
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:3, 2010

469

Abstract—This paper studies the dependability of component-

based applications, especially embedded ones, from the diagnosis
point of view. The principle of the diagnosis technique is to
implement inter-component tests in order to detect and locate the
faulty components without redundancy. The proposed approach for
diagnosing faulty components consists of two main aspects. The first
one concerns the execution of the inter-component tests which
requires integrating test functionality within a component. This is the
subject of this paper. The second one is the diagnosis process itself
which consists of the analysis of inter-component test results to
determine the fault-state of the whole system. Advantage of this
diagnosis method when compared to classical redundancy fault-
tolerant techniques are application autonomy, cost-effectiveness and
better usage of system resources. Such advantage is very important
for many systems and especially for embedded ones.

Keywords—Dependability, diagnosis, middlewares, embedded
systems, fault tolerance, inter-component testing.

I. INTRODUCTION
HE component-based software development enables the
construction of application by assembling existing self-

contained components with well defined interfaces. The cost
of the software development process can then be reduced
sharply. In addition, the use of replaceable software
components simplifies the implementation and the
maintenance of complex applications. Commercial
component-based software development models, such as
Enterprise JavaBeans [20], Microsoft .Net [16], and the
CORBA Component Model [17], are being used widely and
have shown improvements in the software development and
maintenance process. Current software systems are becoming
even more distributed and operating in highly dynamic
environments. Thus, dependability of component-based
applications is an important research issue.

In this context, most of the proposed approaches are based
on component replication and fault masking. Thus, results are
guaranteed to be correct though some faults may corrupt the

Manuscript received June 11, 2007. This work was supported in part by the
LCIS laboratory –INP Grenoble.

T. Q. Bui is with the LCIS laboratory – INP Grenoble, 50, rue B. de
Laffemas, BP 54, 26902 Valence Cedex 9 – France (phone: 33-(0)
4.75.75.94.46; fax: 33 - (0) 4.75.75.94.50; e-mail: Thi-Quynh.Bui@
esisar.inpg.fr).

O. E. K. Aktouf is with the LCIS laboratory – INP Grenoble, 50, rue B. de
Laffemas, BP 54, 26902 Valence Cedex 9 – France (phone: 33-(0)
4.75.75.94.46; fax: 33 - (0) 4.75.75.94.50; e-mail: Oum-El-Kheir.Aktouf@
esisar.inpg.fr).

functioning of some application components. But such
solutions are very costly, especially in case of embedded
applications with limited resources. An alternate cost-effective
solution is system diagnosis that concerns the ability of fault-
free components to determine the fault-state of the whole
application. This seems more interesting for making
embedded distributed applications autonomous with regards to
the fault-tolerance problem, this is why we chose to
investigate diagnosis-based solutions.

Leading projects in the field of real-time embedded systems
have essentially focused on meeting QoS aspects related to
timeliness by integrating specific mechanisms into standard-
based middlewares, such as CORBA. The fault-tolerance
approaches of these projects are based on component
replication and fault masking. Examples of such projects are
the DECOS [12], the CLEOPATRE [5], the ARCAD [15], the
iCMG [11], and the AFT-CCM [7] [8] projects.

The Dependable Embedded Component and System
(DECOS) project develops an architecture-based design
methodology in order to significantly reduce the design,
deployment and life cycle cost of dependable embedded
applications in many application domains. In this project,
fault-tolerance is implemented by the replication technique
within an autonomous fault-tolerance layer integrated in the
system. The CLEOPATRE (Composants Logiciels sur
Etagères Ouverts Pour les Applications Temps-Réel
Embarquées) project develops a library of components for the
temporal faults management of embedded real-time
applications. The ARCAD (Architecture Répartie extensible
pour Composants ADaptables) project investigates the
integration of a replication service in a component-based
infrastructure. It is based on the CORBA Component Model
and considers replication as a configurable non-functional
aspect in a component-based system. This approach uses
interception objects that are responsible of capturing the
invocations made to a component in order to trigger necessary
actions for replication management. The iCMG project is a
server-side infrastructure for development, assembly,
deployment and management of CORBA Components. The
fault-tolerance mechanism is integrated into the component
server for fault detection and system recovery. Finally, the
Adaptive Fault-Tolerance model in the CORBA Component
Model (AFT-CCM) is formed by software components that
are responsible of implementing fault-tolerance techniques,
defining and controlling the behavior of a replicated service.

However, all these replication techniques are very costly

On-line Testing of Software Components for
Diagnosis of Embedded Systems

Thi-Quynh Bui, and Oum-El-Kheir Aktouf

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:3, 2010

470

and resource consuming, and more efficient solutions should
be proposed. In this work, dependability of such component-
based applications is studied from the diagnosis point of view.
A diagnosis approach based on inter-component testing is
presented. It is expected that this approach should enhance
application dependability with a competitive cost-performance
trade-off.

This paper is organized as follows: Section 2 gives a global
view of the proposed diagnosis approach. Section 3
investigates inter-component tests and describes how to
integrate test functionality into a component. The obtained
experimental results are given in section 4. Section 5 gives
some concluding remarks.

II. GLOBAL DIAGNOSIS APPROACH
The proposed approach for diagnosing faulty components

consists of two main aspects. The first one concerns the
execution of the inter-component tests which requires the
integration of the test functionality within a component, and
the second one is the diagnosis process itself which consists of
analyzing inter-component test results for determining the
fault state of the whole system. Several diagnosis strategies
have been proposed [3][13]. These diagnosis strategies ensure
a deep knowledge of the state of system components and
communication links between them.

The basic idea of the proposed diagnosis approach is to
partition the application into diagnosis groups where inter-
component tests are performed following given test
assignments [1]. The partitioning approaches perform better
than non-partitioning approaches covering the whole system
by reducing un-necessary extra message traffic and time.

System graph

Partitioning algorithm

Testing assignment algorithm

System diagnosis algorithm

Testing graph
Changed system graph

Normal state System configuration changed

Fig. 1 Adaptive system diagnosis procedure with a partitioning
approach

Fig. 1 represents the adaptive system diagnosis procedure

with a partitioning approach. In a partitioning approach, a
partitioning algorithm to divide the original system graph into
smaller groups is used. And then, testing assignment
algorithm producing a testing graph from the system graph is
performed within each group. If system configuration
changes, then new testing graph is obtained by partitioning
and testing assignment algorithms within the related groups
only.

A diagnosis group is defined as a group of components that
use the same diagnosis model and the same diagnosis
algorithm. For example, in Fig. 2 the components of group 1
and 2 execute diagnosis algorithms 1 and 2, respectively.

G2
G1

 : fault-free em bedded com ponent

 : faulty em bedded com ponent

 : tes t relationship
G1 : diagnos is algorithm 1
G2 : diagnos is algorithm 2

Fig. 2 Diagnosis groups

The proposed implementation of the diagnosis approach

consists of a diagnosis service in order to facilitate its
integration within a component framework like the CORBA
framework. This diagnosis service provides three types of
interfaces (see Fig. 3).

a. Interface of the observer side. This interface is
provided to an external component that aims to know
the fault state of the diagnosis group.

b. Interface of the member component side. This
interface allows a component to join a diagnosis group
or to leave it, and to launch the diagnosis process.

c. Interface of the service component side. This interface
provides member components of a diagnosis group
with intelligent testing and diagnosis capabilities.

ObserverToMember

DiagnosisGroupAccessor

DiagnosisGroup
Administrator

NonFonctMethodOfMember

InterfaceName : has an interface of type InterfaceName exported by

Fig. 3 The architecture of the proposed diagnosis service

In the following, we will focus on the test functionality and

its integration within a component.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:3, 2010

471

III. INTER-COMPONENT TESTING
Integrating test functionality within a component

corresponds to a built-in test. Such ability has been
investigated in previous works, but with the main objective of
testing a component within its new execution environment
while deploying a component-based application [2] [4] [10]
[21] [14]. This is a good departure point for our research
work, but we are mainly interested here in on-line inter-
component testing, i.e. testing a component to serve the
diagnosis process during the application execution.

The main aspects that should be studied in an on-line
environment concern the test code and test data demands
regarding system resources, i.e. memory and time. For time
scheduling, the basic idea consists of using component’s idle
cycles to perform on-line testing, such as in [6]. The problem
we are still investigating consists of proposing such an
approach to a component-based application. The memory
usage depends logically on test precision degree. As deployed
components have intensively been tested as stand-alone
components before being integrated within a global
application, light on-line tests, with minimum memory
occupation, should be sufficient. This is taken into account in
our approach, which is described in the following.

A. Built – In Testing Interface
A component consists of a set of provided and required

interfaces. Each provided interface is a set of operations that
the component provides to other components, while each
required interface is a set of operations that the component
requires in order to perform its operations. In the same way,
testing facilities are just another service that the component
provides to its environment. As all other services, test
facilities are provided through a number of interfaces: in this
case built-in test (BIT) interface (Fig. 4).

A component can generally be viewed as a state machine
and requires state-transition testing. Before a test can be
executed, the tested component must be brought into the
initial state required for a particular test. After test-case
execution, the test must verify that the outcome (if generated)
is as expected, and that the tested component resides in the
expected final state.

 Built-in test component

Functional code

Test code

Functional Interface

Test Interface

Fig. 4 Built-in test component

By definition, however, the internal states of a component

are hidden to external entities through the principles of
information hiding and encapsulation. Therefore, software test

cannot usually set or get internal states except through the
normal functional interface of the component. A specific
sequence of operation invocations through the normal
functional interface is usually required to set a distinct state
required for a test execution. However, since the tests are
performed to verify that the functional interface behaves as
expected, it is unwise to use the functional interface to set and
verify the internal states of a component, and check the
outcome of the tests. In other words, we should not use
something for performing a test knowing that it is actually the
subject of that test. This problem can be circumvented by
using an additional testing interface which contains special
purpose operations for setting and retrieving the internal state
of a component [10] (Fig. 5).

A testing interface extends the normal functionality of the
component. It is implemented as a component extension in its
own right so that the implementation of the testing software is
encapsulated and strictly separated from the normal functional
software. A testing interface comprises operations for setting
and getting internal state information which are setToState and
isInState.

<<Component>>

ComponentA

<<Functional interface>>
…

<<Built-in test component>>
BuiltInTestComponentA

StateX
StateY
StateZ
<<Testing interface>>
//state setting
setToState (state)
//state checking
isInState (state)

Fig. 5 Concepts of built-in test component and testing interface

The state checking operation (isInState(state)) of the testing
interface verifies whether the component is currently residing
in a distinct logical state. The state setting operation
(setToState) sets the component’s internal attributes to
represent a distinct logical state.

Let us consider the example of an air-conditioner (or a
thermostat). The specified operation of the thermostat is to
keep the temperature of the room at the user’s constant value.
The attribute that determines this operation behavior is the
difference between user’s desired temperature and ambient
temperature, an internal attribute of that component. The state
model of an air conditioning is shown in Fig. 6. This
component has 4 states: “heat”, “cool”, “inactive” and “stop”.

• The state “heat” indicates that the air-conditioner
diffuses heating air and that the user’s desired

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:3, 2010

472

temperature is higher than the ambient temperature.
• When the user’s expected temperature is lower than

the ambient temperature, the air conditioner
component is in state “cool”. This indicates that the
air-conditioner diffuses cooling air.

• The state “inactive” indicates that the machine is in
service but it does not diffuse air.

• And the state “stop” indicates that the machine is off.

Stop

Inactive Cool

Heat

setTemp(temp)
 [delta<0 and
 min<temp<max]

stop()

setTemp(temp)
[delta=0 or temp>max or temp< min]

stop()

stop() setTemp(temp)
[delta=0 or
temp>max or
temp<min]

 setTemp(temp)
 [delta=0 or
min>temp or temp>max]

setTemp(temp)
 [delta=0 or
 temp>max or
 temp<min]

setTemp(temp)
 [delta<0 and
min<temp<max]

 setTemp(temp)
 [delta<0 and
 min<temp<max]

setTemp(temp)
[delta=0 and min<temp<max]

setTemp(temp)
[delta>0 and
min<temp<max]

setTemp(temp)
 [delta>0 and
min<temp<max]

setTemp(temp)
[delta<0 and
min<temp<max]

 setTemp(temp)
[delta>0 and

min<temp<max]

stop()

temp : user’s desired temperature
delta : difference between user’s desired temperature and ambient temperature
max: maximum value permitted of the thermostat
min: minimum value permitted of the thermostat

Fig. 6 State model of a thermostat

A functional or black box test must verify that the state
transitions during operation comply with the specification of
the tested component. Each identified transition in the state
model must be tested. The guard conditions in the state model
define alternative transitions that are executed according to
distinct input parameters or attribute values.

<<Component>>

Thermostat
isStop
reqTemp
enviTemp
max
min
+ setTemp (temp)
+ stop()

<<testing>>
BuiltInTestThermostat

State Stop
State Inactive
State Heat

State Cool
+ void setToState (State X)
+ bool isInState (State X)

Fig. 7 Structural model of the thermostat testing interface

Fig. 7 shows the structural model of the air conditioner

component with testing interfaces. Each state is defined as
public attribute, and two parameterized operations setToState
and isInState take these attributes as input for respectively
setting the state, and checking whether the component is
residing in a given state.

The testing interface for each tested component will be
specified according to the realization of the functionality of
that component.

The thermostat example exhibits four different states that
represent the user’s desired temperature, the difference
between user’s desired temperature and ambient temperature
and the variable checking whether the thermostat is in service
or not. The realization of the state setup and checking
operations is represented by the activity diagrams in Fig. 8.

BuiltInTestThermostat::setToState

Case : State in
Stop :
isStop = true
Inactive :
isStop = false and
(reqTemp = enviTemp or
reqTemp < min or reqTemp > max)
Heat :
isStop = false and
reqTemp > enviTemp and
min< reqTemp < max
Cool :
isStop = false and
reqTemp < enviTemp and
min< reqTemp < max
default : continue

<<extends>>

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:3, 2010

473

BuiltInTestThermostat::isInState

Fig. 8 Realization of a testing interface

B. Test Cases
In the initial approach of built-in testing (BIT) as proposed

by Wang [21], complete test cases are put inside the
components and are therefore automatically reused with the
component. While this strategy seems attractive at first sight,
it is not flexible enough to suit the general case. Because the
purpose of that built-in testing is testing the component in a
new environment, a component needs different types of tests
in different environments and it is neither feasible nor flexible
to have them all built in permanently. To solve this problem,
under the testing paradigm of Component+ [10], test cases are
separated from their respective components and put in
separate tester components. Another approach to BIT has been
proposed by Martins [14]. They put a minimal number of
tests, like assertions, inside the components. These assertions
are reused together with a test specification. However, specific
software has to be used in order to transform the test
specification into real tests.

In our work, we chose to put the test suite inside the
components. Indeed, as described earlier, the goal of our tests
is to serve the on-line diagnosis process, where components
test each other. So, putting test cases in tester components
would be costly. Moreover, test cases have to be lightweight
and efficient, for example, generating high efficiency test
cases, focusing on boundary testing, etc.

Fig. 9 Example of a test case

Fig. 9 shows the example of the test case that tests the
demand of providing the heating air while the thermostat is
providing the cooling air. First of all, we have to bring the
thermostat component to the state “Cool” and we execute the
operation “setTemp(temp)” to get the desired temperature
from the user. Then we check the result of that operation and
the final state of the thermostat to determine whether the test
fails or not.

The test is carried out on-line, so to keep the correctness of
the system states, persistent data of the system are stored and
restored before and after execution of test cases.

As described earlier in section 3.1, the testing interface is
one of the provided interfaces of the component, so the tester
component can use this interface in the same way as the other
functional interfaces.

IV. SYSTEM – LEVEL DIAGNOSIS VERSUS COMPONENT
REPLICATION

It is difficult to compare the costs of the redundancy and the
system diagnosis approaches because of their differences and
their unknowns. Indeed, while the objective of system
diagnosis is to detect and locate faulty components within a
system, redundancy aims at masking them.

Because of these major differences, research in these two
fields evolves separately and a comparison of the obtained
results in each field is difficult to make. In their proposed
review of these two approaches, Barborak et al. [3] provided a
deep qualitative comparison of system diagnosis and
redundancy with respect to several criteria (objective, fault
assumption, implementation, etc.).

In our work, we conducted an experimental evaluation on
the thermostat example, using two diagnosis algorithms from
the literature. The first one is a distributed diagnosis algorithm

//Test Case 1: test the demand of providing the
heating air while the thermostat is providing the
cooling air
TestCase1()
// Store persistent data of the system
 t = reqTemp
 h = enviTemp
// Put the BuiltInTestThermostat in a specific state
before the test
setToState (“Cool”);
// Execution of the test operation “setTemp(temp)”
setTemp(temp)
//restore persistent data of the system
reqTemp = t
enviTemp = h
//check the result of operation and the final state
if (isInstate (“Heat”))

testResult=”OK”
else

testResult=”FALSE”

Case : State in
Stop : return
isStop = = true
Inactive : return
isStop = = false and
((reqTemp-enviTemp) = = 0 or
reqTemp < min or reqTemp >max)
Heat : return
isStop = = false and
(reqTemp-enviTemp) > 0 and
min<reqTemp<max
Cool : return
isStop = = false and
(reqTemp-enviTemp) < 0 and
min < reqTemp <max
default : return false

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:3, 2010

474

that makes every component in the system aware of the whole
system state [9]. The second one is a centralized algorithm
that relies on a central component to determine the fault state
of the whole system [19].

The obtained preliminary results presented in the following
aim to give indications for the future orientation of the
proposed diagnosis service implementation.

The results are measured on the air conditioning system
example which consists of 4 components:

• Thermometer component: transmits the
temperature into the room.

• Thermostat component: is like the thermometer
component but allows the user to choose his
desired temperature.

• Administrator component: manages and controls
the thermometer and the thermostat and changes
the temperature remotely.

• Temperature engine component: controls the
heating valve and the cooling valve to adjust the
air supply temperature to the room.

This system is implemented with the OpenCCM platform
[18]. The redundancy method, the centralized diagnosis
method and the distributed diagnosis method are executed for
a comparison purpose.

As shown in Table I, we find that:
• The diagnosis methods use very less resources

than the replication method.
• The distributed diagnosis method can tolerate up to

3 faulty components, whereas the centralized
method can detect and locate 1 faulty component
and the redundancy method can mask up to 4
faulty components.

• The fault detection time of the distributed
diagnosis method is longer than the centralized
diagnosis method one, but the fault detection time
of the replication method is undefined as there is
no fault detection.

For determining the maximum fault number (t), we used the
general result presented in [3] which states that for a system
with n components:

• for the centralized diagnosis approach, n ≥ 2t+1,
• for the distributed one, n ≥ t+1,
• and for the redundancy approach, n ≥ 3t+1.

Faults are masked with redundancy and detected with
diagnosis approach.

TABLE I
THE OBTAINED EXPERIMENTAL RESULTS

Criterion Distributed
diagnosis
method

Centralized
diagnosis
method

Redundancy
method

Component
needs

5
components

6
components

13
components

Fault
number (t)

4 ≥ t + 1 4 ≥ 2t + 1 13 ≥ 3t + 1

Fault
detection
time (ms)

12452 10962 undefined

V. CONCLUSION
The presented work, even if in its beginning step, is

promising. The proposed inter-component and diagnosis
approaches are very interesting functionalities since they may
enhance application dependability with a competitive cost-
performance trade-off, in comparison with classical costly
redundancy approaches. We are currently working on using
idle cycles to perform tests and studying good partitioning
algorithms in order to reduce the fault detection time and
improve impact of diagnosis method on system performance.

REFERENCES
[1] O. Aktouf, M. Wahl and M. Dang, “Introducing Fault-Diagnosis into

embedded CORBA-Based Systems”, IEEE International Conference on
Information & Communication Technologies, Syria, 2004.

[2] C. Atkinson and H. G. Groß, “Built-in contract testing in model-driven,
component-based development”, In ICSR-7 Workshop on Component-
Based Development Processes, Austin, Texas, 2002.

[3] M. Barborak, M. Makek and A. Dahbura., “The consensus Problem in
Fault-Tolerant Computing”, ACM Computing Surveys, Vol.25, No.1,
1993.

[4] N. Belloir, J. M. Bruel and F. Barbier, “Intégration du test dans les
composants logiciels”, Workshop OCM dans l’ingénierie des SI during
INFORSID 2002, Nantes, France, 2002.

[5] Cleopatre. Available: http://www.cleopatre-project.org.
[6] A. T. Dahbura, “An O(n2,5) fault identification algorithm for

diagnosticable systems”, IEEE Transactions on Computers, vol. C-33,
n°6, p. 486-492, June 1984.

[7] F. Favarim, J. Fraga and F. Siqueira, "Fault-tolerant CORBA
Components" In 2nd Workshop on Reflective and Adaptive Middleware,
p. 144-148, Rio de Janeiro, Brazil, 2003.

[8] J. Fraga, F. Siqueira and F. Favarim, "An Adaptive Fault-Tolerant
Component Model", 9th IEEE International Workshop on Object-
Oriented Real-Time Dependable Systems, Capri Island, Italy, 2003.

[9] R. Bianchini, R. W. Buskens, “An adaptative distributed system level
diagnosis algorithm and its implementation”, Proceedings of the 21st

international IEEE Symposium on Fault-Tolerant Computing, p. 616-
626, 1991.

[10] H. G. Groß, “Built-in Contrat Testing in Component-based Application
Engineering”, CologNet Joint Workshop on Component-based Software
Development and Implementation Technology for Computational Logic,
Affiliated with LOPSTR, Madrid, Spain, 19-20 September 2002.

[11] ICM. Available: http://www.icmgworld.com.
[12] H. Kopetz, and T. Wien, “DECOS - European Integrated Project

Proposal”. Available: https://www.decos.at/download/021003-
DECOS.Grenoble-US.pdf/, October 2002.

[13] K. S. Lee and G. Shin, “Probabilistic Diagnosis of Multiprocessor
Systems”, ACM Computing Surveys, Vol.26, No.1, 1994.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:3, 2010

475

[14] E. Martins, C. M. Toyota and R. L. Yanagawa, “Constructing Self-
Testable Software Components”, Proceedings of the 2001 International
Conference on Dependable Systems and Networks, p. 151-160,
Göteborg, Sweden, July 2001.

[15] V. Marangozova and D. Hagimont, “An Infrastructure for CORBA
Component Replication”, 1st IFIP/ACM Working Conference on
Component Deployment, Berlin, Germany, June 2002.

[16] Microsoft, “Overview of the .NET Framework”, MSDN Library White
Paper, 2001. Available: http://msdn.microsoft.com.

[17] CORBA Components, OMG Document formal/02-06-65, 2002.
Available: http://www.omg.org.

[18] OpenCCM. Available: http://www.objectweb.org.
[19] Prerapata, Metz, Chien., “On the connection assignment problem of

diagnosticable systems”, IEEE Transactions on Electronic Computers,
vol. EC-16, n°6, p. 848-854, December 1967.

[20] Sun Microsystems, “Enterprise JavaBeans Specification”, v2.0. 2001.
Available: http://java.sun.com/ejb/.

[21] Y. Wang, “On Built-In Test Reuse in Object-Oriented Framework
Design”, ACM Computing Surveys, 32(1), March, 2002.

