
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:7, 2014

1108


Abstract—The abnormal increase in the number of applications

available for download in Android markets is a good indication that
they are being reused. However, little is known about their real
reusability potential. A considerable amount of these applications is
reported as having a poor quality or being malicious. Hence, in this
paper, an approach to measure the reusability potential of classes in
Android applications is proposed. The approach is not meant
specifically for this particular type of applications. Rather, it is
intended for Object-Oriented (OO) software systems in general and
aims also to provide means to discard the classes of low quality and
defect prone applications from being reused directly through
inheritance and instantiation. An empirical investigation is conducted
to measure and rank the reusability potential of the classes of
randomly selected Android applications. The results obtained are
thoroughly analyzed in order to understand the extent of this potential
and the factors influencing it.

Keywords—Reusability, Software Quality Factors, Software
Metrics, Empirical Investigation, Object-Oriented Software, Android
Applications.

I. INTRODUCTION

OBILE applications, which are called mobile apps or
just apps, are application software designed to run on

smartphones, tablet computers and other mobile devices [27].
These applications have become very popular today and the
demand for them keeps increasing. Initially, these ‘apps’
provided solutions to basic mobile usages such as email and
calendar. However, the scope they cover today is considerably
larger and includes areas such as location-based services,
banking, mobile-commerce, games and medical. The amount
of mobile Android applications [4] available today is
astonishing. There are more than 1 million Android
applications available for download in Google play [4].
According to [6], 21% of these applications are of a low
quality. Google removes applications from the market
regularly if found to be of a poor quality. However, while
these low quality applications are in the market, users are able
to download and use them. Some developers will reuse them
to build new applications, which make the impact even
greater. Moreover, these applications are intended for various
mobile platforms, more than 82% of them are free and more
than 51% of the later are Android applications. Furthermore,
Android applications represent more than 51% of the
downloaded mobile applications [6].

Dr. Taibi is with UNITAR International University, Petaling Jaya, 47301

Selangor, Malaysia (phone: +603-76277200; fax: +603-76277447; e-mail:
taibi@unitar.my).

The availability of this huge amount of Android
applications is harmful from two different perspectives.
Firstly, people are using low quality applications, which are
just buggy in the normal cases and malicious in the worst
cases. Secondly, developers are reusing these low quality
applications to develop new buggy and malicious applications.
This process can be quite damaging since it repeats itself.
Moreover, the increasing number of these applications in the
very short period of time span they have been around indicates
some troubling facts. Firstly, most of these applications are
probably the result of excessive reuse. Secondly, this
excessive reuse is mostly cloning of popular paid applications
[12]. Finally, a considerable portion of these applications can
be easily categorized as malware or containing malicious code
[39].

Mobile applications are often associated with malicious
code. Malicious authors can attach malicious code to
legitimate applications, which leads to the creation of
applications labelled as “piggybacked” [39]. These
applications are then advertised in the available application
markets in order to infect unsuspecting users. One example of
the malicious actions performed as a result of that is
converting the infected phones into bots [15]. Moreover,
mobile applications are inherently complex since they rely on
third party libraries or Application Program Interfaces (APIs)
[30]. These APIs change very frequently. Hence, a
considerable percentage of API references in mobile
applications are outdated.

Several qualities are desired in software systems in general
and the OO ones in particular. Functionality, efficiency,
maintainability, reliability and reusability are examples of
some of these desired quality factors. They are measured using
software metrics that are applicable at various levels of
development. Some metrics are applicable only when the
project is completed (i.e. to the source code) whereas some
other metrics are applicable at earlier stages such as at the
design [9]. In addition to a sound theoretical foundation, the
metrics used in assessing software quality factors must be
empirically validated by showing a clear and strong
correlation between them and the qualities measured. Several
approaches and models were proposed to measure individual
software quality factors such as maintainability in [23],
reusability of components in [38], usability of components in
[7], reliability of component-based software architectures in
[33], and the stability of Java classes in [17].

A class is a fundamental concept in the development of OO
software systems. It would be very useful to measure quality
factors at its level. This should be beneficial both during

Fathi Taibi

On Measuring the Reusability Proneness of
Mobile Applications

M

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:7, 2014

1109

software development and after its release. During
development, getting measurements representing the degree of
compliance of a class in regards to certain desired qualities
can help in deciding the refactorings that should be applied in
order to improve this compliance. Additionally, this can help
in planning and executing the necessary modifications when
dealing with various types of maintenance requests.
Furthermore, this can be extremely useful for deciding the
classes to be reused (or modified to be reused) in the
developed of new software systems. However, measuring
quality factors at the class level has not received a lot of
attention from researchers, which is shown by a lack in
published work addressing this problem. This is especially
true for assessing the reusability proneness of classes in OO
software systems.

Software reuse has been practiced since the early days of
programming. It saves cost, increases the speed of
development and improves reliability [20]. Reused
components are often more stable (i.e. they are modified less
than newly developed ones) and have lower defect density
[31]. Several quality factors have been associated with the
reusability proneness of software modules. Modularity, low
complexity, high cohesion and low coupling are examples of
highly reliable factors of a module’s reusability potential [37].
Several studies have established a clear relationship between
these factors and software defects such as [35] and [40].
Android applications are developed in the Java programming
language using the Android Software Development Kit
(SDK). When studying these applications, it is important to
understand that a software module in this context is a file
containing one or several Java classes. Hence, the reusability
of an application dependents on the reusability potential of its
individual classes.

An approach is proposed in this paper to measure the
reusability potential of the classes of Android applications.
This potential represents the probability that a class will be
reused successfully through inheritance and instantiation. The
approach is an extension of the one proposed in [37] in order
to improve the measurement of the understandability and low
complexity factors. The proposed approach allows eliminating
applications with poor quality from being reused through
inheritance and instantiation since the factors used in
measuring the reusability potential are also associated with
several other qualities that are desired in Android applications
and OO software systems in general. Moreover, the proposed
reusability metric should allow ranking the classes of a
particular software according to their reusability proneness as
well as ranking several software systems according to the
aggregated reusability proneness of their classes. This should
provide a good support for reuse in software development.
Furthermore, an empirical investigation is conducted to
measure the reusability of randomly selected Android
applications. The results are thoroughly analyzed in order to
discover the real reusability potential of Android applications
and the factors influencing it.

II. RELATED WORK

There is no doubt that Android applications are being
reused. This is due to the abnormal increase in the number of
applications available in the markets in a very short period of
time span they have been around. These applications are
largely un-reviewed because of too many submissions.
However, Google removes low quality applications on a
regular basis [6]. This is insufficient because while these poor
quality applications are available for download, they are used
and reused to develop new applications. Full reuse of their
classes through inheritance and instantiation is more harmful
in comparison with partial reuse such as when calling their
static methods. Software reuse in Android applications was
analyzed in [34] from two perspectives: reuse by inheritance
and by reusing the classes (i.e. instantiation). Thousands of
mobile applications were analyzed. The results showed that
23% of the studied classes are derived from a base class in the
Android API. Moreover, 27% of the studied classes were
found to be derived from a domain base class and 61% of the
classes occurred in two or more categories.

An empirical study about software reuse in Java open-
source projects was conducted in [22]. The study aims to find
out whether open source projects use third party code and to
study the extent of code reuse occurrence. Black-box software
reuse was found to be the predominant form of software reuse.
Additionally, all the 20 studied projects had more than 40% of
software reuse and in 19 of these projects the amount of
reused code exceeded the amount of the original one.
Moreover, a quality model targeting the maintainability and
reusability of software was presented in [28]. The model is
tool supported and depends on user intuition in selecting a
metric set for their projects. The reusability quality factor was
measured based on modularity and complexity. The former is
measured based on the cohesion and coupling of classes while
the latter is measured based on the internal and external
complexity of classes.

The ability of 29 internal class measures to estimate reuse
proneness from the perspectives of inheritance and
instantiation was studied empirically in [2]. These measures
represent class attributes such as cohesion, coupling and size.
Two interesting findings were derived from this study. Firstly,
size and coupling attributes are correlated to its reuse
proneness via inheritance and instantiation. Secondly, the
cohesion attribute has a positive impact on its reuse proneness
via instantiation only. However, the model lacks effectiveness
due to the large number of attributes used and the overlapping
in the qualities they measure.

A metric suite to measure the reusability of components in
component-based software development was proposed in [38].
Five metrics were defined and used to measure
understandability, adaptability and portability factors of a
given component. A confidence interval for each metric was
set trough statistical analysis of a number of JavaBeans
components. Understandability was measured based on the
existence of meta-information and the observability of a
component. Adaptability and portability were measured based
on metrics measuring customizability and external

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:7, 2014

1110

dependency, respectively. Moreover, new coupling and
cohesion metrics to rank the reusability of Java components
was proposed in [18]. Cohesion was measured as the degree of
cohesion between the methods of a class including transitive
cohesion. A similar intuition was used for the proposed
coupling metric. The experiments conducted revealed that the
proposed metrics were better predictors of the number of lines
of code that were added, modified or deleted in order to
extend the functionality of the studied components in
comparison to some of the existing cohesion and coupling
metrics. However, these two metrics alone cannot form a good
reusability predictor since they don’t measure other important
factors such as complexity, understandability and
customizability.

265359 mobile applications were analyzed in [11] and 4295
of them were discovered to be victims of cloning. Each one of
these applications was probably cloned several times.
Additionally, 36106 applications were rebranded including 88
malware and 169 malicious applications. Moreover, a scalable
infrastructure for code similarity analysis in Android
applications was proposed in [21]. The developed system was
evaluated using 58000 applications. 463 applications were
found to contain buggy code reused from sample code
provided by Google. 34 applications were found to be
instances of malware and their variants while 3 applications
were found to be copies of a popular paid game. Furthermore,
an approach to detect ‘piggybacked’ applications in Android
markets was presented in [39]. The approach is based on the
idea that the attached malicious code in not an essential part of
a given application primary functionality. A prototype was
developed as an implementation of the proposed approach and
was used to analyze 84767 applications. The results obtained
showed that the rate of these malicious applications ranges
from 0.97% to 2.7% while it is around 1% in the official
Android market.

An exploratory study on micro-applications for Android and
BlackBerry platforms was conducted in [36] in order to
understand their development and maintenance processes.
This study led to two major discoveries. Firstly, Android
micro applications rely primarily on android APIs whereas
BlackBerry micro applications rely on Java libraries.
Secondly, source files in Android change more frequently;
however, they are subject to smaller changes in comparison to
BlackBerry source files. Moreover, [26] analyzed the
relationship between the fault and change proneness of APIs
used by mobile applications and their lack of success, which
was estimated based on their user ratings. The applications
having higher user ratings were found to exhibit a lower
number of bug fixes in the used APIs. Additionally,
applications with higher user ratings use more stable APIs
compared to those with lower user ratings. Furthermore, a case
study of the co-evolution behavior of the Android API and its
dependent applications was presented in [29]. The results
obtained showed that 28% of API references in the
applications are outdated and 22% of these outdated API
usages get upgraded eventually to newer API versions.

However, this happens at an interval that is much slower than
the average API release interval, which is about 3 months.

A tool-supported approach to comprehend mobile
applications was presented in [30]. This led to several
interesting discoveries. Firstly, the use of inheritance is almost
absent in the analyzed applications. The average number of
derived classes metric in the studied projects was 0.19. This
shows that many applications are not developed in a
systematic way. Secondly, some applications contained the
entire source code of third party libraries. Instead, Java
Archive files (JAR) files should be used and imported into
these applications. Finally, development guidelines are often
ignored. For example, having too many main activities. The
latter leads to diverse entry points to the applications, which
makes their comprehension and maintenance difficult.

Software reusability proneness is associated with several
factors. One of these factors is readability or understandability
of the source code. Using naming conventions and writing
useful comments are examples of techniques that can improve
understandability. The usage of naming conventions has been
found to be reliable if the names used are related to the
concepts implemented [5]. Lexicon bad smells such as
inconsistent term usage and odd grammatical structures can
make carrying maintenance tasks difficult [1]. Moreover, low
complexity is desired. Highly complex programs are less
reusable, hard to test and maintain. Furthermore, structuring
program code using modules that are highly cohesive [3] and
highly independent [13] is a crucial factor for reusability.
Excessive coupling between classes was found to be a very
reliable predictor of faults in OO systems as indicated in [19]
where it was found that Coupling Between Objects (CBO) is
more reliable than Lack of Cohesion of Methods (LCOM) and
several other OO design metrics in predicting faults. Hence,
this metric together with similar other metrics can form the
basis of a reusability assessment approach since they allow
measuring the factors related to the reusability proneness of
program code while at the same time discarding defect-prone
code from being reused. Finally, classes participating in anti-
patterns (i.e. bad smells, which are poorly designed classes)
have been found to be more change and fault prone than those
that do not [25].

III. THE PROPOSED APPROACH

The proposed approach is intended for OO software
systems in general and not just for Android applications. It
uses a set of well-established software metrics to measure the
different factors of reusability assessment. These factors are
qualities with proven positive effect on the reusability
proneness of a software module. Given a completed OO
software project P comprising n classes (Ci. i=1 to n) and m
source code files (Sj. j=1 to m), reusability assessment consists
of measuring the proneness of each one these classes to be
reused successfully. The proposed metric is based on
measuring three distinct factors using values between 0 and 1
that indicate the degree of compliance of a class in their
regard. Firstly, Understandability (U) is measured using the
relevance of names used for the classes, fields and methods

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:7, 2014

1111

(Relevance of Identifiers - ROI) together with their correlation
with code comments (Correlation Identifiers Comments -
CIC). This factor has been extended to include the Rate of
Code Comments (RCC) as well, which is a value between 0
and 1 representing the ratio of the number of comment lines
by the total number of lines of code excluding blank lines.
Secondly, Modularity (M) is measured based one the values of
LCOM and CBO. Low coupling and high cohesion are used a
basis to measure M where LCOM allows measuring structural
cohesion and CBO measures coupling. CBO is given more
weight than LCOM in the calculation due to its significance as
a defect predictor. The usage of CIC in the calculation of the
metric U allows incorporating conceptual cohesion in
reusability assessment. However, CIC was not used in the
calculation of the metric M in order to avoid penalizing highly
cohesive and lowly coupled classes that are poorly
commented.

The Low Complexity (LC) factor has been extended to
include Response For a Class (RFC) and improve the way
Cyclomatic Complexity (CC) is used in the calculation. This
involves calculating the sum of the weights of the individual
methods of the class in regards to their CC and dividing it by
the number of methods (Weighted Cyclomatic Complexity -
WCC). This way the result is more precise than calculating the
average CC of the methods of the class since this average
could be acceptable while the class has a considerable number
of complex methods. Using RFC allows measuring the
complexity of the class in terms of method calls, which could
affect its testability and maintainability as well. Two other
metrics are used to measure LC. These are the Number of
Methods (NM) in the class and its Depth of Inheritance Tree
(DIT). This allows measuring the internal complexity (WCC),
the structural complexity (DIT) and the amount of
responsibility in the class (NM). WCC, DIT and RFC are
given more weight than NM due to their significance in
measuring complexity. Finally, it is important to note that

being defect-free is also an important factor to consider in
assessing the reusability proneness of a class. This factor is
already included in the factors LC and M since most of the
metrics that are used to measure complexity, coupling and
cohesion are proven defect predictors in OO software systems.
Similarly, the size factor is already included in the factor LC
since the metrics used to assess low complexity are highly
correlated to the size of the class.

Several other factors associated with reusability were
considered. The most relevant among them was the
customizability of a class. It indicates the degree of which a
class’ interface can be customized and its fields configured.
One way to measure customizability is to compute the ratio
between the numbers of fields with associated ‘setter’ methods
by the total number of fields. There are two main reasons why
currently this factor was not used in reusability assessment.
Firstly, the modularity factor includes LCOM which is in a
way related to customizability. This is because when a class is
cohesive, its methods overlap in the way they access its fields,
which could very likely indicate the presence of ‘setter’
methods. Secondly, data classes (i.e. classes with fields,
‘setter’ and ‘getter’ methods and nothing else) have a low
cohesion (i.e. poor LCOM) and are a bad smell. However, this
type of classes has a high customizability. Furthermore, the
stability of a class is an important factor to consider in
assessing its reusability proneness. Stability in this context
refers to the ease of which a class can evolve while preserving
its design. Such evolution is usually driven by error detection,
changes in the environment or to the requirements. This factor
was discarded due to the absence of reliable metrics which can
measure it using information from the source code only.

Table I gives a summary of the factors used or considered in
assessing the reusability proneness of a class together with
how they are measured and the rational for including or
discarding them. Reusability assessment is performed
according to the diagram shown in Fig. 1.

TABLE I

REUSABILITY ASSESSMENT FACTORS CONSIDERED AND THEIR ASSOCIATED METRICS

Factor Reason for inclusion or exclusion Metrics used How is it measured?

Understandability (U) Without it, a class cannot be modified, extended or even used
through instantiation successfully.

ROI, CIC and RCC Weighted average of values
derived from the metrics used.

Modularity (M) To be reused successfully, a class must be highly cohesive and
highly independent in order to avoid any undesirable effect.

CBO and LCOM Weighted average of values
derived from the metrics used.

Low Complexity (LC) Without it, a class cannot be modified, extended, tested or
maintained successfully.

WCC, DIT, RFC and NM Weighted average of values
derived from the metrics used.

Defect-free (DF)

Without it, a reused class introduces new defects which are hard to
detect and resolve. The metrics used to assess the factors M and
LC measure this factor as well since they are proven defect-
predictors.

Same as M and LC Covered by the measured M
and LC

Size (SZ) A class cannot be modified, extended or used successfully if its
size is not manageable. The metrics used to assess the factor LC
measure this factor as well since they are highly correlated to the
size of a class.

Same as LC Covered by the measured LC

Customizability (CUS) It was discarded because some bad smells have a high
customizability. Also, it overlaps slightly with modularity.

- -

Stability (STA) It was discarded due to the absence of reliable metrics which can
measure it using information from the source code only.

- -

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:7, 2014

1112

Fig. 1 Reusability Assessment Approach

The metric R is calculated as a weighted average of the
factors U, M and LC. A heuristic method was used to find
their weights using a set of classes with known reuse potential.
These weights could also be chosen according to the qualities

required by a developer in search of reusable modules. LC and
M are given more weights than U since the latter factor was
found to be slightly less significant than the former two factors
in measuring the reusability proneness of a class. Currently,
the weight 0.35 is used for M and LC and 0.3 for U. U is
calculated as the weighted average of ROI, CIC and RCC
(when applicable). CIC is calculated using a similarity metric
based on N-Grams [32]. ROI is given more weight than CIC
and RCC (1.5 versus 1). This is justified by observations made
on a large number of classes that are highly reusable where the
names chosen for their attributes, methods and classes are very
expressive. However, their rate of code comments is very low,
which translates into poor values for both RCC and CIC. The
extraction of the names used for the classes, methods and
attributes as well as code comment is automatic. However,
assessing their relevance is currently done manually. M and
LC are calculated as weighted average of the metrics used.
CBO, WCC, DIT and RFC were given more weight than
LCOM and NM (1.5 versus 1) because of their higher
significance in measuring M and LC respectively. The values
of the metrics used in the calculation are shown below.

TABLE II

VALUES OF THE METRICS USED TO CALCULATE THE FACTORS U, M AND LC

 1 0.75 0.5 0.25 0

Condition

RCC RCC<0.2 RCC<0.15 RCC<0.1 RCC<0.05

LCOM=0 0<LCOM<3 3LCOM<5 5LCOM10 LCOM>10

CBO5 5<CBO7 7<CBO9 9<CBO10 CBO>10

CC10 10<CC20 20<CC35 35<CC50 CC>50

NM7 7<NM10 10<NM13 13<NM16 NM>16

DIT5 5<DIT7 7<DIT9 9<DIT10 DIT>10

RFC<20 RFC<30 RFC<40 RFC50 RFC>50

The values chosen are based on ranges defined according to

know ‘safe’ values. For example, many tools used 5 as a
threshold for CBO. Hence, this value was used to create a
range that allows attributing values between 0 and 1 to classes
in regards to low coupling. Similarly, 10 is a known good
threshold for the CC of a method and was used to attribute
weights between 0 and 1 to the methods of a class in order to
compute WCC. The same process was repeated for all the
other metrics.

IV. EMPIRICAL INVESTIGATION

In order to investigate the reusability potential of Android
applications, 25 applications were randomly selected from
various Android markets such as [16]. They represent various
types of applications such as Brain and Puzzle, Business,
Communication, Education, Game, etc. They incorporated a
total of 561 files comprising 1339 classes with a total of 99826
Lines Of Code (LOC). The following table shows the details
of the selected applications:

TABLE III
DETAILS OF THE SELECTED APPLICATIONS

 Max Min Median Mean Std

#Files 86 2 19 22.44 17.29
#Classes 128 12 44 53.56 31.89
Size (LOC) 13676 182 2758 3993.04 3306.7
%Comments 30.53% 0.55% 3.06% 6.73% 8.2%

Some of the selected applications had Android application
package files only (i.e. files with ‘apk’ extension). Class files
(i.e. files with ‘class’ extension) were needed in order to
calculate the metrics required to measure the individual
factors. However, only a ‘dex’ file (Dalvik Executable) is
available from an ‘apk’ file. A converter [14] was used in
order to retrieve the individual class files. It translates a ‘dex’
file into a ‘jar’ file that contains the individual classes of an
application. Additionally, a Java decompiler [24] was used to
obtain the source code. Hence, for these applications, RCC
and CIC were not used in the calculation of the factor U since
code comments cannot be decompiled as shown in Fig. 1.

Chidamber and Kemerer Java Metrics [10] and C and C++
Code Counter [8] tools were used to calculate CC, LCOM,
CBO, NM, DIT and RFC. A small prototype tool was
developed to calculate RCC and CIC while ROI was assessed

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:7, 2014

1113

manually. The results were then thoroughly analyzed. Fig. 2
shows the reusability of each class in the studied applications
where the results are sorted for a better analysis.

Fig. 2 Reusability of the studied classes

The reusability results obtained for the studied classes were

between 0.05 and 1. The average R obtained was 0.74 and
only 369 out of 1339 studied classes had scored below 0.7 (i.e.
27.55%). These figures show an acceptable performance.
However, in order to have a better understanding of why the
results obtained for some classes were poor, these classes were
clustered into two categories. Category 1 (Cat1) included the
classes with a very poor reusability (i.e. below 0.5) and
Category 2 (Cat2) included those with a reusability greater or
equal to 0.5 and below 0.7. There were three reasons behind
this analysis. The first reason was to study the distribution of
these classes across the selected applications and the impact of
the application’s size on the rate of classes with poor
reusability. Secondly, since the calculation of R is driven by
the factors LC and M, it was important to measure the impact
of these two factors on the calculated R metric of the classes
in these two categories. Finally, since nesting (i.e. having
inner and anonymous classes) and having a large interface (i.e.
having too many public methods) may affect reusability, the
third reason was to measure the impact of nesting and having a
large interface on the classes of these two categories. Fig. 3
shows the distribution of the classes in Cat1 and Cat2 across
the selected applications together with their total number of
classes (#classes).

Fig. 3 Distribution of classes with poor R and the total number of
classes in each application

The results obtained showed no clear correlation between

the size of an application and the rate of classes with poor
reusability in it. Some large applications had small number of

classes in Cat1 and Cat2. For example, P16 has 128 classes
and only 21 of them are in these categories. In contrast, some
small applications had a large number of classes in these
categories. For example, P24 has 58 classes and 31 of them
are in these categories. The percentage of classes in Cat1 and
Cat2 in the selected applications was between 8.33% (P10)
and 53.45% (P24) with an average of 27.56%. In 9 out of the
25 selected applications, the rate of these underperforming
classes was more than 30%.

It was also important to measure the impact of M and LC on
the classes in Cat1 and Cat2 as explained earlier. In order to
perform this analysis, the number of classes with M and LC
below 0.5 was analyzed among the classes of Cat1. Similarly,
the number of classes with M and LC greater of equal to 0.5
and below 0.7 was analyzed among the classes of Cat2. Fig. 4
shows the results obtained.

Fig. 4 Impact of M and LC on classes with poor R

The factor LC has more impact on the classes of Cat1 than

the factor M (83.33% versus 75.2%) while the latter has much
more impact on the classes of Cat2 (81.3% versus 25.2%). The
factor M has more overall impact on the classes of Cat1 and
Cat2 in comparison with LC (77.24% versus 63.96%). This
means that most of these underperforming classes had
primarily cohesion and coupling issues and secondly
complexity issues according to the proposed R metric.
Moreover, the impact of nesting on the classes in Cat1 and
Cat2 was investigated together with the impact of having a
large interface (i.e. classes with more than seven public
methods). Even though NM is used in the calculation of the
factor LC; however, as indicated earlier, it is given lower
weight in comparison with WCC, DIT and RFC. Hence, it is
justifiable to study the correlation between classes with poor
reusability and having a large interface. Fig. 5 shows the
results obtained.

Fig. 5 Impact of nesting and large interfaces on classes with poor R

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:7, 2014

1114

The results obtained showed that the rate of classes having
nested classes among those of Cat1 and Cat2 was between 0%
and 100% with an average of 38.21%. This rate was above
50% in 10 applications, which gives a significant indication
that poor reusability is correlated to having nested classes.
Moreover, the percentage of classes with a large interface in
these categories was between 0% and 96.77% with an average
of 55.56%. This rate was above 50% in 12 applications, which
indicates also a more significant correlation between poor
reusability proneness of a class and having a large number of
public methods. This correlation could likely indicate that
having a large number of public methods may be indirectly
affecting the factor M, i.e. maintaining high cohesion and low
coupling is difficult to achieve in a class with a large interface.
The latter could be associated with poor design or improper
use of inheritance because the interface of a derived class is
the combination of the inherited public methods and those
declared locally. However, further studies are needed to
confirm this link.

In order to analyze the relationship between the average
reusability of the classes of a particular application and its
type (i.e. Business, Tool, etc.), the average reusability
obtained for each type of applications was measured. Fig. 6
shows the results obtained.

Fig. 6 Average R in regards to the type of application

Interestingly, the business and finance applications were the

only type of applications with an aggregated reusability below
0.7. This may be associated with a higher complexity in their
classes in comparison with other types of applications. Bain
and puzzle, Social and Education were the ones with the best
aggregated reusability (in this order). These results do not
indicate a definite pattern or trend, rather, they provide a
different view of the results obtained. A final analysis was
needed to study the correlation between the rating of
applications and their average reusability. A large number of
applications had a small number of online votes and were not
included in this analysis. The latter includes only seven
applications with more than 200 online votes. In order to
perform this analysis, the relative number of votes (Relative #
Votes) was calculated by dividing the number of votes by the
maximum number of votes for an application. Similarly, the
online ratings were divided by five to make their range
between zero and one (Rating). Fig. 7 shows the results
obtained.

Fig. 7 Average R vs. online ratings of applications

The results obtained showed that the ratings of applications

slightly exceeded their measured reusability potential except
in one application (P11). The application that had the highest
number of votes (P13) had the largest gap between its rating
and reusability. This gap was quite small in four out of the
seven applications, which could indicate that even though
online rating of an application is not driven by a complete
analysis but rather by assessing its usability and functionality,
it still correlates quite well with its reusability. However, this
does not necessarily mean that a highly rated application is
highly reusable by consequence. Further studies are needed in
order to analyze this correlation.

Three aspects of validity were considered. Firstly, internal
validity is shown through a clear correlation between the
factors used and the reusability proneness of a given class.
Additionally, these factors were measured using well-
established and validated metrics. Secondly, manual
intervention was minimized in order to avoid errors in
measurements. Also, the results obtained automatically were
cross checked twice in order to find any abnormal values. This
is a sign of construct validity. Finally, even though the number
of studied classes in the empirical investigation was not
extremely large. Various types of applications were used and
were randomly selected from various Android markets. This is
sign of external validity and shows that the results obtained
can be replicated to a larger number of classes from other
applications.

V. CONCLUSION AND FUTURE WORK

An approach was proposed in this paper to measure the
reusability proneness of the classes of an OO software system
and was used to assess the reusability of randomly selected
Android applications. The approach is shaped around a
reusability assessment metric that measures the probability
that a given class is reused successfully through inheritance
and instantiation. Three factors were used in this assessment.
They comprise understandability, modularity and low
complexity. They were measured using some well-established
OO software metrics together with newly proposed ones.
These metrics allow covering two other factors namely defect-
free and size. The results obtained showed that on average the
classes of these applications have an acceptable reusability
potential. However, more than a fourth of the studied classes
had a poor reusability potential. The modularity factor had
more impact on these underperforming classes in comparison

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:7, 2014

1115

with the low complexity factor. Moreover, having a large
interface was found to be highly correlated with these classes
together with having nested classes. Hence, controlling the
size of the interface and amount of nesting in classes should
help improving their reusability proneness together with the
other desired qualities represented by the factors used in
reusability assessment. Furthermore, the online ratings of the
studied applications were quite consistent with their average
reusability obtained even if user ratings are based on their
functionality and usability rather than on a thorough analysis
of the qualities that were used in measuring the proposed
reusability metric.

The proposed reusability approach could be extended to
include more metrics and factors which are associated with the
desired qualities in reusability proneness assessment. This is
the case of the customizability factor. There is a need to find a
way to reconcile this factor with modularity in respect to the
cohesion of classes. However, special attention should be
made to the overlapping that may exist between the qualities
measured by the metrics used in order to achieve efficiency.
Moreover, automating the calculation of the metric ROI could
be made possible in the presence of a data dictionary derived
from software requirements specification. Similarly, class
stability metrics can be proposed in the presence of detailed
requirements specifications and traceability information
linking these requirements to classes. Furthermore, conducting
more empirical studies involving a larger number of
applications having more classes is necessary to confirm the
findings made so far and potentially discover new ones. This
could make it possible to analyze the real causes of poor
reusability in classes and use it a platform to provide clear
guidelines to improve the reusability proneness of OO
software systems in general and Android applications in
particular.

REFERENCES
[1] Abebe, S. L., Kessler, F. B., Haiduc, S., Tonella, P. and Marcus, A. “The

Effect of Lexicon Bad Smells on Concept Location in Source Code,”
Proceedings of the 11th IEEE International Working Conference on
Source Code Analysis and Manipulation (SCAM), pp. 125 – 134, 2011.

[2] Al-Dallal, J. and Morasca, S. “Predicting object-oriented class reuse-
proneness using internal quality attributes,” Empirical Software
Engineering, vol. 19, no. 4, pp. 775-821, 2014.

[3] Al-Dallal, J. and Briand, L. C. “A Precise method-method interaction-
based cohesion metric for object-oriented classes,” ACM Transactions
on Software Engineering and Methodology, vol. 21, no. 2, 8:1-8:34,
2012.

[4] Android, the world's most popular mobile platform,
http://developer.android.com/about/index.html, April 2014.

[5] Anquetil, N. and Lethbdige, T. “Assessing the Relevance of Identifier
Names in Legacy System,” In Proc of the Centre for Advanced Studies
on Collaborative Research Conference, 1998.

[6] Appbrain, http://www.appbrain.com/stats/number-of-android-apps,
April 2014

[7] Bertoa, M. F., Troya, J. M. andVallecillo, A. “Measuring the usability of
software components,” The Journal of Systems and Software, vol. 79,
pp.427–439, 2006.

[8] CCCC, http://cccc.sourceforge.net/, April 2014.
[9] Chidamber, S. and Kemerer, C. “A Metrics Suite for Object Oriented

Design,” IEEE Transactions on Software Engineering, vol. 20, no. 6, pp.
476-493, 1994.

[10] CKJM, http://www.spinellis.gr/sw/ckjm/, April 2014.

[11] Crussell, J., Gibler, C. and Chen, H. “AnDarwin: Scalable Detection of
Semantically Similar Android Applications,” Lecture Notes in Computer
Science, pp. 182-199, 2013.

[12] Crussell, J., Gibler, C. and Chen, H. “Attack of the Clones: Detecting
Cloned Applications on Android Markets,” Proceedings of the 17th
European Symposium on Research in Computer Security, Lecture Notes
in Computer Science, vol. 7459, pp. 37-54, 2012.

[13] Darcy, D. and Kemerer, C. “OO Metrics in Practice,” IEEE Software,
vol. 22, no. 6, pp. 17-19, 2005.

[14] Dex2jar, http://code.google.com/p/dex2jar/, April 2014.
[15] Enck, W., Ongtang, M. and McDaniel,P. “On Lightweight Mobile

Phone Application Certification,” Proceeding of the 16th ACM
conference on Computer and communications security, pp. 235-245,
2009.

[16] Google Play, https://play.google.com/store/apps, April 2014.
[17] Grosser, D., Sahraoui, H. A. and Valtchev, O. “An analogy-based

approach for predicting design stability of Java classes,” Proceedings of
the 9th International Software Metrics Symposium, pp. 252-262, 2003.

[18] Gui, G. and Scott, P. D. “Coupling and cohesion measures for evaluation
of component reusability,” Proceedings of the 2006 international
workshop on Mining software repositories, pp. 18 – 21, 2006.

[19] Gyimothy, T., Ferenc, R. and Siket, I. “Empirical Validation of Object-
Oriented Metrics on Open Source Software for Fault Prediction,” IEEE
Transactions on Software Engineering, vol. 31, no. 10, pp. 897-910,
2005.

[20] Haefliger, S., Von-Krogh, G. and Spaeth, S. “Code Reuse in Open
Source Software,” Management Science, vol. 54, no. 1, pp. 180-193,
2008.

[21] Hanna, S., Huang, L., Wu, E., Li, S., Chen, C. and Song, D. “Juxtapp: A
Scalable System for Detecting Code Reuse among Android Applications
Detection of Intrusions and Malware, and Vulnerability Assessment,”
Lecture Notes in Computer Science. Vol. 7591, pp. 62-81, 2013.

[22] Heinemann, L., Deissenboeck, F., Gleirscher, M., Hummel, B. and
Irlbeck, M. “On the extent and nature of software reuse in open source
Java projects,” Proceedings of the 12th international conference on Top
productivity through software reuse, Klaus Schmid (Ed.). Springer-
Verlag, pp. 207-222, 2011.

[23] Heitlager, I., Kuipers, T. and Visser, J. “A Practical Model for
Measuring Maintainability,” Proceedings of the 6th International
Conference on Quality of Information and Communications Technology,
pp. 30–39, 2007.

[24] JAD, http://varaneckas.com/jad/, April 2014.
[25] Khomh, F., Di-Penta, M., Gueheneuc, Y.G. and Antoniol, G. “An

exploratory study of the impact of antipatterns on class change- and
fault-proneness,” Empirical Software Engineering, vol. 17, no. 3, pp.
243-275, 2012.

[26] Linares-Vasquez, M., Bavota, G., Bernal-Cardenas, C., Penta, M. D.,
Oliveto, R. and Poshyvanyk,D. “Api change and fault proneness: A
threat to the success of android apps,” Proceedings of the 9th Joint
Meeting of the European Software Engineering Conference and the 21st
ACM SIGSOFT Symposium on the Foundations of Software
Engineering, pp. 477-487, 2013.

[27] Lee, V., Schneider, H. and Schell, R. Mobile Applications: Architecture,
Design, and Development, 1st edition, Prentice Hall, 2004.

[28] Lee, Y. and Chang, K. H. “Reusability and maintainability metrics for
object-oriented software,”Proceedings of the ACM-SE 38th annual on
Southeast regional conference, pp.88-94, 2000.

[29] McDonnell, T., Ray, B.and Kim, M. “An Empirical Study of API
Stability and Adoption in the Android Ecosystem,” Proceeding of the
29th IEEE International Conference on Software Maintenance, pp. 70-
79, 2013.

[30] Minelli, R. and Lanza, M. “Software Analytics for Mobile Applications
– Insights & Lessons Learned,” Proceeding of the European Conference
on Software Maintenance and Reengineering, pp. 144-153, 2013.

[31] Mohagheghi, P., Conradi, R., Killi, O.M. and Schwarz, H. “An empirical
study of software reuse vs. defect-density and stability,” Proceedings of
the 26th International Conference on Software Engineering, pp. 282 -
291, 2004.

[32] Navarro, G. “A Guided Tour to Approximate String Matching,” ACM
Computing Surveys, vol. 33, no. 1, pp. 31–88, 2001.

[33] Reussner, R. H., Schmidt, H. W. and Poernomo, I. H. “Reliability
prediction for component-based software architectures,” The Journal of
Systems and Software, vol. 66, pp. 241–252, 2003.

[34] Ruiz, I. J. M., Nagappan, M., Adams, B. and Hassan, A.
E.“Understanding Reuse in the Android Market,” Proceedings of IEEE

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:7, 2014

1116

20th International Conference on Program Comprehension, Germany,
pp.113–122, 2012.

[35] Subramanyam, R. and Krishnan, M. “Empirical analysis of CK metrics
for object-oriented design complexity: implications for software
defects,” IEEE Transactions on Software Engineering, vol. 29, no. 4, pp.
297–310, 2003.

[36] Syer, D., Adams, B., Zou, Y. and Hassan, A. “Exploring the
development of micro-apps: A case study on the blackberry and android
platforms,” Proceedings of the 11th IEEE International Working
Conference on Source Code Analysis and Manipulation, pp. 55-64,
2011.

[37] Taibi, F. “Empirical Analysis of the Reusability of Object-Oriented
Program Code in Open-Source Software,” International Journal of
Computer, Information, System and Control Engineering, vol. 8, no. 1,
pp. 114 – 120, 2014.

[38] Washizaki, H., Yamamoto, H. and Fukazawa, Y. “A metrics suite for
measuring reusability of software components,” Proceedings of the 9th
Software Metrics Symposium, pp. 211-223, 2003.

[39] Zhou, W., Zhou, Y., Grace, M., Jiang, X. and Zou, S. “Fast, scalable
detection of Piggybacked mobile applications,” Proceedings of the 3rd
ACM conference on Data and application security and privacy, pp. 185-
196, 2013.

[40] Zhou, Y. and Leung, H. “Empirical Analysis of Object-Oriented Design
Metrics for Predicting High and Low Severity Faults,” IEEE
Transactions on Software Engineering, vol. 32, no. 10, pp. 771-789,
2006.

