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Abstract—This paper studies the dependability of component-

based applications, especially embedded ones, from the diagnosis 
point of view. The principle of the diagnosis technique is to 
implement inter-component tests in order to detect and locate the 
faulty components without redundancy. The proposed approach for 
diagnosing faulty components consists of two main aspects. The first 
one concerns the execution of the inter-component tests which 
requires integrating test functionality within a component. This is the 
subject of this paper. The second one is the diagnosis process itself 
which consists of the analysis of inter-component test results to 
determine the fault-state of the whole system. Advantage of this 
diagnosis method when compared to classical redundancy fault-
tolerant techniques are application autonomy, cost-effectiveness and 
better usage of system resources. Such advantage is very important 
for many systems and especially for embedded ones. 
 

Keywords—Dependability, diagnosis, middlewares, embedded 
systems, fault tolerance, inter-component testing.  

I. INTRODUCTION 
HE component-based software development enables the 
construction of application by assembling existing self-

contained components with well defined interfaces. The cost 
of the software development process can then be reduced 
sharply. In addition, the use of replaceable software 
components simplifies the implementation and the 
maintenance of complex applications. Commercial 
component-based software development models, such as 
Enterprise JavaBeans [20], Microsoft .Net [16], and the 
CORBA Component Model [17], are being used widely and 
have shown improvements in the software development and 
maintenance process. Current software systems are becoming 
even more distributed and operating in highly dynamic 
environments. Thus, dependability of component-based 
applications is an important research issue. 

In this context, most of the proposed approaches are based 
on component replication and fault masking. Thus, results are 
guaranteed to be correct though some faults may corrupt the 
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functioning of some application components. But such 
solutions are very costly, especially in case of embedded 
applications with limited resources. An alternate cost-effective 
solution is system diagnosis that concerns the ability of fault-
free components to determine the fault-state of the whole 
application. This seems more interesting for making 
embedded distributed applications autonomous with regards to 
the fault-tolerance problem, this is why we chose to 
investigate diagnosis-based solutions. 

Leading projects in the field of real-time embedded systems 
have essentially focused on meeting QoS aspects related to 
timeliness by integrating specific mechanisms into standard-
based middlewares, such as CORBA. The fault-tolerance 
approaches of these projects are based on component 
replication and fault masking. Examples of such projects are 
the DECOS [12], the CLEOPATRE [5], the ARCAD [15], the 
iCMG [11], and the AFT-CCM [7] [8] projects. 

The Dependable Embedded Component and System 
(DECOS) project develops an architecture-based design 
methodology in order to significantly reduce the design, 
deployment and life cycle cost of dependable embedded 
applications in many application domains. In this project, 
fault-tolerance is implemented by the replication technique 
within an autonomous fault-tolerance layer integrated in the 
system. The CLEOPATRE (Composants Logiciels sur 
Etagères Ouverts Pour les Applications Temps-Réel 
Embarquées) project develops a library of components for the 
temporal faults management of embedded real-time 
applications. The ARCAD (Architecture Répartie extensible 
pour Composants ADaptables) project investigates the 
integration of a replication service in a component-based 
infrastructure. It is based on the CORBA Component Model 
and considers replication as a configurable non-functional 
aspect in a component-based system. This approach uses 
interception objects that are responsible of capturing the 
invocations made to a component in order to trigger necessary 
actions for replication management. The iCMG project is a 
server-side infrastructure for development, assembly, 
deployment and management of CORBA Components. The 
fault-tolerance mechanism is integrated into the component 
server for fault detection and system recovery. Finally, the 
Adaptive Fault-Tolerance model in the CORBA Component 
Model (AFT-CCM) is formed by software components that 
are responsible of implementing fault-tolerance techniques, 
defining and controlling the behavior of a replicated service. 

However, all these replication techniques are very costly 
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and resource consuming, and more efficient solutions should 
be proposed. In this work, dependability of such component-
based applications is studied from the diagnosis point of view. 
A diagnosis approach based on inter-component testing is 
presented. It is expected that this approach should enhance 
application dependability with a competitive cost-performance 
trade-off. 

This paper is organized as follows: Section 2 gives a global 
view of the proposed diagnosis approach. Section 3 
investigates inter-component tests and describes how to 
integrate test functionality into a component. The obtained 
experimental results are given in section 4. Section 5 gives 
some concluding remarks.  

II. GLOBAL DIAGNOSIS APPROACH 
The proposed approach for diagnosing faulty components 

consists of two main aspects. The first one concerns the 
execution of the inter-component tests which requires the 
integration of the test functionality within a component, and 
the second one is the diagnosis process itself which consists of 
analyzing inter-component test results for determining the 
fault state of the whole system. Several diagnosis strategies 
have been proposed [3][13]. These diagnosis strategies ensure 
a deep knowledge of the state of system components and 
communication links between them.  

The basic idea of the proposed diagnosis approach is to 
partition the application into diagnosis groups where inter-
component tests are performed following given test 
assignments [1]. The partitioning approaches perform better 
than non-partitioning approaches covering the whole system 
by reducing un-necessary extra message traffic and time.  

System graph 

Partitioning algorithm

Testing assignment algorithm

System diagnosis algorithm

Testing graph 
Changed system graph

Normal state System configuration changed 
 

Fig. 1 Adaptive system diagnosis procedure with a partitioning 
approach 

 
Fig. 1 represents the adaptive system diagnosis procedure 

with a partitioning approach. In a partitioning approach, a 
partitioning algorithm to divide the original system graph into 
smaller groups is used. And then, testing assignment 
algorithm producing a testing graph from the system graph is 
performed within each group. If system configuration 
changes, then new testing graph is obtained by partitioning 
and testing assignment algorithms within the related groups 
only. 

A diagnosis group is defined as a group of components that 
use the same diagnosis model and the same diagnosis 
algorithm. For example, in Fig. 2 the components of group 1 
and 2 execute diagnosis algorithms 1 and 2, respectively.   

G2 
G1 

   : fault-free em bedded com ponent 

     : faulty em bedded com ponent 

          :  tes t relationship 
G1 : diagnos is  algorithm  1 
G2 : diagnos is  algorithm  2 

 
Fig. 2 Diagnosis groups 

 
The proposed implementation of the diagnosis approach 

consists of a diagnosis service in order to facilitate its 
integration within a component framework like the CORBA 
framework. This diagnosis service provides three types of 
interfaces (see Fig. 3). 

a. Interface of the observer side. This interface is 
provided to an external component that aims to know 
the fault state of the diagnosis group. 

b. Interface of the member component side. This 
interface allows a component to join a diagnosis group 
or to leave it, and to launch the diagnosis process. 

c. Interface of the service component side. This interface 
provides member components of a diagnosis group 
with intelligent testing and diagnosis capabilities. 

 

ObserverToMember 

DiagnosisGroupAccessor 

DiagnosisGroup 
Administrator 

NonFonctMethodOfMember 

InterfaceName : has an interface of type InterfaceName exported by  

 
Fig. 3 The architecture of the proposed diagnosis service 

 
In the following, we will focus on the test functionality and 

its integration within a component. 
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III. INTER-COMPONENT TESTING 
Integrating test functionality within a component 

corresponds to a built-in test. Such ability has been 
investigated in previous works, but with the main objective of 
testing a component within its new execution environment 
while deploying a component-based application [2] [4] [10] 
[21] [14]. This is a good departure point for our research 
work, but we are mainly interested here in on-line inter-
component testing, i.e. testing a component to serve the 
diagnosis process during the application execution. 

The main aspects that should be studied in an on-line 
environment concern the test code and test data demands 
regarding system resources, i.e. memory and time. For time 
scheduling, the basic idea consists of using component’s idle 
cycles to perform on-line testing, such as in [6]. The problem 
we are still investigating consists of proposing such an 
approach to a component-based application. The memory 
usage depends logically on test precision degree. As deployed 
components have intensively been tested as stand-alone 
components before being integrated within a global 
application, light on-line tests, with minimum memory 
occupation, should be sufficient. This is taken into account in 
our approach, which is described in the following. 

A. Built – In Testing Interface 
A component consists of a set of provided and required 

interfaces. Each provided interface is a set of operations that 
the component provides to other components, while each 
required interface is a set of operations that the component 
requires in order to perform its operations. In the same way, 
testing facilities are just another service that the component 
provides to its environment. As all other services, test 
facilities are provided through a number of interfaces: in this 
case built-in test (BIT) interface (Fig. 4). 

A component can generally be viewed as a state machine 
and requires state-transition testing. Before a test can be 
executed, the tested component must be brought into the 
initial state required for a particular test. After test-case 
execution, the test must verify that the outcome (if generated) 
is as expected, and that the tested component resides in the 
expected final state.  

 Built-in test component 

Functional code  

Test code 

Functional Interface 

Test Interface 

 
Fig. 4 Built-in test component 

 
By definition, however, the internal states of a component 

are hidden to external entities through the principles of 
information hiding and encapsulation. Therefore, software test 

cannot usually set or get internal states except through the 
normal functional interface of the component. A specific 
sequence of operation invocations through the normal 
functional interface is usually required to set a distinct state 
required for a test execution. However, since the tests are 
performed to verify that the functional interface behaves as 
expected, it is unwise to use the functional interface to set and 
verify the internal states of a component, and check the 
outcome of the tests. In other words, we should not use 
something for performing a test knowing that it is actually the 
subject of that test. This problem can be circumvented by 
using an additional testing interface which contains special 
purpose operations for setting and retrieving the internal state 
of a component [10] (Fig. 5).  

A testing interface extends the normal functionality of the 
component. It is implemented as a component extension in its 
own right so that the implementation of the testing software is 
encapsulated and strictly separated from the normal functional 
software. A testing interface comprises operations for setting 
and getting internal state information which are setToState and 
isInState. 

 
<<Component>> 

ComponentA 
 
<<Functional interface>> 
… 

 

<<Built-in test component>> 
BuiltInTestComponentA 

StateX 
StateY 
StateZ 
<<Testing interface>> 
//state setting 
setToState (state) 
//state checking 
isInState (state) 

Fig. 5 Concepts of built-in test component and testing interface 
 

The state checking operation (isInState(state)) of the testing 
interface verifies whether the component is currently residing 
in a distinct logical state. The state setting operation 
(setToState) sets the component’s internal attributes to 
represent a distinct logical state. 

Let us consider the example of an air-conditioner (or a 
thermostat). The specified operation of the thermostat is to 
keep the temperature of the room at the user’s constant value. 
The attribute that determines this operation behavior is the 
difference between user’s desired temperature and ambient 
temperature, an internal attribute of that component. The state 
model of an air conditioning is shown in Fig. 6. This 
component has 4 states: “heat”, “cool”, “inactive” and “stop”.  

• The state “heat” indicates that the air-conditioner 
diffuses heating air and that the user’s desired 
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temperature is higher than the ambient temperature. 
• When the user’s expected temperature is lower than 

the ambient temperature, the air conditioner 
component is in state “cool”. This indicates that the 
air-conditioner diffuses cooling air. 

• The state “inactive” indicates that the machine is in 
service but it does not diffuse air. 

• And the state “stop” indicates that the machine is off. 

Stop 

Inactive Cool 

Heat 

setTemp(temp) 
   [delta<0 and 
       min<temp<max] 

stop() 

setTemp(temp) 
[delta=0 or temp>max or temp< min] 

stop() 

stop() setTemp(temp) 
[delta=0 or 
temp>max or 
temp<min] 

      setTemp(temp)
        [delta=0 or  
min>temp or temp>max] 

setTemp(temp) 
    [delta=0 or 
    temp>max or 
    temp<min] 

setTemp(temp) 
    [delta<0 and 
min<temp<max] 

 setTemp(temp)
    [delta<0 and 
 min<temp<max] 

setTemp(temp) 
[delta=0 and min<temp<max] 

setTemp(temp) 
[delta>0 and  
min<temp<max]  

setTemp(temp)
  [delta>0 and 
min<temp<max] 

setTemp(temp)
[delta<0 and 
min<temp<max] 

     setTemp(temp)
[delta>0 and 

min<temp<max]

stop() 

temp : user’s desired temperature 
delta : difference between user’s desired temperature and ambient temperature 
max: maximum value permitted of the thermostat 
min: minimum value permitted of the thermostat 

 

Fig. 6 State model of a thermostat 

A functional or black box test must verify that the state 
transitions during operation comply with the specification of 
the tested component. Each identified transition in the state 
model must be tested. The guard conditions in the state model 
define alternative transitions that are executed according to 
distinct input parameters or attribute values. 

 
<<Component>> 

Thermostat 
# isStop 
# reqTemp 
# enviTemp 
# max 
# min 
+ setTemp (temp) 
+ stop() 

 

<<testing>> 
BuiltInTestThermostat 

# State Stop 
# State Inactive 
# State Heat 

# State Cool 
+ void setToState (State X) 
+ bool isInState (State X) 

Fig. 7 Structural model of the thermostat testing interface 
 
Fig. 7 shows the structural model of the air conditioner 

component with testing interfaces. Each state is defined as 
public attribute, and two parameterized operations setToState 
and isInState take these attributes as input for respectively 
setting the state, and checking whether the component is 
residing in a given state. 

The testing interface for each tested component will be 
specified according to the realization of the functionality of 
that component. 

The thermostat example exhibits four different states that 
represent the user’s desired temperature, the difference 
between user’s desired temperature and ambient temperature 
and the variable checking whether the thermostat is in service 
or not. The realization of the state setup and checking 
operations is represented by the activity diagrams in Fig. 8. 

 
BuiltInTestThermostat::setToState           

 

Case : State in 
Stop : 
isStop = true 
Inactive : 
isStop = false and 
(reqTemp = enviTemp or 
reqTemp < min or reqTemp > max) 
Heat : 
isStop = false and 
reqTemp > enviTemp and 
min< reqTemp < max 
Cool : 
isStop = false and 
reqTemp < enviTemp and 
min< reqTemp < max 
default : continue  

<<extends>> 
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BuiltInTestThermostat::isInState

 
 

Fig. 8 Realization of a testing interface 

B. Test Cases 
In the initial approach of built-in testing (BIT) as proposed 

by Wang [21], complete test cases are put inside the 
components and are therefore automatically reused with the 
component. While this strategy seems attractive at first sight, 
it is not flexible enough to suit the general case. Because the 
purpose of that built-in testing is testing the component in a 
new environment, a component needs different types of tests 
in different environments and it is neither feasible nor flexible 
to have them all built in permanently. To solve this problem, 
under the testing paradigm of Component+ [10], test cases are 
separated from their respective components and put in 
separate tester components. Another approach to BIT has been 
proposed by Martins [14]. They put a minimal number of 
tests, like assertions, inside the components. These assertions 
are reused together with a test specification. However, specific 
software has to be used in order to transform the test 
specification into real tests. 

In our work, we chose to put the test suite inside the 
components. Indeed, as described earlier, the goal of our tests 
is to serve the on-line diagnosis process, where components 
test each other. So, putting test cases in tester components 
would be costly. Moreover, test cases have to be lightweight 
and efficient, for example, generating high efficiency test 
cases, focusing on boundary testing, etc. 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9 Example of a test case 

Fig. 9 shows the example of the test case that tests the 
demand of providing the heating air while the thermostat is 
providing the cooling air. First of all, we have to bring the 
thermostat component to the state “Cool” and we execute the 
operation “setTemp(temp)” to get the desired temperature 
from the user. Then we check the result of that operation and 
the final state of the thermostat to determine whether the test 
fails or not. 

The test is carried out on-line, so to keep the correctness of 
the system states, persistent data of the system are stored and 
restored before and after execution of test cases.  

As described earlier in section 3.1, the testing interface is 
one of the provided interfaces of the component, so the tester 
component can use this interface in the same way as the other 
functional interfaces. 

IV. SYSTEM – LEVEL DIAGNOSIS VERSUS COMPONENT 
REPLICATION 

It is difficult to compare the costs of the redundancy and the 
system diagnosis approaches because of their differences and 
their unknowns. Indeed, while the objective of system 
diagnosis is to detect and locate faulty components within a 
system, redundancy aims at masking them. 

Because of these major differences, research in these two 
fields evolves separately and a comparison of the obtained 
results in each field is difficult to make. In their proposed 
review of these two approaches, Barborak et al. [3] provided a 
deep qualitative comparison of system diagnosis and 
redundancy with respect to several criteria (objective, fault 
assumption, implementation, etc.). 

In our work, we conducted an experimental evaluation on 
the thermostat example, using two diagnosis algorithms from 
the literature. The first one is a distributed diagnosis algorithm 

//Test Case 1: test the demand of providing the 
heating air while the thermostat is providing the 
cooling air  
TestCase1() 
// Store persistent data of the system 
 t = reqTemp 
 h = enviTemp 
// Put the BuiltInTestThermostat in a specific state 
before the test 
setToState (“Cool”); 
// Execution of the test operation “setTemp(temp)” 
setTemp(temp) 
//restore persistent data of the system 
reqTemp = t 
enviTemp = h 
//check the result of operation and the final state 
if (isInstate (“Heat”)) 

testResult=”OK” 
else 

testResult=”FALSE” 

Case : State in 
Stop : return 
isStop = = true 
Inactive : return 
isStop = = false and 
((reqTemp-enviTemp) = = 0 or 
reqTemp < min or reqTemp >max) 
Heat : return 
isStop = = false and 
(reqTemp-enviTemp) > 0 and 
min<reqTemp<max 
Cool : return 
isStop = = false and 
(reqTemp-enviTemp) < 0 and 
min < reqTemp <max 
default : return false 
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that makes every component in the system aware of the whole 
system state [9]. The second one is a centralized algorithm 
that relies on a central component to determine the fault state 
of the whole system [19]. 

The obtained preliminary results presented in the following 
aim to give indications for the future orientation of the 
proposed diagnosis service implementation.  

The results are measured on the air conditioning system 
example which consists of 4 components: 

• Thermometer component: transmits the 
temperature into the room. 

• Thermostat component: is like the thermometer 
component but allows the user to choose his 
desired temperature. 

• Administrator component: manages and controls 
the thermometer and the thermostat and changes 
the temperature remotely.  

• Temperature engine component: controls the 
heating valve and the cooling valve to adjust the 
air supply temperature to the room.  

This system is implemented with the OpenCCM platform 
[18]. The redundancy method, the centralized diagnosis 
method and the distributed diagnosis method are executed for 
a comparison purpose. 

As shown in Table I, we find that:  
• The diagnosis methods use very less resources 

than the replication method.  
• The distributed diagnosis method can tolerate up to 

3 faulty components, whereas the centralized 
method can detect and locate 1 faulty component 
and the redundancy method can mask up to 4 
faulty components.  

• The fault detection time of the distributed 
diagnosis method is longer than the centralized 
diagnosis method one, but the fault detection time 
of the replication method is undefined as there is 
no fault detection. 

For determining the maximum fault number (t), we used the 
general result presented in [3] which states that for a system 
with n components: 

• for the centralized diagnosis approach, n ≥ 2t+1, 
• for the distributed one, n ≥ t+1, 
• and for the redundancy approach, n ≥ 3t+1. 

Faults are masked with redundancy and detected with 
diagnosis approach. 

 
 
 
 
 
 
 
 
 
 

TABLE I 
THE OBTAINED EXPERIMENTAL RESULTS 

Criterion Distributed 
diagnosis 
method  

Centralized 
diagnosis 
method  

Redundancy 
method 

Component 
needs 

5 
components 

6 
components 

13 
components 

Fault 
number (t) 

4 ≥ t + 1  4 ≥ 2t + 1 13 ≥ 3t + 1  

Fault 
detection 
time (ms) 

12452 10962 undefined 

V. CONCLUSION 
The presented work, even if in its beginning step, is 

promising. The proposed inter-component and diagnosis 
approaches are very interesting functionalities since they may 
enhance application dependability with a competitive cost-
performance trade-off, in comparison with classical costly 
redundancy approaches. We are currently working on using 
idle cycles to perform tests and studying good partitioning 
algorithms in order to reduce the fault detection time and 
improve impact of diagnosis method on system performance.   
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