

the order of the elements of a segment in a permutation.

Additionally, the orientation of every element in the segment

is flipped. A transposition is an operation that cuts a segment

out of a permutation, and reinserts it at another position in

the permutation. If additionally a reversal is applied on this

segment, we speak of an inverted transposition. The weight

of an operation op is denoted by w(op), and the weight of

a sequence of operations is the sum of the weights of the

operations in the sequence. In the following, reversals have

weight wr, whereas transpositions and inverted transpositions

have weight wt, and it is assumed that wr ≤ wt ≤ 2wr

(otherwise optimal sequences would have an unrealistic strong

bias either towards reversals or transpositions). The prob-

lem of sorting by weighted reversals and transpositions is

defined as follows. Given two permutations π1, π2, find a

sequence of reversals and transpositions of minimum weight

that transforms π1 into π2. This minimum weight is called

the weighted reversal and transposition distance (wRTD)

dw(π1, π2
). If the set of operations is restricted to transpo-

sitions only, the problem is called sorting by transpositions,

and the corresponding distance is called the transposition

distance (TD) dt(π
1, π2

). Since a transposition can never

change the orientation of an element, all the elements in π1

as well as in π2 must have positive orientation. Given q per-

mutations π1, . . . , πq, the weighted reversal and transposition

median problem (wRTMP) calls for a permutation ρ such

that δ(ρ) =
∑q

k=1
dw(ρ, πk

) is minimized. The transposition

median problem (TMP) is defined analogously. For solving

wRTMP and TMP, the multiple breakpoint graph is used,

which has been introduced by Caprara [9] and is a generaliza-

tion of the breakpoint graph defined in [5]. For permutations

π1, . . . , πq, the MB graph G = (V,E) is a multigraph with

node set V = {−1, +1,−2, +2, . . . ,−n, +n} (where n is the

size of the permutations). The edge set can be obtained as

follows. First, replace in each permutation πk (1 ≤ k ≤ q)

all elements with positive orientation −→x by −x + x and all

elements with negative orientation ←−x by +x −x. Then, each

permutation πk induces the edge set Mk
= {(i, j) | i �= −j

and πk contains the adjacent values i and j }, i.e. the edge

set Mk corresponds to the adjacencies in πk. The edge set

E of the MB graph G is the union of these edge sets, i.e.

E =
⋃q

k=1
Mk. As each node is connected to exactly one

edge in each edge set Mk, the graphs Gi,j = (V,M i ∪ M j
)

(with 1 ≤ i, j ≤ q) decompose into cycles with alter-

nating edges from the edge sets M i and M j . A cycle is

called an odd cycle if its number of edges divided by 2

is an odd number, otherwise it is called an even cycle. Let

codd(π
i, πj

) denote the number of odd cycles in Gi,j , and

let ceven(πi, πj
) denote the number of even cycles in Gi,j .

The score σ between two permutations πi and πj is defined

by σ(πi, πj
) = codd(π

i, πj
) + (2 − 2wr

wt

)ceven(πi, πj
). The

following theorems show how this score can be used to obtain

lower and upper bounds for the wRTD.

Theorem 1: [4], [6] A lower bound lbw(πi, πj
) for the

weighted reversal and transposition distance dw(πi, πj
) can

be defined as follows.

dw(πi, πj
) ≥ lbw(πi, πj

),

where lbw(πi, πj
) := (n − σ(πi, πj

))
wt

2

A lower bound lbt(π
i, πj

) for the transposition distance

dt(π
i, πj

) can be defined as follows.

dt(π
i, πj

) ≥ lbt(π
i, πj

),

where lbt(π
i, πj

) := (n − codd(π
i, πj

)
wt

2

Note that if wt = 2wr, the lower bounds for both distances are

equal. This will later simplify the description of the algorithms,

as only the lower bound for the wRTD will be used.

Theorem 2: [4], [11] An upper bound ubw(πi, πj
) for the

weighted reversal and transposition distance dw(πi, πj
) can be

defined as follows.

dw(πi, πj
) ≤ ubw(πi, πj

),

where lbw(πi, πj
) := 1.5lbw(πi, πj

)

An upper bound ubt(π
i, πj

) for the transposition distance

dt(π
i, πj

) can be defined as follows.

dt(π
i, πj

) ≤ ubt(π
i, πj

),

where ubt(π
i, πj

) := 1.375lbt(π
i, πj

)

III. CALCULATING PAIRWISE DISTANCES

As exact polynomial algorithms are neither known for the

TD nor for the wRTD, we introduce a branch and bound

algorithm for the pairwise distances. The main idea of the

algorithm is straightforward. W.l.o.g., the task is to find an

optimal sorting sequence between a permutation π and the

identity permutation id of the same size. For this, a set S
that contains triples (π̃, d′(π, π̃), lb(π̃, id)) is created, where

π̃ is a permutation, d′(π, π̃) is the sum of the weights of

all operations that have been performed on the path from

π to π̃, and lb(π̃, id) is the lower bound for the remaining

distance towards id according to Theorem 1. Initially, S is

set to {(π, 0, lb(π, id))}. In each step, one selects the triple

(π̃, d′(π, π̃), lb(π̃, id)) from S where d′(π, π̃) + lb(π̃, id) is

minimized, and remove it from S. If lb(π̃, id) = 0, then π̃ = id

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:6, 2009

1557

and d′(π, π̃) = d(π, id), i.e. an optimal solution is found

and the algorithm aborts. The sequence of operations can be

reconstructed by a traceback. Otherwise, for each operation

op, the triple (op π̃, d′(π, π̃) + w(op), lb(op π̃, id) is added

to S, i.e. all possible predecessors of π̃ are added to S. This

step is called expanding π̃. The algorithm continues by again

selecting the best triple.

So far, the algorithm is just an ordinary branch and bound

algorithm, and does not perform very well in practice. Thus,

the algorithm is improved by a duplicate elimination. Because

there are usually different optimal sequences to reach an

intermediate permutation, this permutation would be stored

several times, and in the worst case the number of duplicates

of a permutation can be exponential in the distance to the

origin permutation. Therefore, it is first checked whether a

permutation already has been reached on another sequence

before a new triple containing this permutation is created.

Searching for a possible duplicate can be done quite efficiently

by hashing techniques. The number of elements in S can be

further decreased by working on the minimal permutations,

which have been defined in [10] as follows. Given a permuta-

tion π̃, the minimal permutation gl(π̃) is obtained by ‘gluing’

all the adjacencies together, i.e. each segment of elements

that is identical in π̃ and id is replaced by a single element.

As an example, the permutations π̃ = (
−→
1

−→
2

−→
4

−→
3) and

π̂ = (
−→
1

−→
3

−→
4

−→
2) have both the same minimal permutation

(
−→
1

−→
3

−→
2). The following lemma ensures that it is sufficient

to search for an optimal sorting sequence between gl(π̃) and

id′ to obtain an optimal sorting sequence between π̃ and id,

where id′ is the identity permutation of same size as gl(π̃).

Lemma 1: [10] Let π be a permutation and gl(π) be its

minimal permutation. Let id be the identity permutation of

same size as π, and let id′ be the identity permutation of

same size as gl(π). Then, an optimal sorting sequence between

gl(π) and id′ can easily be transformed into an optimal sorting

sequence between π and id. Both sorting sequences have the

same weight, i.e. d(π, id) = d(π̃, id′).
Note that the original lemma in [10] only considered the TD.

However, the proof for the wRTD works analogously, thus

this lemma holds for the TD as well as for the wRTD. While

Christie used this proof only to show that one never has to

split adjacencies, we will also use it for duplicate elimination.

In the example above, π̂ would be considered to be a duplicate

of π̃. In fact, instead of storing the original permutations, only

the minimal permutations will be stored, resulting in a further

space improvement.

IV. THE MEDIAN SOLVER

Our median solver is an extension of Caprara’s reversal

median solver [9]. While Caprara’s algorithm solves instances

of the Cycle Median Problem (CMP) and reestimates the

distances using the reversal distance, we extend the CMP to the

weighted Cycle Median Problem and reestimate the distances

using the TD or the wRTD.

For a given wRTMP instance with permutations π1, . . . , πq,

and an arbitrary permutation ρ, define γ(ρ) :=
∑q

k=1
σ(ρ, πk

).

The weighted Cycle Median Problem (wCMP) is defined as

follows. Given a set of q permutations π1, . . . , πq, find a

permutation τ such that qn − γ(τ) is minimized. In the

following, let ρ∗ be the solution of a given wRTMP and

let δ∗ := δ(ρ∗) =
∑q

i=1
dw(πi, ρ∗) be its solution value.

Let τ∗ be the solution of the associated wCPM and let

qn − γ∗
:= qn − γ(τ∗

) be its solution value. The following

lemma shows the relation between a wRTMP instance and the

associated wCMP instance.

Lemma 2: Given a wRTMP instance with solution value δ∗

and the associated wCMP instance with solution value qn−γ∗,

wt

2
(qn − γ∗

) ≤ δ∗ ≤
3wt

4
(qn − γ∗

)

Proof: Using the bounds given in Theorems 1 and 2, we

get

wt

2
(qn − γ∗

) =
wt

2
(qn − γ(τ∗

))

≤
wt

2
(qn − γ(ρ∗))

=

q
∑

k=1

lb(πk, ρ∗)

≤ δ∗

≤

q
∑

k=1

d(πk, τ∗

)

≤ 1.5

q
∑

k=1

lb(πk, τ∗

)

=
3wt

4
(qn − γ∗

).

Note that this proof also holds for the TD if wr = 1, wt = 2,

and the search space of the wCMP is restricted to permutations

where all elements have positive orientation. In this case,

γ(τ) =
∑q

k=1
codd(π

k, τ), i.e. an optimal solution of the

wCPM maximizes the number of odd cycles. In most cases,

δ∗ is very close to the lower bound. This motivates the idea

to solve a wRTMP instance by solving the associated wCMP

instance and then check whether the solution of the wCMP

instance is also a solution of the wRTMP instance. We will

now address the problem of solving a wCMP instance. As

we will use a branch and bound algorithm that successively

extends a partial solution until we have a complete solution,

the MB graph must be extended such that it can be used

to obtain strong lower bounds for partial solutions. A graph

(V,E) is weighted if each edge e ∈ E has an integer weight

w(e). Given a weighted graph G = (V,E) with node set

V = {−1, +1,−2, +2, . . . ,−n, +n}, a weighted matching M
is a set of edges in G such that each node in V is incident

to at most one edge in M and each edge in M has an odd

weight (restricting the weights to be odd will simplify later

proofs). A weighted matching M is called perfect if each node

in V is incident to exactly one edge in M . It is easy to see

that the union of two matchings decomposes the graph into

cycles and paths consisting of alternating edges from both

matchings. The length of a cycle or path is the sum of the

weights of its edges. A cycle is called an odd cycle if its

length divided by 2 is an odd number, otherwise it is called an

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:6, 2009

1558

even cycle. Note that cycles always consist of an even number

of edges, all having an odd weight (recall the definition of

weighted matchings), thus the length of a cycle is always

divisible by 2. Analogous to the definition given in Section II,

codd(M
i, M j

) is the number of odd cycles in (V,M i ∪M j
),

ceven(M i, M j
) is the number of even cycles in (V,M i∪M j

),

and σ(M i, M j
) := codd(M

i, M j
)+(2− 2wr

wt

)ceven(M i, M j
).

The base matching H is defined by H := {(−k,+k) | 1 ≤
k ≤ n} and ∀e ∈ H : w(e) = 1. A weighted matching M is

called a permutation matching if H∪M defines a Hamiltonian

cycle on G, i.e. a cycle that visits each node in V exactly once.

Lemma 3: [5] There is a one-to-one correspondence be-

tween signed permutations and permutation matchings where

each edge has weight 1.

In other words, each permutation matching can be transformed

into a permutation by ignoring the weights. On the other hand,

the search space can be reduced to permutation matchings.

Interpreting the MB graph as the special case of a weighted

graph (where each weight is set to 1) leads to the following

formulation of the wCMP. Given a node set V with |V | = 2n
and q permutation matchings M1, . . . , Mq, find a permutation

matching Mτ with edge weights 1 that minimizes
∑q

k=1
(n−

σ(Mτ , Mk
)). Note that there is no restriction for the weights

of the edges of the given permutation matchings. While all

edges in the initial problem have weight 1, the branch and

bound algorithm will create partial solutions where also other

edge weights are possible.

Lemma 4: The weighted cycle distance n − σ(S, T) on

permutation matchings is a metric.

Proof:

1) Positive definiteness: n − σ(S, S) = 0, because the

graph decomposes into n odd cycles. For permutation

matchings S, T with S �= T , there must be at least one

cycle with at least four edges, thus the overall number

of cycles is less than n. As each cycle adds at most 1

to σ(S, T), σ(S, T) < n and n − σ(S, T) > 0.

2) Symmetry: This follows directly from the symmetry of

σ(S, T).

3) Triangle inequation: We show that for permutation

matchings S, T , and R, n − σ(S, R) + n − σ(R, T) ≥
n − σ(S, T). For this, R is modified successively by

the following rules. (a) If (V, S ∪ R) contains an even

cycle with only two edges, change the weight of the

corresponding edge in R such that the cycle becomes

odd. This increases σ(S, R) by 2
wr

wt

− 1. In (V,R∪ T),

this either changes an even cycle into an odd cycle, or an

odd cycle into an even cycle. Thus, σ(S, R) + σ(R, T)

does not decrease. (b) If (V, S ∪ R) contains a cycle

with at least four edges, remove two of the edges of R
and rejoin the endpoints such that the cycle is split into

two cycles. Weight the new edges such that both cycles

are odd cycles. If the original cycle was even, σ(S, R)

increases by 2wr

wt
. As the operation can effect at most

two cycles in (V,R ∪ T), the worst possible effect on

σ(R, T) is that two odd cycles are merged into an even

cycle. Thus, σ(S, R)+σ(R, T) does not decrease. If the

original cycle was odd, σ(S, R) increases by 1, and the

overall number of odd cycles changes by 1. As the parity

of the number of odd cycles is always equal in (V, S∪R)

and (V,R ∪ T), the worst possible effect on σ(R, T) is

that two odd cycles are merged into one odd cycle. Thus,

σ(S, R)+σ(R, T) does not decrease. (c) If none of the

two rules above can be applied, S and R contain the

same edges, but maybe with different weights. Change

the weights of the edges of R such that they have the

same weights as the edges in S. Note that this step

has no effect on the cycles, as all cycles in (V, S ∪ R)

are already odd. Thus, σ(S, R) + σ(R, T) remains un-

changed. The whole transformation transformed R into

S without decreasing σ(S, R) + σ(R, T). Therefore,

n−σ(S, R)+n−σ(R, T) ≥ n−σ(S, S)+n−σ(S, T) =

n − σ(S, T).

The following lemma will give us a lower bound for the

solution value of a wCMP.

Lemma 5: Given a wCMP instance associated with

weighted matchings M1, . . . , Mq and solution Mτ , we have

q
∑

k=1

(n − σ(Mτ , Mk
)) ≥

qn

2
−

q−1
∑

k=1

q
∑

l=k+1

σ(Mk, M l
)

q − 1

Proof: Using the triangle inequality given in Lemma 4,

we get

qn

2
−

q−1
∑

k=1

q
∑

l=k+1

σ(Mk, M l
)

q − 1

=
1

q − 1

q−1
∑

k=1

q
∑

l=k+1

(n − σ(Mk, M l
))

≤

q
∑

k=1

(n − σ(Mτ , Mk
))

In order to describe partial solutions, we must introduce the

contraction of an edge. Given a weighted graph G = (V,E)

with |V | = 2n and E =
⋃q

k=1
Mk, where each Mk is a

permutation matching, the contraction of an edge e = (vi, vj)

is an operation that modifies G as follows. The nodes vi, vj

are removed from V . Each permutation matching Mk is

transformed into Mk/e by the following rules. If e ∈ Mk,

remove e from Mk, i.e. Mk/e = Mk \ {e}. Otherwise, let

(a, vi) and (b, vj) be the two edges incident to vi and vj

in Mk. Remove these edges and add a new edge (a, b), i.e.

Mk/e = Mk \ {(a, vi), (b, vj)} ∪ {(a, b)}. The weight of the

new edge (a, b) will be set to w(a, b) := w(a, vi)+w(b, vj)+1.

Note that this is also an odd number, as w(a, vi) and w(b, vj)

are odd. Analogously, the base matching H will be replaced

by H/e.

Lemma 6: [9] Given two perfect matchings M and L of V
and an edge (vi, vj) ∈ M , M ∪L defines a Hamiltonian cycle

of V if and only if (M/e)∪(L/e) defines a Hamiltonian cycle

of V \ {vi, vj}.

Lemma 7: Let M1, . . . , Mq be a wCMP instance, let Mτ

be a permutation matching with edge weights 1, and let e ∈

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:6, 2009

1559

Mτ be an edge. Then,

q
∑

k=1

(n − σ(Mτ , Mk
))

= q −

q
∑

k=1

σ(Mk, {e}) +

q
∑

k=1

(n − 1 − σ(Mτ/e, Mk/e))

Proof: A cycle in Mτ ∪ Mk is either absorbed by the

contraction step, or it corresponds to a cycle in Mτ/e∪Mk/e
of the same length. In the first case, the absorbed cycle is

equivalent to the cycle in Mk∪{e}, and the sum of the scores

of the absorbed cycles is
∑q

k=1
σ(Mk, {e}). As there are no

new cycles in Mτ/e ∪ Mk/e, we get

q
∑

i=1

σ(Mτ , Mk
)

= −

q
∑

k=1

σ(Mk, {e}) +

q
∑

k=1

(n − σ(Mτ/e, Mk/e))

= q −

q
∑

k=1

σ(Mk, {e}) +

q
∑

k=1

(n − 1 − σ(Mτ/e, Mk/e)).

By combining Lemmas 6 and 7, we get the following

Corollary 1: Given a wCMP instance M1, . . . Mq with

solution Mτ and an edge e ∈ Mτ , then Mτ \{e} is a solution

of the wCMP instance M1/e, . . . ,Mq/e.

We are now ready to describe our branch and bound algorithm

for wCMP. A partial solution consists of a matching that is not

necessarily perfect, and the lower bound of a partial solution

M can be calculated by contracting all edges in M and

calculating the lower bound of the contracted graph, using the

formulas described in Lemmas 5 and 7. In each step, the partial

solution M with the currently least lower bound is selected and

expanded as follows. Let V ′ be the nodes of V such that forall

vi ∈ V ′, vj ∈ V : (vi, vj) �∈ M , and let va be a fixed node

in V ′. Then, a new partial solutions M ′ is created by setting

M ′
= M ∪ (va, vb) for all vb ∈ V ′, vb �= va. Partial solutions

M ′ that cannot be expanded to a permutation matching (i.e.

M ′ ∪H contains a cycle that is not a Hamiltonian cycle) can

be directly discarded, for all other partial solutions the lower

bounds are calculated. The algorithm has found an optimal

solution for the wCMP when the partial solution with the least

lower bound is a perfect matching.

The algorithm can easily be extended such that it can solve the

wRTMP or the TMP by adding the following step. Whenever

the best partial solution Mτ is a perfect matching, create the

corresponding permutation πτ and test if
∑q

k=1
dw(πk, πτ

) is

equal to the lower bound (of course one has to take dt instead

of dw if one wants to solve the TMP). In this case, an optimal

solution is found. Otherwise, the lower bound for Mτ is

increased, and Mτ is reinserted into the set of partial solutions.

A further speed-up of the pairwise distance algorithm can be

obtained by providing an upper bound (remember that we only

want to test if the sum of the pairwise distances is equal

to the lower bound, thus the pairwise distance algorithms

can be aborted if the currently best results are above this

bound). If one wants to solve the TMP, partial solutions are

further restricted to matchings where all edges are of the

form (+i,−j), because other edges correspond to a change in

orientation in the permutation and therefore these permutations

cannot be sorted by transpositions only.

V. EXPERIMENTAL RESULTS

The algorithm has been tested on artificial datasets with

37 and 100 markers, reflecting the size of mitochondrian and

chloroplast genomes. The datasets were created by, starting

from the identity permutation, creating three different se-

quences of operations to get the input genomes. The weight

of the edges is uniformly distributed in [0.5r, 1.5r], where r
is the expected weight of an edge, varying from 2 to 15. For

the data sets to test the transposition median solver, wt was

set to 1. For the data sets to test the weighted reversal and

transposition median solver, wr was set to 1, and different

datasets were created for wt = 1, wt = 1.5, and wt = 2.

When creating the data sets, the probability of performing a

transposition reflects the weight of wt, i.e. the expected ratio

of reversals to transpositions is wt : wr. For each combination

of these parameters, we created 10 data sets. All tests were

performed on a standard 3.16 GHz PC, the running time for

each test case was limited to one hour, and RAM was limited

to 4GB.

The experiments showed that the size of the datasets has only

little influence on the results. Up to an expected edge length

of r = 8, all test cases could be solved exactly, most of them

even in less than one second. For higher distances, the running

times increased. However, we could still solve 9 instances of

the TMP with r = 15 and n = 37 with an average running

time of 6:21 min, and 6 instances of the TMP with r = 15 and

n = 100 with an average running time of 16:27 min. For the

instances of the wRTMP, the running times depend on the used

weight ratio. While setting wr : wt to 1 : 2 allowed us to solve

all test cases within a few seconds, the running times increased

for the other weight ratio. Moreover, the heap had to be pruned

due to the memory limit in some cases, which means that there

is a slight chance that wethe optimal solution has been missed.

Nevertheless, we were still able to solve all test cases, except

for a few test cases with n = 100, wr : wt = 1 : 1, and

r > 13. Using the approximation algorithm instead of the

exact algorithm for the pairwise distances resulted in better

running times at almost the same accuracy. In most cases,

a solution of same weight as with the exact algorithm was

found, and the gap between the weights of the solutions never

exceeded 1.

A comparison with GRAPPA-TP on the instances of the TMP

shows that GRAPPA-TP is slightly less accurate than our

median solver, but its main drawback is the speed. For r = 7,

its average running time was 3:36 min (n = 37) respectively

6:41 min (n = 100), while our algorithm solved these test

cases within less than one second. Increasing the edge lengths

further decreased the number of solved test cases. For n = 37,

none of the test cases with r ≥ 14 could be solved within one

hour. For n = 100, none of the test cases with r ≥ 11 could

be solved within one hour.

A more detailed view of the test results can be found in

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:6, 2009

1560

Appendix A. In the tables, the number of solved test cases

and the average running time of the approximation algorithm

and the exact algorithm is shown for each combination of

parameters, as well as the average gap and the maximum gap

between the solution of the approximation algorithm and the

exact algorithm. Of course, the gaps can only be computed

for test cases which have been solved by both algorithms, and

the average running times only consider test cases that could

be solved within the time limit. The column “proven exact”

indicates the number of test cases where it can be assured

that the exact algorithm did not miss an optimal solution due

to heap pruning. Note that the other solutions might still be

exact. In fact, as only the currently worst solutions are pruned,

the probability of missing an optimal solution is rather low.

VI. CONCLUSION AND FUTURE WORK

We presented an extension of Caprara’s median solver that

can solve instances of the TMP and the wRTMP. The method

has been tested on artificial datasets, showing that is possible

to solve the wRTMP and the TMP exactly in many cases.

A comparison with GRAPPA-TP on TMPs shows that our

algorithm brings a speed improvement of several orders of

magnitude. However, there is still room for improvements, like

e.g. a graph decomposition approach similar to the one in

[16]. As this approach gave an immense speedup for the DCJ

median problem, we expect similar results for the wRTMP.

The program is free software and can be obtained from the

authors.

REFERENCES

[1] Z. Adam and D. Sankoff. The ABCs of MGR with DCJ. Evolutionary

Bioinformatics, 4:69–74, 2008.
[2] D. Bader, B. Moret, and M. Yan. A linear-time algorithm for computing

inversion distance between signed permutations with an experimental
study. Journal of Computational Biology, 8:483–491, 2001.

[3] M. Bader, M. Abouelhoda, and E. Ohlebusch. A fast algorithm for the
multiple genome rearrangement problem with weighted reversals and
transpositions. BMC Bioinformatics, 9:516, 2008.

[4] M. Bader and E. Ohlebusch. Sorting by weighted reversals, transposi-
tions, and inverted transpositions. Journal of Computational Biology,
14(5):615–636, 2007.

[5] V. Bafna and P. Pevzner. Genome rearrangements and sorting by
reversals. SIAM Journal on Computing, 25(2):272–289, 1996.

[6] V. Bafna and P. Pevzner. Sorting by transpositions. SIAM Journal on

Discrete Mathematics, 11(2):224–240, 1998.
[7] M. Bernt, D. Merkle, and M. Middendorf. Using median sets for

inferring phylogenetic trees. Bioinformatics, 23:e129–e135, 2007.
[8] B. Bourque and P. Pevzner. Genome-scale evolution: Reconstructing

gene orders in the ancestral species. Genome Research, 12(1):26–36,
2002.

[9] A. Caprara. The reversal median problem. INFORMS Journal on

Computing, 15(1):93–113, 2003.
[10] D. Christie. Genome Rearrangement Problems. PhD thesis, University

of Glasgow, 1998.
[11] I. Elias and T. Hartman. A 1.375-approximation algorithm for sorting

by transpositions. IEEE/ACM Transactions on Computational Biology

and Bioinformatics, 3(4):369–379, 2006.
[12] B. Moret, S. Wyman, D. Bader, T. Warnow, and M. Yan. A new

implementation and detailed study of breakpoint analysis. In Proc. 6th

Pacific Symposium on Biocomputing, pages 583–594, 2001.
[13] I. Pe’er and R. Shamir. The median problems for breakpoints are NP-

complete. Electronic Colloquium on Computational Complexity, 5(71),
1998.

[14] A. Siepel and B. Moret. Finding an optimal inversion median: Experi-
mental results. In Proc. 1st Workshop on Algorithms, volume 2149 of
Lecture Notes in Computer Science, pages 189–203. Springer-Verlag,
2001.

[15] E. Tannier, C. Zheng, and D. Sankoff. Multichromosomal genome
median and halving problems. In Proc. 8th Workshop on Algorithms

in Bioinformatics, volume 5251 of Lecture Notes in Computer Science,
pages 1–13. Springer-Verlag, 2008.

[16] A. Xu. A fast and exact algorithm for the median of three problem - a
graph decomposition approach. In Proc. 6th Annual RECOMB Satellite

Workshop on Comparative Genomics, volume 5267 of Lecture Notes in

Bioinformatics, pages 184–197. Springer-Verlag, 2008.
[17] S. Yancopoulos, O. Attie, and R. Friedberg. Efficient sorting of

genomic permutations by translocation, inversion and block interchange.
Bioinformatics, 21(16):3340–3346, 2005.

[18] F. Yue, M. Zhang, and J. Tang. Phylogenetic reconstruction from
transpositions. BMC Genomics, 9(Suppl 2):S15, 2008.

[19] M. Zhang, W. Arndt, and J. Tang. An exact solver for the DCJ median
problem. In Proc. 14th Pacific Symposium on Biocomputing, pages 138–
149. World Scientific, 2009.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:6, 2009

1561

APPENDIX A

DETAILED EXPERIMENTAL RESULTS

r solved app avg gap max gap avg time solved exact proven exact avg time

2 10 0 0 0:00 10 10 0:00

3 10 0 0 0:00 10 10 0:00

4 10 0 0 0:00 10 10 0:00

5 10 0 0 0:00 10 10 0:00

6 10 0 0 0:00 10 10 0:00

7 10 0 0 0:06 10 9 1:16

8 10 0 0 0:02 10 10 0:04

9 10 0 0 0:15 10 9 2:22

10 10 0.22 1 1:17 9 5 6:00

11 10 0 0 2:12 8 3 1:54

12 10 0.11 1 2:18 9 2 7:22

13 10 0.11 1 1:59 8 3 4:17

14 10 0.13 1 4:37 8 0 15:32

15 10 0.11 1 2:57 9 3 6:21

TABLE I
n = 37, TRANSPOSITION DISTANCE

r solved app avg gap max gap avg time solved exact proven exact avg time

2 10 0 0 0:00 10 10 0:00

3 10 0 0 0:00 10 10 0:00

4 10 0 0 0:00 10 10 0:00

5 10 0 0 0:00 10 10 0:00

6 10 0 0 0:00 10 10 0:00

7 10 0 0 0:00 10 10 0:00

8 10 0 0 0:00 10 10 0:00

9 10 0 0 0:00 10 10 0:00

10 10 0 0 0:00 9 9 0:00

11 10 0 0 0:04 10 10 0:04

12 9 0 0 0:25 9 8 0:30

13 9 0.17 1 7:50 6 4 2:35

14 9 0.14 1 2:54 7 5 0:19

15 7 0.17 1 7:24 6 3 16:27

TABLE II
n = 100, TRANSPOSITION DISTANCE

r solved app avg gap max gap avg time solved exact proven exact avg time

2 10 0 0 0:00 10 10 0:00

3 10 0 0 0:00 10 10 0:00

4 10 0 0 0:00 10 10 0:00

5 10 0 0 0:00 10 10 0:00

6 10 0.1 1 0:00 10 10 0:00

7 10 0 0 0:01 10 10 0:01

8 10 0 0 1:20 10 8 1:24

9 10 0.1 1 0:06 10 10 0:03

10 10 0.2 1 2:48 10 6 3:01

11 10 0 0 4:19 10 2 6:17

12 10 0.2 1 5:23 10 2 6:04

13 10 0.3 1 9:38 10 1 11:05

14 10 0.2 1 9:28 10 0 13:18

15 10 0.3 1 10:49 10 1 16:21

TABLE III
n = 37, wr = 1, wt = 1

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:6, 2009

1562

r solved app avg gap max gap avg time solved exact proven exact avg time

2 10 0 0 0:00 10 10 0:00

3 10 0 0 0:00 10 10 0:00

4 10 0 0 0:00 10 10 0:00

5 10 0 0 0:00 10 10 0:00

6 10 0 0 0:00 10 10 0:00

7 10 0 0 0:00 10 10 0:00

8 10 0 0 0:05 10 10 0:05

9 9 0 0 1:01 10 7 1:22

10 10 0 0 0:38 10 8 0:52

11 10 0 0 4:21 10 7 4:49

12 10 0 0 0:53 10 7 0:58

13 8 0 0 2:09 8 6 2:39

14 7 0 0 16:46 7 4 19:33

15 4 0 0 13:40 3 2 1:30

TABLE IV
n = 100, wr = 1, wt = 1

r solved app avg gap max gap avg time solved exact proven exact avg time

2 10 0 0 0:00 10 10 0:00

3 10 0 0 0:00 10 10 0:00

4 10 0 0 0:00 10 10 0:00

5 10 0 0 0:00 10 10 0:00

6 10 0.05 0.5 0:00 10 10 0:00

7 10 0.05 0.5 0:00 10 10 0:00

8 10 0.05 0.5 0:00 10 10 0:00

9 10 0.05 0.5 0:00 10 10 0:00

10 10 0.15 0.5 0:06 10 9 0:01

11 10 0 0 0:10 10 9 0:11

12 10 0.1 0.5 0:05 10 8 0:05

13 10 0 0 0:56 10 8 1:16

14 10 0.1 0.5 1:09 10 7 1:33

15 10 0.05 0.5 0:09 10 8 0:09

TABLE V
n = 37, wr = 1, wt = 1.5

r solved app avg gap max gap avg time solved exact proven exact avg time

2 10 0 0 0:00 10 10 0:00

3 10 0 0 0:00 10 10 0:00

4 10 0 0 0:00 10 10 0:00

5 10 0 0 0:00 10 10 0:00

6 10 0.05 0.5 0:00 10 10 0:00

7 10 0.05 0.5 0:00 10 10 0:00

8 10 0 0 0:00 10 10 0:00

9 10 0.05 0.5 0:02 10 10 0:00

10 10 0 0 0:00 10 10 0:00

11 10 0.1 0.5 0:00 10 10 0:00

12 10 0 0 0:00 10 10 0:00

13 10 0.2 1 0:01 10 10 0:01

14 10 0.05 0.5 0:07 10 10 0:03

15 10 0 0 0:20 10 8 0:19

TABLE VI
n = 100, wr = 1, wt = 1.5

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:6, 2009

1563

r solved app avg gap max gap avg time solved exact proven exact avg time

2 10 0 0 0:00 10 10 0:00

3 10 0 0 0:00 10 10 0:00

4 10 0 0 0:00 10 10 0:00

5 10 0 0 0:00 10 10 0:00

6 10 0.1 1 0:00 10 10 0:00

7 10 0 0 0:00 10 10 0:00

8 10 0 0 0:00 10 10 0:00

9 10 0 0 0:00 10 10 0:00

10 10 0 0 0:00 10 10 0:00

11 10 0 0 0:00 10 10 0:00

12 10 0 0 0:00 10 10 0:00

13 10 0 0 0:00 10 10 0:00

14 10 0 0 0:02 10 10 0:03

15 10 0 0 0:01 10 10 0:01

TABLE VII
n = 37, wr = 1, wt = 2

r solved app avg gap max gap avg time solved exact proven exact avg time

2 10 0 0 0:00 10 10 0:00

3 10 0 0 0:00 10 10 0:00

4 10 0 0 0:00 10 10 0:00

5 10 0 0 0:00 10 10 0:00

6 10 0.1 1 0:00 10 10 0:00

7 10 0 0 0:00 10 10 0:00

8 10 0 0 0:00 10 10 0:00

9 10 0.1 1 0:00 10 10 0:00

10 10 0 0 0:00 10 10 0:00

11 10 0 0 0:00 10 10 0:00

12 10 0 0 0:00 10 10 0:00

13 10 0 0 0:00 10 10 0:00

14 10 0 0 0:00 10 10 0:00

15 10 0 0 0:00 10 10 0:00

TABLE VIII
n = 100, wr = 1, wt = 2

r solved avg gap max gap avg time

2 10 0 0 0:00

3 10 0.2 2 0:04

4 10 0.3 2 0:16

5 9 0.22 1 0:22

6 8 0.13 1 2:57

7 8 0.5 2 3:36

8 1 0 0 13:25

9 3 0.33 1 4:23

10 3 0.2 3 0:21

11 0

12 0

13 0

14 0

15 0

r solved avg gap max gap avg time

2 10 0 0 0:00

3 10 0 0 0:05

4 10 0.1 1 0:29

5 10 0 0 0:34

6 10 0.4 2 2:06

7 10 0.2 1 6:41

8 10 0 0 12:35

9 7 0.43 2 19:08

10 1 1 1 16:16

11 3 0 0 7:54

12 2 0 0 21:34

13 1 1 1 39:55

14 0

15 0

TABLE IX
GRAPPA-TP, n = 37 (LEFT) AND n = 100 (RIGHT).

